• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //
2 // Copyright © 2017 Arm Ltd. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 
6 #pragma once
7 
8 #include "SchemaSerialize.hpp"
9 #include "test/TensorHelpers.hpp"
10 
11 #include "flatbuffers/idl.h"
12 #include "flatbuffers/util.h"
13 
14 #include <ArmnnSchema_generated.h>
15 #include <armnn/IRuntime.hpp>
16 #include <armnnDeserializer/IDeserializer.hpp>
17 #include <armnn/utility/Assert.hpp>
18 #include <armnn/utility/IgnoreUnused.hpp>
19 #include <ResolveType.hpp>
20 
21 #include <fmt/format.h>
22 
23 
24 using armnnDeserializer::IDeserializer;
25 using TensorRawPtr = armnnSerializer::TensorInfo*;
26 
27 struct ParserFlatbuffersSerializeFixture
28 {
ParserFlatbuffersSerializeFixtureParserFlatbuffersSerializeFixture29     ParserFlatbuffersSerializeFixture() :
30         m_Parser(IDeserializer::Create()),
31         m_Runtime(armnn::IRuntime::Create(armnn::IRuntime::CreationOptions())),
32         m_NetworkIdentifier(-1)
33     {
34     }
35 
36     std::vector<uint8_t> m_GraphBinary;
37     std::string m_JsonString;
38     std::unique_ptr<IDeserializer, void (*)(IDeserializer* parser)> m_Parser;
39     armnn::IRuntimePtr m_Runtime;
40     armnn::NetworkId m_NetworkIdentifier;
41 
42     /// If the single-input-single-output overload of Setup() is called, these will store the input and output name
43     /// so they don't need to be passed to the single-input-single-output overload of RunTest().
44     std::string m_SingleInputName;
45     std::string m_SingleOutputName;
46 
SetupParserFlatbuffersSerializeFixture47     void Setup()
48     {
49         bool ok = ReadStringToBinary();
50         if (!ok)
51         {
52             throw armnn::Exception("LoadNetwork failed while reading binary input");
53         }
54 
55         armnn::INetworkPtr network =
56                 m_Parser->CreateNetworkFromBinary(m_GraphBinary);
57 
58         if (!network)
59         {
60             throw armnn::Exception("The parser failed to create an ArmNN network");
61         }
62 
63         auto optimized = Optimize(*network, {armnn::Compute::CpuRef},
64                                   m_Runtime->GetDeviceSpec());
65 
66         std::string errorMessage;
67         armnn::Status ret = m_Runtime->LoadNetwork(m_NetworkIdentifier, move(optimized), errorMessage);
68 
69         if (ret != armnn::Status::Success)
70         {
71             throw armnn::Exception(fmt::format("The runtime failed to load the network. "
72                                                "Error was: {0}. in {1} [{2}:{3}]",
73                                                errorMessage,
74                                                __func__,
75                                                __FILE__,
76                                                __LINE__));
77         }
78 
79     }
80 
SetupSingleInputSingleOutputParserFlatbuffersSerializeFixture81     void SetupSingleInputSingleOutput(const std::string& inputName, const std::string& outputName)
82     {
83         // Store the input and output name so they don't need to be passed to the single-input-single-output RunTest().
84         m_SingleInputName = inputName;
85         m_SingleOutputName = outputName;
86         Setup();
87     }
88 
ReadStringToBinaryParserFlatbuffersSerializeFixture89     bool ReadStringToBinary()
90     {
91         std::string schemafile(&deserialize_schema_start, &deserialize_schema_end);
92 
93         // parse schema first, so we can use it to parse the data after
94         flatbuffers::Parser parser;
95 
96         bool ok = parser.Parse(schemafile.c_str());
97         ARMNN_ASSERT_MSG(ok, "Failed to parse schema file");
98 
99         ok &= parser.Parse(m_JsonString.c_str());
100         ARMNN_ASSERT_MSG(ok, "Failed to parse json input");
101 
102         if (!ok)
103         {
104             return false;
105         }
106 
107         {
108             const uint8_t* bufferPtr = parser.builder_.GetBufferPointer();
109             size_t size = static_cast<size_t>(parser.builder_.GetSize());
110             m_GraphBinary.assign(bufferPtr, bufferPtr+size);
111         }
112         return ok;
113     }
114 
115     /// Executes the network with the given input tensor and checks the result against the given output tensor.
116     /// This overload assumes the network has a single input and a single output.
117     template<std::size_t NumOutputDimensions,
118              armnn::DataType ArmnnType,
119              typename DataType = armnn::ResolveType<ArmnnType>>
120     void RunTest(unsigned int layersId,
121                  const std::vector<DataType>& inputData,
122                  const std::vector<DataType>& expectedOutputData);
123 
124     template<std::size_t NumOutputDimensions,
125              armnn::DataType ArmnnInputType,
126              armnn::DataType ArmnnOutputType,
127              typename InputDataType = armnn::ResolveType<ArmnnInputType>,
128              typename OutputDataType = armnn::ResolveType<ArmnnOutputType>>
129     void RunTest(unsigned int layersId,
130                  const std::vector<InputDataType>& inputData,
131                  const std::vector<OutputDataType>& expectedOutputData);
132 
133     /// Executes the network with the given input tensors and checks the results against the given output tensors.
134     /// This overload supports multiple inputs and multiple outputs, identified by name.
135     template<std::size_t NumOutputDimensions,
136              armnn::DataType ArmnnType,
137              typename DataType = armnn::ResolveType<ArmnnType>>
138     void RunTest(unsigned int layersId,
139                  const std::map<std::string, std::vector<DataType>>& inputData,
140                  const std::map<std::string, std::vector<DataType>>& expectedOutputData);
141 
142     template<std::size_t NumOutputDimensions,
143              armnn::DataType ArmnnInputType,
144              armnn::DataType ArmnnOutputType,
145              typename InputDataType = armnn::ResolveType<ArmnnInputType>,
146              typename OutputDataType = armnn::ResolveType<ArmnnOutputType>>
147     void RunTest(unsigned int layersId,
148                  const std::map<std::string, std::vector<InputDataType>>& inputData,
149                  const std::map<std::string, std::vector<OutputDataType>>& expectedOutputData);
150 
CheckTensorsParserFlatbuffersSerializeFixture151     void CheckTensors(const TensorRawPtr& tensors, size_t shapeSize, const std::vector<int32_t>& shape,
152                       armnnSerializer::TensorInfo tensorType, const std::string& name,
153                       const float scale, const int64_t zeroPoint)
154     {
155         armnn::IgnoreUnused(name);
156         BOOST_CHECK_EQUAL(shapeSize, tensors->dimensions()->size());
157         BOOST_CHECK_EQUAL_COLLECTIONS(shape.begin(), shape.end(),
158                                       tensors->dimensions()->begin(), tensors->dimensions()->end());
159         BOOST_CHECK_EQUAL(tensorType.dataType(), tensors->dataType());
160         BOOST_CHECK_EQUAL(scale, tensors->quantizationScale());
161         BOOST_CHECK_EQUAL(zeroPoint, tensors->quantizationOffset());
162     }
163 };
164 
165 template<std::size_t NumOutputDimensions, armnn::DataType ArmnnType, typename DataType>
RunTest(unsigned int layersId,const std::vector<DataType> & inputData,const std::vector<DataType> & expectedOutputData)166 void ParserFlatbuffersSerializeFixture::RunTest(unsigned int layersId,
167                                                 const std::vector<DataType>& inputData,
168                                                 const std::vector<DataType>& expectedOutputData)
169 {
170     RunTest<NumOutputDimensions, ArmnnType, ArmnnType, DataType, DataType>(layersId, inputData, expectedOutputData);
171 }
172 
173 template<std::size_t NumOutputDimensions,
174          armnn::DataType ArmnnInputType,
175          armnn::DataType ArmnnOutputType,
176          typename InputDataType,
177          typename OutputDataType>
RunTest(unsigned int layersId,const std::vector<InputDataType> & inputData,const std::vector<OutputDataType> & expectedOutputData)178 void ParserFlatbuffersSerializeFixture::RunTest(unsigned int layersId,
179                                                 const std::vector<InputDataType>& inputData,
180                                                 const std::vector<OutputDataType>& expectedOutputData)
181 {
182     RunTest<NumOutputDimensions, ArmnnInputType, ArmnnOutputType>(layersId,
183                                                                   { { m_SingleInputName, inputData } },
184                                                                   { { m_SingleOutputName, expectedOutputData } });
185 }
186 
187 template<std::size_t NumOutputDimensions, armnn::DataType ArmnnType, typename DataType>
RunTest(unsigned int layersId,const std::map<std::string,std::vector<DataType>> & inputData,const std::map<std::string,std::vector<DataType>> & expectedOutputData)188 void ParserFlatbuffersSerializeFixture::RunTest(unsigned int layersId,
189                                                 const std::map<std::string, std::vector<DataType>>& inputData,
190                                                 const std::map<std::string, std::vector<DataType>>& expectedOutputData)
191 {
192     RunTest<NumOutputDimensions, ArmnnType, ArmnnType, DataType, DataType>(layersId, inputData, expectedOutputData);
193 }
194 
195 template<std::size_t NumOutputDimensions,
196          armnn::DataType ArmnnInputType,
197          armnn::DataType ArmnnOutputType,
198          typename InputDataType,
199          typename OutputDataType>
RunTest(unsigned int layersId,const std::map<std::string,std::vector<InputDataType>> & inputData,const std::map<std::string,std::vector<OutputDataType>> & expectedOutputData)200 void ParserFlatbuffersSerializeFixture::RunTest(
201     unsigned int layersId,
202     const std::map<std::string, std::vector<InputDataType>>& inputData,
203     const std::map<std::string, std::vector<OutputDataType>>& expectedOutputData)
204 {
205     auto ConvertBindingInfo = [](const armnnDeserializer::BindingPointInfo& bindingInfo)
206         {
207             return std::make_pair(bindingInfo.m_BindingId, bindingInfo.m_TensorInfo);
208         };
209 
210     // Setup the armnn input tensors from the given vectors.
211     armnn::InputTensors inputTensors;
212     for (auto&& it : inputData)
213     {
214         armnn::BindingPointInfo bindingInfo = ConvertBindingInfo(
215             m_Parser->GetNetworkInputBindingInfo(layersId, it.first));
216         armnn::VerifyTensorInfoDataType(bindingInfo.second, ArmnnInputType);
217         inputTensors.push_back({ bindingInfo.first, armnn::ConstTensor(bindingInfo.second, it.second.data()) });
218     }
219 
220     // Allocate storage for the output tensors to be written to and setup the armnn output tensors.
221     std::map<std::string, boost::multi_array<OutputDataType, NumOutputDimensions>> outputStorage;
222     armnn::OutputTensors outputTensors;
223     for (auto&& it : expectedOutputData)
224     {
225         armnn::BindingPointInfo bindingInfo = ConvertBindingInfo(
226             m_Parser->GetNetworkOutputBindingInfo(layersId, it.first));
227         armnn::VerifyTensorInfoDataType(bindingInfo.second, ArmnnOutputType);
228         outputStorage.emplace(it.first, MakeTensor<OutputDataType, NumOutputDimensions>(bindingInfo.second));
229         outputTensors.push_back(
230                 { bindingInfo.first, armnn::Tensor(bindingInfo.second, outputStorage.at(it.first).data()) });
231     }
232 
233     m_Runtime->EnqueueWorkload(m_NetworkIdentifier, inputTensors, outputTensors);
234 
235     // Compare each output tensor to the expected values
236     for (auto&& it : expectedOutputData)
237     {
238         armnn::BindingPointInfo bindingInfo = ConvertBindingInfo(
239             m_Parser->GetNetworkOutputBindingInfo(layersId, it.first));
240         auto outputExpected = MakeTensor<OutputDataType, NumOutputDimensions>(bindingInfo.second, it.second);
241         BOOST_TEST(CompareTensors(outputExpected, outputStorage[it.first]));
242     }
243 }
244