• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2016 The SwiftShader Authors. All Rights Reserved.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //    http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "Debug.hpp"
16 #include "Print.hpp"
17 #include "Reactor.hpp"
18 #include "ReactorDebugInfo.hpp"
19 
20 #include "ExecutableMemory.hpp"
21 #include "Optimizer.hpp"
22 
23 #include "src/IceCfg.h"
24 #include "src/IceCfgNode.h"
25 #include "src/IceELFObjectWriter.h"
26 #include "src/IceELFStreamer.h"
27 #include "src/IceGlobalContext.h"
28 #include "src/IceGlobalInits.h"
29 #include "src/IceTypes.h"
30 
31 #include "llvm/Support/Compiler.h"
32 #include "llvm/Support/FileSystem.h"
33 #include "llvm/Support/ManagedStatic.h"
34 #include "llvm/Support/raw_os_ostream.h"
35 
36 #include "marl/event.h"
37 
38 #if __has_feature(memory_sanitizer)
39 #	include <sanitizer/msan_interface.h>
40 #endif
41 
42 #if defined(_WIN32)
43 #	ifndef WIN32_LEAN_AND_MEAN
44 #		define WIN32_LEAN_AND_MEAN
45 #	endif  // !WIN32_LEAN_AND_MEAN
46 #	ifndef NOMINMAX
47 #		define NOMINMAX
48 #	endif  // !NOMINMAX
49 #	include <Windows.h>
50 #endif
51 
52 #include <array>
53 #include <cmath>
54 #include <iostream>
55 #include <limits>
56 #include <mutex>
57 
58 // Subzero utility functions
59 // These functions only accept and return Subzero (Ice) types, and do not access any globals.
60 namespace {
61 namespace sz {
62 
createFunction(Ice::GlobalContext * context,Ice::Type returnType,const std::vector<Ice::Type> & paramTypes)63 Ice::Cfg *createFunction(Ice::GlobalContext *context, Ice::Type returnType, const std::vector<Ice::Type> &paramTypes)
64 {
65 	uint32_t sequenceNumber = 0;
66 	auto *function = Ice::Cfg::create(context, sequenceNumber).release();
67 
68 	function->setStackSizeLimit(512 * 1024);  // 512 KiB
69 
70 	Ice::CfgLocalAllocatorScope allocScope{ function };
71 
72 	for(auto type : paramTypes)
73 	{
74 		Ice::Variable *arg = function->makeVariable(type);
75 		function->addArg(arg);
76 	}
77 
78 	Ice::CfgNode *node = function->makeNode();
79 	function->setEntryNode(node);
80 
81 	return function;
82 }
83 
getPointerType(Ice::Type elementType)84 Ice::Type getPointerType(Ice::Type elementType)
85 {
86 	if(sizeof(void *) == 8)
87 	{
88 		return Ice::IceType_i64;
89 	}
90 	else
91 	{
92 		return Ice::IceType_i32;
93 	}
94 }
95 
allocateStackVariable(Ice::Cfg * function,Ice::Type type,int arraySize=0)96 Ice::Variable *allocateStackVariable(Ice::Cfg *function, Ice::Type type, int arraySize = 0)
97 {
98 	int typeSize = Ice::typeWidthInBytes(type);
99 	int totalSize = typeSize * (arraySize ? arraySize : 1);
100 
101 	auto bytes = Ice::ConstantInteger32::create(function->getContext(), Ice::IceType_i32, totalSize);
102 	auto address = function->makeVariable(getPointerType(type));
103 	auto alloca = Ice::InstAlloca::create(function, address, bytes, typeSize);  // SRoA depends on the alignment to match the type size.
104 	function->getEntryNode()->getInsts().push_front(alloca);
105 
106 	return address;
107 }
108 
getConstantPointer(Ice::GlobalContext * context,void const * ptr)109 Ice::Constant *getConstantPointer(Ice::GlobalContext *context, void const *ptr)
110 {
111 	if(sizeof(void *) == 8)
112 	{
113 		return context->getConstantInt64(reinterpret_cast<intptr_t>(ptr));
114 	}
115 	else
116 	{
117 		return context->getConstantInt32(reinterpret_cast<intptr_t>(ptr));
118 	}
119 }
120 
121 // TODO(amaiorano): remove this prototype once these are moved to separate header/cpp
122 Ice::Variable *createTruncate(Ice::Cfg *function, Ice::CfgNode *basicBlock, Ice::Operand *from, Ice::Type toType);
123 
124 // Wrapper for calls on C functions with Ice types
Call(Ice::Cfg * function,Ice::CfgNode * basicBlock,Ice::Type retTy,Ice::Operand * callTarget,const std::vector<Ice::Operand * > & iceArgs,bool isVariadic)125 Ice::Variable *Call(Ice::Cfg *function, Ice::CfgNode *basicBlock, Ice::Type retTy, Ice::Operand *callTarget, const std::vector<Ice::Operand *> &iceArgs, bool isVariadic)
126 {
127 	Ice::Variable *ret = nullptr;
128 
129 	// Subzero doesn't support boolean return values. Replace with an i32 temporarily,
130 	// then truncate result to bool.
131 	// TODO(b/151158858): Add support to Subzero's InstCall for bool-returning functions
132 	const bool returningBool = (retTy == Ice::IceType_i1);
133 	if(returningBool)
134 	{
135 		ret = function->makeVariable(Ice::IceType_i32);
136 	}
137 	else if(retTy != Ice::IceType_void)
138 	{
139 		ret = function->makeVariable(retTy);
140 	}
141 
142 	auto call = Ice::InstCall::create(function, iceArgs.size(), ret, callTarget, false, false, isVariadic);
143 	for(auto arg : iceArgs)
144 	{
145 		call->addArg(arg);
146 	}
147 
148 	basicBlock->appendInst(call);
149 
150 	if(returningBool)
151 	{
152 		// Truncate result to bool so that if any (lsb) bits were set, result will be true
153 		ret = createTruncate(function, basicBlock, ret, Ice::IceType_i1);
154 	}
155 
156 	return ret;
157 }
158 
Call(Ice::Cfg * function,Ice::CfgNode * basicBlock,Ice::Type retTy,void const * fptr,const std::vector<Ice::Operand * > & iceArgs,bool isVariadic)159 Ice::Variable *Call(Ice::Cfg *function, Ice::CfgNode *basicBlock, Ice::Type retTy, void const *fptr, const std::vector<Ice::Operand *> &iceArgs, bool isVariadic)
160 {
161 	Ice::Operand *callTarget = getConstantPointer(function->getContext(), fptr);
162 	return Call(function, basicBlock, retTy, callTarget, iceArgs, isVariadic);
163 }
164 
165 // Wrapper for calls on C functions with Ice types
166 template<typename Return, typename... CArgs, typename... RArgs>
Call(Ice::Cfg * function,Ice::CfgNode * basicBlock,Return (fptr)(CArgs...),RArgs &&...args)167 Ice::Variable *Call(Ice::Cfg *function, Ice::CfgNode *basicBlock, Return(fptr)(CArgs...), RArgs &&...args)
168 {
169 	static_assert(sizeof...(CArgs) == sizeof...(RArgs), "Expected number of args don't match");
170 
171 	Ice::Type retTy = T(rr::CToReactorT<Return>::type());
172 	std::vector<Ice::Operand *> iceArgs{ std::forward<RArgs>(args)... };
173 	return Call(function, basicBlock, retTy, reinterpret_cast<void const *>(fptr), iceArgs, false);
174 }
175 
createTruncate(Ice::Cfg * function,Ice::CfgNode * basicBlock,Ice::Operand * from,Ice::Type toType)176 Ice::Variable *createTruncate(Ice::Cfg *function, Ice::CfgNode *basicBlock, Ice::Operand *from, Ice::Type toType)
177 {
178 	Ice::Variable *to = function->makeVariable(toType);
179 	Ice::InstCast *cast = Ice::InstCast::create(function, Ice::InstCast::Trunc, to, from);
180 	basicBlock->appendInst(cast);
181 	return to;
182 }
183 
createLoad(Ice::Cfg * function,Ice::CfgNode * basicBlock,Ice::Operand * ptr,Ice::Type type,unsigned int align)184 Ice::Variable *createLoad(Ice::Cfg *function, Ice::CfgNode *basicBlock, Ice::Operand *ptr, Ice::Type type, unsigned int align)
185 {
186 	Ice::Variable *result = function->makeVariable(type);
187 	auto load = Ice::InstLoad::create(function, result, ptr, align);
188 	basicBlock->appendInst(load);
189 
190 	return result;
191 }
192 
193 }  // namespace sz
194 }  // namespace
195 
196 namespace rr {
197 class ELFMemoryStreamer;
198 class CoroutineGenerator;
199 }  // namespace rr
200 
201 namespace {
202 
203 // Used to automatically invoke llvm_shutdown() when driver is unloaded
204 llvm::llvm_shutdown_obj llvmShutdownObj;
205 
206 // Default configuration settings. Must be accessed under mutex lock.
207 std::mutex defaultConfigLock;
defaultConfig()208 rr::Config &defaultConfig()
209 {
210 	// This uses a static in a function to avoid the cost of a global static
211 	// initializer. See http://neugierig.org/software/chromium/notes/2011/08/static-initializers.html
212 	static rr::Config config = rr::Config::Edit()
213 	                               .apply({});
214 	return config;
215 }
216 
217 Ice::GlobalContext *context = nullptr;
218 Ice::Cfg *function = nullptr;
219 Ice::CfgNode *entryBlock = nullptr;
220 Ice::CfgNode *basicBlockTop = nullptr;
221 Ice::CfgNode *basicBlock = nullptr;
222 Ice::CfgLocalAllocatorScope *allocator = nullptr;
223 rr::ELFMemoryStreamer *routine = nullptr;
224 
225 std::mutex codegenMutex;
226 
227 Ice::ELFFileStreamer *elfFile = nullptr;
228 Ice::Fdstream *out = nullptr;
229 
230 // Coroutine globals
231 rr::Type *coroYieldType = nullptr;
232 std::shared_ptr<rr::CoroutineGenerator> coroGen;
getOrCreateScheduler()233 marl::Scheduler &getOrCreateScheduler()
234 {
235 	static auto scheduler = [] {
236 		marl::Scheduler::Config cfg;
237 		cfg.setWorkerThreadCount(8);
238 		return std::make_unique<marl::Scheduler>(cfg);
239 	}();
240 
241 	return *scheduler;
242 }
243 
244 rr::Nucleus::OptimizerCallback *optimizerCallback = nullptr;
245 
246 }  // Anonymous namespace
247 
248 namespace {
249 
250 #if !defined(__i386__) && defined(_M_IX86)
251 #	define __i386__ 1
252 #endif
253 
254 #if !defined(__x86_64__) && (defined(_M_AMD64) || defined(_M_X64))
255 #	define __x86_64__ 1
256 #endif
257 
toIce(rr::Optimization::Level level)258 Ice::OptLevel toIce(rr::Optimization::Level level)
259 {
260 	switch(level)
261 	{
262 	// Note that Opt_0 and Opt_1 are not implemented by Subzero
263 	case rr::Optimization::Level::None: return Ice::Opt_m1;
264 	case rr::Optimization::Level::Less: return Ice::Opt_m1;
265 	case rr::Optimization::Level::Default: return Ice::Opt_2;
266 	case rr::Optimization::Level::Aggressive: return Ice::Opt_2;
267 	default: UNREACHABLE("Unknown Optimization Level %d", int(level));
268 	}
269 	return Ice::Opt_2;
270 }
271 
stdToIceMemoryOrder(std::memory_order memoryOrder)272 Ice::Intrinsics::MemoryOrder stdToIceMemoryOrder(std::memory_order memoryOrder)
273 {
274 	switch(memoryOrder)
275 	{
276 	case std::memory_order_relaxed: return Ice::Intrinsics::MemoryOrderRelaxed;
277 	case std::memory_order_consume: return Ice::Intrinsics::MemoryOrderConsume;
278 	case std::memory_order_acquire: return Ice::Intrinsics::MemoryOrderAcquire;
279 	case std::memory_order_release: return Ice::Intrinsics::MemoryOrderRelease;
280 	case std::memory_order_acq_rel: return Ice::Intrinsics::MemoryOrderAcquireRelease;
281 	case std::memory_order_seq_cst: return Ice::Intrinsics::MemoryOrderSequentiallyConsistent;
282 	}
283 	return Ice::Intrinsics::MemoryOrderInvalid;
284 }
285 
286 class CPUID
287 {
288 public:
289 	const static bool ARM;
290 	const static bool SSE4_1;
291 
292 private:
cpuid(int registers[4],int info)293 	static void cpuid(int registers[4], int info)
294 	{
295 #if defined(__i386__) || defined(__x86_64__)
296 #	if defined(_WIN32)
297 		__cpuid(registers, info);
298 #	else
299 		__asm volatile("cpuid"
300 		               : "=a"(registers[0]), "=b"(registers[1]), "=c"(registers[2]), "=d"(registers[3])
301 		               : "a"(info));
302 #	endif
303 #else
304 		registers[0] = 0;
305 		registers[1] = 0;
306 		registers[2] = 0;
307 		registers[3] = 0;
308 #endif
309 	}
310 
detectARM()311 	constexpr static bool detectARM()
312 	{
313 #if defined(__arm__) || defined(__aarch64__)
314 		return true;
315 #elif defined(__i386__) || defined(__x86_64__)
316 		return false;
317 #elif defined(__mips__)
318 		return false;
319 #else
320 #	error "Unknown architecture"
321 #endif
322 	}
323 
detectSSE4_1()324 	static bool detectSSE4_1()
325 	{
326 #if defined(__i386__) || defined(__x86_64__)
327 		int registers[4];
328 		cpuid(registers, 1);
329 		return (registers[2] & 0x00080000) != 0;
330 #else
331 		return false;
332 #endif
333 	}
334 };
335 
336 constexpr bool CPUID::ARM = CPUID::detectARM();
337 const bool CPUID::SSE4_1 = CPUID::detectSSE4_1();
338 constexpr bool emulateIntrinsics = false;
339 constexpr bool emulateMismatchedBitCast = CPUID::ARM;
340 
341 constexpr bool subzeroDumpEnabled = false;
342 constexpr bool subzeroEmitTextAsm = false;
343 
344 #if !ALLOW_DUMP
345 static_assert(!subzeroDumpEnabled, "Compile Subzero with ALLOW_DUMP=1 for subzeroDumpEnabled");
346 static_assert(!subzeroEmitTextAsm, "Compile Subzero with ALLOW_DUMP=1 for subzeroEmitTextAsm");
347 #endif
348 
349 }  // anonymous namespace
350 
351 namespace rr {
352 
backendName()353 std::string Caps::backendName()
354 {
355 	return "Subzero";
356 }
357 
coroutinesSupported()358 bool Caps::coroutinesSupported()
359 {
360 	return true;
361 }
362 
fmaIsFast()363 bool Caps::fmaIsFast()
364 {
365 	// TODO(b/214591655): Subzero currently never emits FMA instructions. std::fma() is called instead.
366 	return false;
367 }
368 
369 enum EmulatedType
370 {
371 	EmulatedShift = 16,
372 	EmulatedV2 = 2 << EmulatedShift,
373 	EmulatedV4 = 4 << EmulatedShift,
374 	EmulatedV8 = 8 << EmulatedShift,
375 	EmulatedBits = EmulatedV2 | EmulatedV4 | EmulatedV8,
376 
377 	Type_v2i32 = Ice::IceType_v4i32 | EmulatedV2,
378 	Type_v4i16 = Ice::IceType_v8i16 | EmulatedV4,
379 	Type_v2i16 = Ice::IceType_v8i16 | EmulatedV2,
380 	Type_v8i8 = Ice::IceType_v16i8 | EmulatedV8,
381 	Type_v4i8 = Ice::IceType_v16i8 | EmulatedV4,
382 	Type_v2f32 = Ice::IceType_v4f32 | EmulatedV2,
383 };
384 
385 class Value : public Ice::Operand
386 {};
387 class SwitchCases : public Ice::InstSwitch
388 {};
389 class BasicBlock : public Ice::CfgNode
390 {};
391 
T(Type * t)392 Ice::Type T(Type *t)
393 {
394 	static_assert(static_cast<unsigned int>(Ice::IceType_NUM) < static_cast<unsigned int>(EmulatedBits), "Ice::Type overlaps with our emulated types!");
395 	return (Ice::Type)(reinterpret_cast<std::intptr_t>(t) & ~EmulatedBits);
396 }
397 
T(Ice::Type t)398 Type *T(Ice::Type t)
399 {
400 	return reinterpret_cast<Type *>(t);
401 }
402 
T(EmulatedType t)403 Type *T(EmulatedType t)
404 {
405 	return reinterpret_cast<Type *>(t);
406 }
407 
T(const std::vector<Type * > & types)408 std::vector<Ice::Type> T(const std::vector<Type *> &types)
409 {
410 	std::vector<Ice::Type> result;
411 	result.reserve(types.size());
412 	for(auto &t : types)
413 	{
414 		result.push_back(T(t));
415 	}
416 	return result;
417 }
418 
V(Ice::Operand * v)419 Value *V(Ice::Operand *v)
420 {
421 	return reinterpret_cast<Value *>(v);
422 }
423 
V(Value * v)424 Ice::Operand *V(Value *v)
425 {
426 	return reinterpret_cast<Ice::Operand *>(v);
427 }
428 
V(const std::vector<Value * > & values)429 std::vector<Ice::Operand *> V(const std::vector<Value *> &values)
430 {
431 	std::vector<Ice::Operand *> result;
432 	result.reserve(values.size());
433 	for(auto &v : values)
434 	{
435 		result.push_back(V(v));
436 	}
437 	return result;
438 }
439 
B(Ice::CfgNode * b)440 BasicBlock *B(Ice::CfgNode *b)
441 {
442 	return reinterpret_cast<BasicBlock *>(b);
443 }
444 
typeSize(Type * type)445 static size_t typeSize(Type *type)
446 {
447 	if(reinterpret_cast<std::intptr_t>(type) & EmulatedBits)
448 	{
449 		switch(reinterpret_cast<std::intptr_t>(type))
450 		{
451 		case Type_v2i32: return 8;
452 		case Type_v4i16: return 8;
453 		case Type_v2i16: return 4;
454 		case Type_v8i8: return 8;
455 		case Type_v4i8: return 4;
456 		case Type_v2f32: return 8;
457 		default: ASSERT(false);
458 		}
459 	}
460 
461 	return Ice::typeWidthInBytes(T(type));
462 }
463 
finalizeFunction()464 static void finalizeFunction()
465 {
466 	// Create a return if none was added
467 	if(::basicBlock->getInsts().empty() || ::basicBlock->getInsts().back().getKind() != Ice::Inst::Ret)
468 	{
469 		Nucleus::createRetVoid();
470 	}
471 
472 	// Connect the entry block to the top of the initial basic block
473 	auto br = Ice::InstBr::create(::function, ::basicBlockTop);
474 	::entryBlock->appendInst(br);
475 }
476 
477 using ElfHeader = std::conditional<sizeof(void *) == 8, Elf64_Ehdr, Elf32_Ehdr>::type;
478 using SectionHeader = std::conditional<sizeof(void *) == 8, Elf64_Shdr, Elf32_Shdr>::type;
479 
sectionHeader(const ElfHeader * elfHeader)480 inline const SectionHeader *sectionHeader(const ElfHeader *elfHeader)
481 {
482 	return reinterpret_cast<const SectionHeader *>((intptr_t)elfHeader + elfHeader->e_shoff);
483 }
484 
elfSection(const ElfHeader * elfHeader,int index)485 inline const SectionHeader *elfSection(const ElfHeader *elfHeader, int index)
486 {
487 	return &sectionHeader(elfHeader)[index];
488 }
489 
relocateSymbol(const ElfHeader * elfHeader,const Elf32_Rel & relocation,const SectionHeader & relocationTable)490 static void *relocateSymbol(const ElfHeader *elfHeader, const Elf32_Rel &relocation, const SectionHeader &relocationTable)
491 {
492 	const SectionHeader *target = elfSection(elfHeader, relocationTable.sh_info);
493 
494 	uint32_t index = relocation.getSymbol();
495 	int table = relocationTable.sh_link;
496 	void *symbolValue = nullptr;
497 
498 	if(index != SHN_UNDEF)
499 	{
500 		if(table == SHN_UNDEF) return nullptr;
501 		const SectionHeader *symbolTable = elfSection(elfHeader, table);
502 
503 		uint32_t symtab_entries = symbolTable->sh_size / symbolTable->sh_entsize;
504 		if(index >= symtab_entries)
505 		{
506 			ASSERT(index < symtab_entries && "Symbol Index out of range");
507 			return nullptr;
508 		}
509 
510 		intptr_t symbolAddress = (intptr_t)elfHeader + symbolTable->sh_offset;
511 		Elf32_Sym &symbol = ((Elf32_Sym *)symbolAddress)[index];
512 		uint16_t section = symbol.st_shndx;
513 
514 		if(section != SHN_UNDEF && section < SHN_LORESERVE)
515 		{
516 			const SectionHeader *target = elfSection(elfHeader, symbol.st_shndx);
517 			symbolValue = reinterpret_cast<void *>((intptr_t)elfHeader + symbol.st_value + target->sh_offset);
518 		}
519 		else
520 		{
521 			return nullptr;
522 		}
523 	}
524 
525 	intptr_t address = (intptr_t)elfHeader + target->sh_offset;
526 	unaligned_ptr<int32_t> patchSite = (int32_t *)(address + relocation.r_offset);
527 
528 	if(CPUID::ARM)
529 	{
530 		switch(relocation.getType())
531 		{
532 		case R_ARM_NONE:
533 			// No relocation
534 			break;
535 		case R_ARM_MOVW_ABS_NC:
536 			{
537 				uint32_t thumb = 0;  // Calls to Thumb code not supported.
538 				uint32_t lo = (uint32_t)(intptr_t)symbolValue | thumb;
539 				*patchSite = (*patchSite & 0xFFF0F000) | ((lo & 0xF000) << 4) | (lo & 0x0FFF);
540 			}
541 			break;
542 		case R_ARM_MOVT_ABS:
543 			{
544 				uint32_t hi = (uint32_t)(intptr_t)(symbolValue) >> 16;
545 				*patchSite = (*patchSite & 0xFFF0F000) | ((hi & 0xF000) << 4) | (hi & 0x0FFF);
546 			}
547 			break;
548 		default:
549 			ASSERT(false && "Unsupported relocation type");
550 			return nullptr;
551 		}
552 	}
553 	else
554 	{
555 		switch(relocation.getType())
556 		{
557 		case R_386_NONE:
558 			// No relocation
559 			break;
560 		case R_386_32:
561 			*patchSite = (int32_t)((intptr_t)symbolValue + *patchSite);
562 			break;
563 		case R_386_PC32:
564 			*patchSite = (int32_t)((intptr_t)symbolValue + *patchSite - (intptr_t)patchSite);
565 			break;
566 		default:
567 			ASSERT(false && "Unsupported relocation type");
568 			return nullptr;
569 		}
570 	}
571 
572 	return symbolValue;
573 }
574 
relocateSymbol(const ElfHeader * elfHeader,const Elf64_Rela & relocation,const SectionHeader & relocationTable)575 static void *relocateSymbol(const ElfHeader *elfHeader, const Elf64_Rela &relocation, const SectionHeader &relocationTable)
576 {
577 	const SectionHeader *target = elfSection(elfHeader, relocationTable.sh_info);
578 
579 	uint32_t index = relocation.getSymbol();
580 	int table = relocationTable.sh_link;
581 	void *symbolValue = nullptr;
582 
583 	if(index != SHN_UNDEF)
584 	{
585 		if(table == SHN_UNDEF) return nullptr;
586 		const SectionHeader *symbolTable = elfSection(elfHeader, table);
587 
588 		uint32_t symtab_entries = symbolTable->sh_size / symbolTable->sh_entsize;
589 		if(index >= symtab_entries)
590 		{
591 			ASSERT(index < symtab_entries && "Symbol Index out of range");
592 			return nullptr;
593 		}
594 
595 		intptr_t symbolAddress = (intptr_t)elfHeader + symbolTable->sh_offset;
596 		Elf64_Sym &symbol = ((Elf64_Sym *)symbolAddress)[index];
597 		uint16_t section = symbol.st_shndx;
598 
599 		if(section != SHN_UNDEF && section < SHN_LORESERVE)
600 		{
601 			const SectionHeader *target = elfSection(elfHeader, symbol.st_shndx);
602 			symbolValue = reinterpret_cast<void *>((intptr_t)elfHeader + symbol.st_value + target->sh_offset);
603 		}
604 		else
605 		{
606 			return nullptr;
607 		}
608 	}
609 
610 	intptr_t address = (intptr_t)elfHeader + target->sh_offset;
611 	unaligned_ptr<int32_t> patchSite32 = (int32_t *)(address + relocation.r_offset);
612 	unaligned_ptr<int64_t> patchSite64 = (int64_t *)(address + relocation.r_offset);
613 
614 	switch(relocation.getType())
615 	{
616 	case R_X86_64_NONE:
617 		// No relocation
618 		break;
619 	case R_X86_64_64:
620 		*patchSite64 = (int64_t)((intptr_t)symbolValue + *patchSite64 + relocation.r_addend);
621 		break;
622 	case R_X86_64_PC32:
623 		*patchSite32 = (int32_t)((intptr_t)symbolValue + *patchSite32 - (intptr_t)patchSite32 + relocation.r_addend);
624 		break;
625 	case R_X86_64_32S:
626 		*patchSite32 = (int32_t)((intptr_t)symbolValue + *patchSite32 + relocation.r_addend);
627 		break;
628 	default:
629 		ASSERT(false && "Unsupported relocation type");
630 		return nullptr;
631 	}
632 
633 	return symbolValue;
634 }
635 
636 struct EntryPoint
637 {
638 	const void *entry;
639 	size_t codeSize = 0;
640 };
641 
loadImage(uint8_t * const elfImage,const std::vector<const char * > & functionNames)642 std::vector<EntryPoint> loadImage(uint8_t *const elfImage, const std::vector<const char *> &functionNames)
643 {
644 	ASSERT(functionNames.size() > 0);
645 	std::vector<EntryPoint> entryPoints(functionNames.size());
646 
647 	ElfHeader *elfHeader = (ElfHeader *)elfImage;
648 
649 	// TODO: assert?
650 	if(!elfHeader->checkMagic())
651 	{
652 		return {};
653 	}
654 
655 	// Expect ELF bitness to match platform
656 	ASSERT(sizeof(void *) == 8 ? elfHeader->getFileClass() == ELFCLASS64 : elfHeader->getFileClass() == ELFCLASS32);
657 #if defined(__i386__)
658 	ASSERT(sizeof(void *) == 4 && elfHeader->e_machine == EM_386);
659 #elif defined(__x86_64__)
660 	ASSERT(sizeof(void *) == 8 && elfHeader->e_machine == EM_X86_64);
661 #elif defined(__arm__)
662 	ASSERT(sizeof(void *) == 4 && elfHeader->e_machine == EM_ARM);
663 #elif defined(__aarch64__)
664 	ASSERT(sizeof(void *) == 8 && elfHeader->e_machine == EM_AARCH64);
665 #elif defined(__mips__)
666 	ASSERT(sizeof(void *) == 4 && elfHeader->e_machine == EM_MIPS);
667 #else
668 #	error "Unsupported platform"
669 #endif
670 
671 	SectionHeader *sectionHeader = (SectionHeader *)(elfImage + elfHeader->e_shoff);
672 
673 	for(int i = 0; i < elfHeader->e_shnum; i++)
674 	{
675 		if(sectionHeader[i].sh_type == SHT_PROGBITS)
676 		{
677 			if(sectionHeader[i].sh_flags & SHF_EXECINSTR)
678 			{
679 				auto findSectionNameEntryIndex = [&]() -> size_t {
680 					auto sectionNameOffset = sectionHeader[elfHeader->e_shstrndx].sh_offset + sectionHeader[i].sh_name;
681 					const char *sectionName = reinterpret_cast<const char *>(elfImage + sectionNameOffset);
682 
683 					for(size_t j = 0; j < functionNames.size(); ++j)
684 					{
685 						if(strstr(sectionName, functionNames[j]) != nullptr)
686 						{
687 							return j;
688 						}
689 					}
690 
691 					UNREACHABLE("Failed to find executable section that matches input function names");
692 					return static_cast<size_t>(-1);
693 				};
694 
695 				size_t index = findSectionNameEntryIndex();
696 				entryPoints[index].entry = elfImage + sectionHeader[i].sh_offset;
697 				entryPoints[index].codeSize = sectionHeader[i].sh_size;
698 			}
699 		}
700 		else if(sectionHeader[i].sh_type == SHT_REL)
701 		{
702 			ASSERT(sizeof(void *) == 4 && "UNIMPLEMENTED");  // Only expected/implemented for 32-bit code
703 
704 			for(Elf32_Word index = 0; index < sectionHeader[i].sh_size / sectionHeader[i].sh_entsize; index++)
705 			{
706 				const Elf32_Rel &relocation = ((const Elf32_Rel *)(elfImage + sectionHeader[i].sh_offset))[index];
707 				relocateSymbol(elfHeader, relocation, sectionHeader[i]);
708 			}
709 		}
710 		else if(sectionHeader[i].sh_type == SHT_RELA)
711 		{
712 			ASSERT(sizeof(void *) == 8 && "UNIMPLEMENTED");  // Only expected/implemented for 64-bit code
713 
714 			for(Elf32_Word index = 0; index < sectionHeader[i].sh_size / sectionHeader[i].sh_entsize; index++)
715 			{
716 				const Elf64_Rela &relocation = ((const Elf64_Rela *)(elfImage + sectionHeader[i].sh_offset))[index];
717 				relocateSymbol(elfHeader, relocation, sectionHeader[i]);
718 			}
719 		}
720 	}
721 
722 	return entryPoints;
723 }
724 
725 template<typename T>
726 struct ExecutableAllocator
727 {
ExecutableAllocatorrr::ExecutableAllocator728 	ExecutableAllocator() {}
729 	template<class U>
ExecutableAllocatorrr::ExecutableAllocator730 	ExecutableAllocator(const ExecutableAllocator<U> &other)
731 	{}
732 
733 	using value_type = T;
734 	using size_type = std::size_t;
735 
allocaterr::ExecutableAllocator736 	T *allocate(size_type n)
737 	{
738 		return (T *)allocateMemoryPages(
739 		    sizeof(T) * n, PERMISSION_READ | PERMISSION_WRITE, true);
740 	}
741 
deallocaterr::ExecutableAllocator742 	void deallocate(T *p, size_type n)
743 	{
744 		deallocateMemoryPages(p, sizeof(T) * n);
745 	}
746 };
747 
748 class ELFMemoryStreamer : public Ice::ELFStreamer, public Routine
749 {
750 	ELFMemoryStreamer(const ELFMemoryStreamer &) = delete;
751 	ELFMemoryStreamer &operator=(const ELFMemoryStreamer &) = delete;
752 
753 public:
ELFMemoryStreamer()754 	ELFMemoryStreamer()
755 	    : Routine()
756 	{
757 		position = 0;
758 		buffer.reserve(0x1000);
759 	}
760 
~ELFMemoryStreamer()761 	~ELFMemoryStreamer() override
762 	{
763 	}
764 
write8(uint8_t Value)765 	void write8(uint8_t Value) override
766 	{
767 		if(position == (uint64_t)buffer.size())
768 		{
769 			buffer.push_back(Value);
770 			position++;
771 		}
772 		else if(position < (uint64_t)buffer.size())
773 		{
774 			buffer[position] = Value;
775 			position++;
776 		}
777 		else
778 			ASSERT(false && "UNIMPLEMENTED");
779 	}
780 
writeBytes(llvm::StringRef Bytes)781 	void writeBytes(llvm::StringRef Bytes) override
782 	{
783 		std::size_t oldSize = buffer.size();
784 		buffer.resize(oldSize + Bytes.size());
785 		memcpy(&buffer[oldSize], Bytes.begin(), Bytes.size());
786 		position += Bytes.size();
787 	}
788 
tell() const789 	uint64_t tell() const override
790 	{
791 		return position;
792 	}
793 
seek(uint64_t Off)794 	void seek(uint64_t Off) override
795 	{
796 		position = Off;
797 	}
798 
loadImageAndGetEntryPoints(const std::vector<const char * > & functionNames)799 	std::vector<EntryPoint> loadImageAndGetEntryPoints(const std::vector<const char *> &functionNames)
800 	{
801 		auto entryPoints = loadImage(&buffer[0], functionNames);
802 
803 #if defined(_WIN32)
804 		FlushInstructionCache(GetCurrentProcess(), NULL, 0);
805 #else
806 		for(auto &entryPoint : entryPoints)
807 		{
808 			__builtin___clear_cache((char *)entryPoint.entry, (char *)entryPoint.entry + entryPoint.codeSize);
809 		}
810 #endif
811 
812 		return entryPoints;
813 	}
814 
finalize()815 	void finalize()
816 	{
817 		position = std::numeric_limits<std::size_t>::max();  // Can't stream more data after this
818 
819 		protectMemoryPages(&buffer[0], buffer.size(), PERMISSION_READ | PERMISSION_EXECUTE);
820 	}
821 
setEntry(int index,const void * func)822 	void setEntry(int index, const void *func)
823 	{
824 		ASSERT(func);
825 		funcs[index] = func;
826 	}
827 
getEntry(int index) const828 	const void *getEntry(int index) const override
829 	{
830 		ASSERT(funcs[index]);
831 		return funcs[index];
832 	}
833 
addConstantData(const void * data,size_t size,size_t alignment=1)834 	const void *addConstantData(const void *data, size_t size, size_t alignment = 1)
835 	{
836 		// Check if we already have a suitable constant.
837 		for(const auto &c : constantsPool)
838 		{
839 			void *ptr = c.data.get();
840 			size_t space = c.space;
841 
842 			void *alignedPtr = std::align(alignment, size, ptr, space);
843 
844 			if(space < size)
845 			{
846 				continue;
847 			}
848 
849 			if(memcmp(data, alignedPtr, size) == 0)
850 			{
851 				return alignedPtr;
852 			}
853 		}
854 
855 		// TODO(b/148086935): Replace with a buffer allocator.
856 		size_t space = size + alignment;
857 		auto buf = std::unique_ptr<uint8_t[]>(new uint8_t[space]);
858 		void *ptr = buf.get();
859 		void *alignedPtr = std::align(alignment, size, ptr, space);
860 		ASSERT(alignedPtr);
861 		memcpy(alignedPtr, data, size);
862 		constantsPool.emplace_back(std::move(buf), space);
863 
864 		return alignedPtr;
865 	}
866 
867 private:
868 	struct Constant
869 	{
Constantrr::ELFMemoryStreamer::Constant870 		Constant(std::unique_ptr<uint8_t[]> data, size_t space)
871 		    : data(std::move(data))
872 		    , space(space)
873 		{}
874 
875 		std::unique_ptr<uint8_t[]> data;
876 		size_t space;
877 	};
878 
879 	std::array<const void *, Nucleus::CoroutineEntryCount> funcs = {};
880 	std::vector<uint8_t, ExecutableAllocator<uint8_t>> buffer;
881 	std::size_t position;
882 	std::vector<Constant> constantsPool;
883 };
884 
885 #ifdef ENABLE_RR_PRINT
VPrintf(const std::vector<Value * > & vals)886 void VPrintf(const std::vector<Value *> &vals)
887 {
888 	sz::Call(::function, ::basicBlock, Ice::IceType_i32, reinterpret_cast<const void *>(rr::DebugPrintf), V(vals), true);
889 }
890 #endif  // ENABLE_RR_PRINT
891 
Nucleus()892 Nucleus::Nucleus()
893 {
894 	::codegenMutex.lock();  // SubzeroReactor is currently not thread safe
895 
896 	Ice::ClFlags &Flags = Ice::ClFlags::Flags;
897 	Ice::ClFlags::getParsedClFlags(Flags);
898 
899 #if defined(__arm__)
900 	Flags.setTargetArch(Ice::Target_ARM32);
901 	Flags.setTargetInstructionSet(Ice::ARM32InstructionSet_HWDivArm);
902 #elif defined(__mips__)
903 	Flags.setTargetArch(Ice::Target_MIPS32);
904 	Flags.setTargetInstructionSet(Ice::BaseInstructionSet);
905 #else  // x86
906 	Flags.setTargetArch(sizeof(void *) == 8 ? Ice::Target_X8664 : Ice::Target_X8632);
907 	Flags.setTargetInstructionSet(CPUID::SSE4_1 ? Ice::X86InstructionSet_SSE4_1 : Ice::X86InstructionSet_SSE2);
908 #endif
909 	Flags.setOutFileType(Ice::FT_Elf);
910 	Flags.setOptLevel(toIce(getDefaultConfig().getOptimization().getLevel()));
911 	Flags.setVerbose(subzeroDumpEnabled ? Ice::IceV_Most : Ice::IceV_None);
912 	Flags.setDisableHybridAssembly(true);
913 
914 	// Emit functions into separate sections in the ELF so we can find them by name
915 	Flags.setFunctionSections(true);
916 
917 	static llvm::raw_os_ostream cout(std::cout);
918 	static llvm::raw_os_ostream cerr(std::cerr);
919 
920 	if(subzeroEmitTextAsm)
921 	{
922 		// Decorate text asm with liveness info
923 		Flags.setDecorateAsm(true);
924 	}
925 
926 	if(false)  // Write out to a file
927 	{
928 		std::error_code errorCode;
929 		::out = new Ice::Fdstream("out.o", errorCode, llvm::sys::fs::F_None);
930 		::elfFile = new Ice::ELFFileStreamer(*out);
931 		::context = new Ice::GlobalContext(&cout, &cout, &cerr, elfFile);
932 	}
933 	else
934 	{
935 		ELFMemoryStreamer *elfMemory = new ELFMemoryStreamer();
936 		::context = new Ice::GlobalContext(&cout, &cout, &cerr, elfMemory);
937 		::routine = elfMemory;
938 	}
939 
940 #if !__has_feature(memory_sanitizer)
941 	// thread_local variables in shared libraries are initialized at load-time,
942 	// but this is not observed by MemorySanitizer if the loader itself was not
943 	// instrumented, leading to false-positive uninitialized variable errors.
944 	ASSERT(Variable::unmaterializedVariables == nullptr);
945 #endif
946 	Variable::unmaterializedVariables = new Variable::UnmaterializedVariables{};
947 }
948 
~Nucleus()949 Nucleus::~Nucleus()
950 {
951 	delete Variable::unmaterializedVariables;
952 	Variable::unmaterializedVariables = nullptr;
953 
954 	delete ::routine;
955 	::routine = nullptr;
956 
957 	delete ::allocator;
958 	::allocator = nullptr;
959 
960 	delete ::function;
961 	::function = nullptr;
962 
963 	delete ::context;
964 	::context = nullptr;
965 
966 	delete ::elfFile;
967 	::elfFile = nullptr;
968 
969 	delete ::out;
970 	::out = nullptr;
971 
972 	::entryBlock = nullptr;
973 	::basicBlock = nullptr;
974 	::basicBlockTop = nullptr;
975 
976 	::codegenMutex.unlock();
977 }
978 
setDefaultConfig(const Config & cfg)979 void Nucleus::setDefaultConfig(const Config &cfg)
980 {
981 	std::unique_lock<std::mutex> lock(::defaultConfigLock);
982 	::defaultConfig() = cfg;
983 }
984 
adjustDefaultConfig(const Config::Edit & cfgEdit)985 void Nucleus::adjustDefaultConfig(const Config::Edit &cfgEdit)
986 {
987 	std::unique_lock<std::mutex> lock(::defaultConfigLock);
988 	auto &config = ::defaultConfig();
989 	config = cfgEdit.apply(config);
990 }
991 
getDefaultConfig()992 Config Nucleus::getDefaultConfig()
993 {
994 	std::unique_lock<std::mutex> lock(::defaultConfigLock);
995 	return ::defaultConfig();
996 }
997 
998 // This function lowers and produces executable binary code in memory for the input functions,
999 // and returns a Routine with the entry points to these functions.
1000 template<size_t Count>
acquireRoutine(Ice::Cfg * const (& functions)[Count],const char * const (& names)[Count],const Config::Edit * cfgEdit)1001 static std::shared_ptr<Routine> acquireRoutine(Ice::Cfg *const (&functions)[Count], const char *const (&names)[Count], const Config::Edit *cfgEdit)
1002 {
1003 	// This logic is modeled after the IceCompiler, as well as GlobalContext::translateFunctions
1004 	// and GlobalContext::emitItems.
1005 
1006 	if(subzeroDumpEnabled)
1007 	{
1008 		// Output dump strings immediately, rather than once buffer is full. Useful for debugging.
1009 		::context->getStrDump().SetUnbuffered();
1010 	}
1011 
1012 	::context->emitFileHeader();
1013 
1014 	// Translate
1015 
1016 	for(size_t i = 0; i < Count; ++i)
1017 	{
1018 		Ice::Cfg *currFunc = functions[i];
1019 
1020 		// Install function allocator in TLS for Cfg-specific container allocators
1021 		Ice::CfgLocalAllocatorScope allocScope(currFunc);
1022 
1023 		currFunc->setFunctionName(Ice::GlobalString::createWithString(::context, names[i]));
1024 
1025 		if(::optimizerCallback)
1026 		{
1027 			Nucleus::OptimizerReport report;
1028 			rr::optimize(currFunc, &report);
1029 			::optimizerCallback(&report);
1030 			::optimizerCallback = nullptr;
1031 		}
1032 		else
1033 		{
1034 			rr::optimize(currFunc);
1035 		}
1036 
1037 		currFunc->computeInOutEdges();
1038 		ASSERT_MSG(!currFunc->hasError(), "%s", currFunc->getError().c_str());
1039 
1040 		currFunc->translate();
1041 		ASSERT_MSG(!currFunc->hasError(), "%s", currFunc->getError().c_str());
1042 
1043 		currFunc->getAssembler<>()->setInternal(currFunc->getInternal());
1044 
1045 		if(subzeroEmitTextAsm)
1046 		{
1047 			currFunc->emit();
1048 		}
1049 
1050 		currFunc->emitIAS();
1051 
1052 		if(currFunc->hasError())
1053 		{
1054 			return nullptr;
1055 		}
1056 	}
1057 
1058 	// Emit items
1059 
1060 	::context->lowerGlobals("");
1061 
1062 	auto objectWriter = ::context->getObjectWriter();
1063 
1064 	for(size_t i = 0; i < Count; ++i)
1065 	{
1066 		Ice::Cfg *currFunc = functions[i];
1067 
1068 		// Accumulate globals from functions to emit into the "last" section at the end
1069 		auto globals = currFunc->getGlobalInits();
1070 		if(globals && !globals->empty())
1071 		{
1072 			::context->getGlobals()->merge(globals.get());
1073 		}
1074 
1075 		auto assembler = currFunc->releaseAssembler();
1076 		assembler->alignFunction();
1077 		objectWriter->writeFunctionCode(currFunc->getFunctionName(), currFunc->getInternal(), assembler.get());
1078 	}
1079 
1080 	::context->lowerGlobals("last");
1081 	::context->lowerConstants();
1082 	::context->lowerJumpTables();
1083 
1084 	objectWriter->setUndefinedSyms(::context->getConstantExternSyms());
1085 	::context->emitTargetRODataSections();
1086 	objectWriter->writeNonUserSections();
1087 
1088 	// Done compiling functions, get entry pointers to each of them
1089 	auto entryPoints = ::routine->loadImageAndGetEntryPoints({ names, names + Count });
1090 	ASSERT(entryPoints.size() == Count);
1091 	for(size_t i = 0; i < entryPoints.size(); ++i)
1092 	{
1093 		::routine->setEntry(i, entryPoints[i].entry);
1094 	}
1095 
1096 	::routine->finalize();
1097 
1098 	Routine *handoffRoutine = ::routine;
1099 	::routine = nullptr;
1100 
1101 	return std::shared_ptr<Routine>(handoffRoutine);
1102 }
1103 
acquireRoutine(const char * name,const Config::Edit * cfgEdit)1104 std::shared_ptr<Routine> Nucleus::acquireRoutine(const char *name, const Config::Edit *cfgEdit /* = nullptr */)
1105 {
1106 	finalizeFunction();
1107 	return rr::acquireRoutine({ ::function }, { name }, cfgEdit);
1108 }
1109 
allocateStackVariable(Type * t,int arraySize)1110 Value *Nucleus::allocateStackVariable(Type *t, int arraySize)
1111 {
1112 	Ice::Type type = T(t);
1113 	int typeSize = Ice::typeWidthInBytes(type);
1114 	int totalSize = typeSize * (arraySize ? arraySize : 1);
1115 
1116 	auto bytes = Ice::ConstantInteger32::create(::context, Ice::IceType_i32, totalSize);
1117 	auto address = ::function->makeVariable(T(getPointerType(t)));
1118 	auto alloca = Ice::InstAlloca::create(::function, address, bytes, typeSize);  // SRoA depends on the alignment to match the type size.
1119 	::function->getEntryNode()->getInsts().push_front(alloca);
1120 
1121 	return V(address);
1122 }
1123 
createBasicBlock()1124 BasicBlock *Nucleus::createBasicBlock()
1125 {
1126 	return B(::function->makeNode());
1127 }
1128 
getInsertBlock()1129 BasicBlock *Nucleus::getInsertBlock()
1130 {
1131 	return B(::basicBlock);
1132 }
1133 
setInsertBlock(BasicBlock * basicBlock)1134 void Nucleus::setInsertBlock(BasicBlock *basicBlock)
1135 {
1136 	// ASSERT(::basicBlock->getInsts().back().getTerminatorEdges().size() >= 0 && "Previous basic block must have a terminator");
1137 
1138 	::basicBlock = basicBlock;
1139 }
1140 
createFunction(Type * returnType,const std::vector<Type * > & paramTypes)1141 void Nucleus::createFunction(Type *returnType, const std::vector<Type *> &paramTypes)
1142 {
1143 	ASSERT(::function == nullptr);
1144 	ASSERT(::allocator == nullptr);
1145 	ASSERT(::entryBlock == nullptr);
1146 	ASSERT(::basicBlock == nullptr);
1147 	ASSERT(::basicBlockTop == nullptr);
1148 
1149 	::function = sz::createFunction(::context, T(returnType), T(paramTypes));
1150 
1151 	// NOTE: The scoped allocator sets the TLS allocator to the one in the function. This global one
1152 	// becomes invalid if another one is created; for example, when creating await and destroy functions
1153 	// for coroutines, in which case, we must make sure to create a new scoped allocator for ::function again.
1154 	// TODO: Get rid of this as a global, and create scoped allocs in every Nucleus function instead.
1155 	::allocator = new Ice::CfgLocalAllocatorScope(::function);
1156 
1157 	::entryBlock = ::function->getEntryNode();
1158 	::basicBlock = ::function->makeNode();
1159 	::basicBlockTop = ::basicBlock;
1160 }
1161 
getArgument(unsigned int index)1162 Value *Nucleus::getArgument(unsigned int index)
1163 {
1164 	return V(::function->getArgs()[index]);
1165 }
1166 
createRetVoid()1167 void Nucleus::createRetVoid()
1168 {
1169 	RR_DEBUG_INFO_UPDATE_LOC();
1170 
1171 	// Code generated after this point is unreachable, so any variables
1172 	// being read can safely return an undefined value. We have to avoid
1173 	// materializing variables after the terminator ret instruction.
1174 	Variable::killUnmaterialized();
1175 
1176 	Ice::InstRet *ret = Ice::InstRet::create(::function);
1177 	::basicBlock->appendInst(ret);
1178 }
1179 
createRet(Value * v)1180 void Nucleus::createRet(Value *v)
1181 {
1182 	RR_DEBUG_INFO_UPDATE_LOC();
1183 
1184 	// Code generated after this point is unreachable, so any variables
1185 	// being read can safely return an undefined value. We have to avoid
1186 	// materializing variables after the terminator ret instruction.
1187 	Variable::killUnmaterialized();
1188 
1189 	Ice::InstRet *ret = Ice::InstRet::create(::function, v);
1190 	::basicBlock->appendInst(ret);
1191 }
1192 
createBr(BasicBlock * dest)1193 void Nucleus::createBr(BasicBlock *dest)
1194 {
1195 	RR_DEBUG_INFO_UPDATE_LOC();
1196 	Variable::materializeAll();
1197 
1198 	auto br = Ice::InstBr::create(::function, dest);
1199 	::basicBlock->appendInst(br);
1200 }
1201 
createCondBr(Value * cond,BasicBlock * ifTrue,BasicBlock * ifFalse)1202 void Nucleus::createCondBr(Value *cond, BasicBlock *ifTrue, BasicBlock *ifFalse)
1203 {
1204 	RR_DEBUG_INFO_UPDATE_LOC();
1205 	Variable::materializeAll();
1206 
1207 	auto br = Ice::InstBr::create(::function, cond, ifTrue, ifFalse);
1208 	::basicBlock->appendInst(br);
1209 }
1210 
isCommutative(Ice::InstArithmetic::OpKind op)1211 static bool isCommutative(Ice::InstArithmetic::OpKind op)
1212 {
1213 	switch(op)
1214 	{
1215 	case Ice::InstArithmetic::Add:
1216 	case Ice::InstArithmetic::Fadd:
1217 	case Ice::InstArithmetic::Mul:
1218 	case Ice::InstArithmetic::Fmul:
1219 	case Ice::InstArithmetic::And:
1220 	case Ice::InstArithmetic::Or:
1221 	case Ice::InstArithmetic::Xor:
1222 		return true;
1223 	default:
1224 		return false;
1225 	}
1226 }
1227 
createArithmetic(Ice::InstArithmetic::OpKind op,Value * lhs,Value * rhs)1228 static Value *createArithmetic(Ice::InstArithmetic::OpKind op, Value *lhs, Value *rhs)
1229 {
1230 	ASSERT(lhs->getType() == rhs->getType() || llvm::isa<Ice::Constant>(rhs));
1231 
1232 	bool swapOperands = llvm::isa<Ice::Constant>(lhs) && isCommutative(op);
1233 
1234 	Ice::Variable *result = ::function->makeVariable(lhs->getType());
1235 	Ice::InstArithmetic *arithmetic = Ice::InstArithmetic::create(::function, op, result, swapOperands ? rhs : lhs, swapOperands ? lhs : rhs);
1236 	::basicBlock->appendInst(arithmetic);
1237 
1238 	return V(result);
1239 }
1240 
createAdd(Value * lhs,Value * rhs)1241 Value *Nucleus::createAdd(Value *lhs, Value *rhs)
1242 {
1243 	RR_DEBUG_INFO_UPDATE_LOC();
1244 	return createArithmetic(Ice::InstArithmetic::Add, lhs, rhs);
1245 }
1246 
createSub(Value * lhs,Value * rhs)1247 Value *Nucleus::createSub(Value *lhs, Value *rhs)
1248 {
1249 	RR_DEBUG_INFO_UPDATE_LOC();
1250 	return createArithmetic(Ice::InstArithmetic::Sub, lhs, rhs);
1251 }
1252 
createMul(Value * lhs,Value * rhs)1253 Value *Nucleus::createMul(Value *lhs, Value *rhs)
1254 {
1255 	RR_DEBUG_INFO_UPDATE_LOC();
1256 	return createArithmetic(Ice::InstArithmetic::Mul, lhs, rhs);
1257 }
1258 
createUDiv(Value * lhs,Value * rhs)1259 Value *Nucleus::createUDiv(Value *lhs, Value *rhs)
1260 {
1261 	RR_DEBUG_INFO_UPDATE_LOC();
1262 	return createArithmetic(Ice::InstArithmetic::Udiv, lhs, rhs);
1263 }
1264 
createSDiv(Value * lhs,Value * rhs)1265 Value *Nucleus::createSDiv(Value *lhs, Value *rhs)
1266 {
1267 	RR_DEBUG_INFO_UPDATE_LOC();
1268 	return createArithmetic(Ice::InstArithmetic::Sdiv, lhs, rhs);
1269 }
1270 
createFAdd(Value * lhs,Value * rhs)1271 Value *Nucleus::createFAdd(Value *lhs, Value *rhs)
1272 {
1273 	RR_DEBUG_INFO_UPDATE_LOC();
1274 	return createArithmetic(Ice::InstArithmetic::Fadd, lhs, rhs);
1275 }
1276 
createFSub(Value * lhs,Value * rhs)1277 Value *Nucleus::createFSub(Value *lhs, Value *rhs)
1278 {
1279 	RR_DEBUG_INFO_UPDATE_LOC();
1280 	return createArithmetic(Ice::InstArithmetic::Fsub, lhs, rhs);
1281 }
1282 
createFMul(Value * lhs,Value * rhs)1283 Value *Nucleus::createFMul(Value *lhs, Value *rhs)
1284 {
1285 	RR_DEBUG_INFO_UPDATE_LOC();
1286 	return createArithmetic(Ice::InstArithmetic::Fmul, lhs, rhs);
1287 }
1288 
createFDiv(Value * lhs,Value * rhs)1289 Value *Nucleus::createFDiv(Value *lhs, Value *rhs)
1290 {
1291 	RR_DEBUG_INFO_UPDATE_LOC();
1292 	return createArithmetic(Ice::InstArithmetic::Fdiv, lhs, rhs);
1293 }
1294 
createURem(Value * lhs,Value * rhs)1295 Value *Nucleus::createURem(Value *lhs, Value *rhs)
1296 {
1297 	RR_DEBUG_INFO_UPDATE_LOC();
1298 	return createArithmetic(Ice::InstArithmetic::Urem, lhs, rhs);
1299 }
1300 
createSRem(Value * lhs,Value * rhs)1301 Value *Nucleus::createSRem(Value *lhs, Value *rhs)
1302 {
1303 	RR_DEBUG_INFO_UPDATE_LOC();
1304 	return createArithmetic(Ice::InstArithmetic::Srem, lhs, rhs);
1305 }
1306 
createFRem(Value * lhs,Value * rhs)1307 Value *Nucleus::createFRem(Value *lhs, Value *rhs)
1308 {
1309 	RR_DEBUG_INFO_UPDATE_LOC();
1310 	// TODO(b/148139679) Fix Subzero generating invalid code for FRem on vector types
1311 	// createArithmetic(Ice::InstArithmetic::Frem, lhs, rhs);
1312 	UNIMPLEMENTED("b/148139679 Nucleus::createFRem");
1313 	return nullptr;
1314 }
1315 
createShl(Value * lhs,Value * rhs)1316 Value *Nucleus::createShl(Value *lhs, Value *rhs)
1317 {
1318 	RR_DEBUG_INFO_UPDATE_LOC();
1319 	return createArithmetic(Ice::InstArithmetic::Shl, lhs, rhs);
1320 }
1321 
createLShr(Value * lhs,Value * rhs)1322 Value *Nucleus::createLShr(Value *lhs, Value *rhs)
1323 {
1324 	RR_DEBUG_INFO_UPDATE_LOC();
1325 	return createArithmetic(Ice::InstArithmetic::Lshr, lhs, rhs);
1326 }
1327 
createAShr(Value * lhs,Value * rhs)1328 Value *Nucleus::createAShr(Value *lhs, Value *rhs)
1329 {
1330 	RR_DEBUG_INFO_UPDATE_LOC();
1331 	return createArithmetic(Ice::InstArithmetic::Ashr, lhs, rhs);
1332 }
1333 
createAnd(Value * lhs,Value * rhs)1334 Value *Nucleus::createAnd(Value *lhs, Value *rhs)
1335 {
1336 	RR_DEBUG_INFO_UPDATE_LOC();
1337 	return createArithmetic(Ice::InstArithmetic::And, lhs, rhs);
1338 }
1339 
createOr(Value * lhs,Value * rhs)1340 Value *Nucleus::createOr(Value *lhs, Value *rhs)
1341 {
1342 	RR_DEBUG_INFO_UPDATE_LOC();
1343 	return createArithmetic(Ice::InstArithmetic::Or, lhs, rhs);
1344 }
1345 
createXor(Value * lhs,Value * rhs)1346 Value *Nucleus::createXor(Value *lhs, Value *rhs)
1347 {
1348 	RR_DEBUG_INFO_UPDATE_LOC();
1349 	return createArithmetic(Ice::InstArithmetic::Xor, lhs, rhs);
1350 }
1351 
createNeg(Value * v)1352 Value *Nucleus::createNeg(Value *v)
1353 {
1354 	RR_DEBUG_INFO_UPDATE_LOC();
1355 	return createSub(createNullValue(T(v->getType())), v);
1356 }
1357 
createFNeg(Value * v)1358 Value *Nucleus::createFNeg(Value *v)
1359 {
1360 	RR_DEBUG_INFO_UPDATE_LOC();
1361 	double c[4] = { -0.0, -0.0, -0.0, -0.0 };
1362 	Value *negativeZero = Ice::isVectorType(v->getType()) ? createConstantVector(c, T(v->getType())) : V(::context->getConstantFloat(-0.0f));
1363 
1364 	return createFSub(negativeZero, v);
1365 }
1366 
createNot(Value * v)1367 Value *Nucleus::createNot(Value *v)
1368 {
1369 	RR_DEBUG_INFO_UPDATE_LOC();
1370 	if(Ice::isScalarIntegerType(v->getType()))
1371 	{
1372 		return createXor(v, V(::context->getConstantInt(v->getType(), -1)));
1373 	}
1374 	else  // Vector
1375 	{
1376 		int64_t c[16] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 };
1377 		return createXor(v, createConstantVector(c, T(v->getType())));
1378 	}
1379 }
1380 
validateAtomicAndMemoryOrderArgs(bool atomic,std::memory_order memoryOrder)1381 static void validateAtomicAndMemoryOrderArgs(bool atomic, std::memory_order memoryOrder)
1382 {
1383 #if defined(__i386__) || defined(__x86_64__)
1384 	// We're good, atomics and strictest memory order (except seq_cst) are guaranteed.
1385 	// Note that sequential memory ordering could be guaranteed by using x86's LOCK prefix.
1386 	// Note also that relaxed memory order could be implemented using MOVNTPS and friends.
1387 #else
1388 	if(atomic)
1389 	{
1390 		UNIMPLEMENTED("b/150475088 Atomic load/store not implemented for current platform");
1391 	}
1392 	if(memoryOrder != std::memory_order_relaxed)
1393 	{
1394 		UNIMPLEMENTED("b/150475088 Memory order other than memory_order_relaxed not implemented for current platform");
1395 	}
1396 #endif
1397 
1398 	// Vulkan doesn't allow sequential memory order
1399 	ASSERT(memoryOrder != std::memory_order_seq_cst);
1400 }
1401 
createLoad(Value * ptr,Type * type,bool isVolatile,unsigned int align,bool atomic,std::memory_order memoryOrder)1402 Value *Nucleus::createLoad(Value *ptr, Type *type, bool isVolatile, unsigned int align, bool atomic, std::memory_order memoryOrder)
1403 {
1404 	RR_DEBUG_INFO_UPDATE_LOC();
1405 	validateAtomicAndMemoryOrderArgs(atomic, memoryOrder);
1406 
1407 	int valueType = (int)reinterpret_cast<intptr_t>(type);
1408 	Ice::Variable *result = nullptr;
1409 
1410 	if((valueType & EmulatedBits) && (align != 0))  // Narrow vector not stored on stack.
1411 	{
1412 		if(emulateIntrinsics)
1413 		{
1414 			if(typeSize(type) == 4)
1415 			{
1416 				auto pointer = RValue<Pointer<Byte>>(ptr);
1417 				Int x = *Pointer<Int>(pointer);
1418 
1419 				Int4 vector;
1420 				vector = Insert(vector, x, 0);
1421 
1422 				result = ::function->makeVariable(T(type));
1423 				auto bitcast = Ice::InstCast::create(::function, Ice::InstCast::Bitcast, result, vector.loadValue());
1424 				::basicBlock->appendInst(bitcast);
1425 			}
1426 			else if(typeSize(type) == 8)
1427 			{
1428 				ASSERT_MSG(!atomic, "Emulated 64-bit loads are not atomic");
1429 				auto pointer = RValue<Pointer<Byte>>(ptr);
1430 				Int x = *Pointer<Int>(pointer);
1431 				Int y = *Pointer<Int>(pointer + 4);
1432 
1433 				Int4 vector;
1434 				vector = Insert(vector, x, 0);
1435 				vector = Insert(vector, y, 1);
1436 
1437 				result = ::function->makeVariable(T(type));
1438 				auto bitcast = Ice::InstCast::create(::function, Ice::InstCast::Bitcast, result, vector.loadValue());
1439 				::basicBlock->appendInst(bitcast);
1440 			}
1441 			else
1442 				UNREACHABLE("typeSize(type): %d", int(typeSize(type)));
1443 		}
1444 		else
1445 		{
1446 			const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::LoadSubVector, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
1447 			result = ::function->makeVariable(T(type));
1448 			auto load = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
1449 			load->addArg(ptr);
1450 			load->addArg(::context->getConstantInt32(typeSize(type)));
1451 			::basicBlock->appendInst(load);
1452 		}
1453 	}
1454 	else
1455 	{
1456 		result = sz::createLoad(::function, ::basicBlock, V(ptr), T(type), align);
1457 	}
1458 
1459 	ASSERT(result);
1460 	return V(result);
1461 }
1462 
createStore(Value * value,Value * ptr,Type * type,bool isVolatile,unsigned int align,bool atomic,std::memory_order memoryOrder)1463 Value *Nucleus::createStore(Value *value, Value *ptr, Type *type, bool isVolatile, unsigned int align, bool atomic, std::memory_order memoryOrder)
1464 {
1465 	RR_DEBUG_INFO_UPDATE_LOC();
1466 	validateAtomicAndMemoryOrderArgs(atomic, memoryOrder);
1467 
1468 #if __has_feature(memory_sanitizer)
1469 	// Mark all (non-stack) memory writes as initialized by calling __msan_unpoison
1470 	if(align != 0)
1471 	{
1472 		auto call = Ice::InstCall::create(::function, 2, nullptr, ::context->getConstantInt64(reinterpret_cast<intptr_t>(__msan_unpoison)), false);
1473 		call->addArg(ptr);
1474 		call->addArg(::context->getConstantInt64(typeSize(type)));
1475 		::basicBlock->appendInst(call);
1476 	}
1477 #endif
1478 
1479 	int valueType = (int)reinterpret_cast<intptr_t>(type);
1480 
1481 	if((valueType & EmulatedBits) && (align != 0))  // Narrow vector not stored on stack.
1482 	{
1483 		if(emulateIntrinsics)
1484 		{
1485 			if(typeSize(type) == 4)
1486 			{
1487 				Ice::Variable *vector = ::function->makeVariable(Ice::IceType_v4i32);
1488 				auto bitcast = Ice::InstCast::create(::function, Ice::InstCast::Bitcast, vector, value);
1489 				::basicBlock->appendInst(bitcast);
1490 
1491 				RValue<Int4> v(V(vector));
1492 
1493 				auto pointer = RValue<Pointer<Byte>>(ptr);
1494 				Int x = Extract(v, 0);
1495 				*Pointer<Int>(pointer) = x;
1496 			}
1497 			else if(typeSize(type) == 8)
1498 			{
1499 				ASSERT_MSG(!atomic, "Emulated 64-bit stores are not atomic");
1500 				Ice::Variable *vector = ::function->makeVariable(Ice::IceType_v4i32);
1501 				auto bitcast = Ice::InstCast::create(::function, Ice::InstCast::Bitcast, vector, value);
1502 				::basicBlock->appendInst(bitcast);
1503 
1504 				RValue<Int4> v(V(vector));
1505 
1506 				auto pointer = RValue<Pointer<Byte>>(ptr);
1507 				Int x = Extract(v, 0);
1508 				*Pointer<Int>(pointer) = x;
1509 				Int y = Extract(v, 1);
1510 				*Pointer<Int>(pointer + 4) = y;
1511 			}
1512 			else
1513 				UNREACHABLE("typeSize(type): %d", int(typeSize(type)));
1514 		}
1515 		else
1516 		{
1517 			const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::StoreSubVector, Ice::Intrinsics::SideEffects_T, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_T };
1518 			auto store = Ice::InstIntrinsic::create(::function, 3, nullptr, intrinsic);
1519 			store->addArg(value);
1520 			store->addArg(ptr);
1521 			store->addArg(::context->getConstantInt32(typeSize(type)));
1522 			::basicBlock->appendInst(store);
1523 		}
1524 	}
1525 	else
1526 	{
1527 		ASSERT(value->getType() == T(type));
1528 
1529 		auto store = Ice::InstStore::create(::function, V(value), V(ptr), align);
1530 		::basicBlock->appendInst(store);
1531 	}
1532 
1533 	return value;
1534 }
1535 
createGEP(Value * ptr,Type * type,Value * index,bool unsignedIndex)1536 Value *Nucleus::createGEP(Value *ptr, Type *type, Value *index, bool unsignedIndex)
1537 {
1538 	RR_DEBUG_INFO_UPDATE_LOC();
1539 	ASSERT(index->getType() == Ice::IceType_i32);
1540 
1541 	if(auto *constant = llvm::dyn_cast<Ice::ConstantInteger32>(index))
1542 	{
1543 		int32_t offset = constant->getValue() * (int)typeSize(type);
1544 
1545 		if(offset == 0)
1546 		{
1547 			return ptr;
1548 		}
1549 
1550 		return createAdd(ptr, createConstantInt(offset));
1551 	}
1552 
1553 	if(!Ice::isByteSizedType(T(type)))
1554 	{
1555 		index = createMul(index, createConstantInt((int)typeSize(type)));
1556 	}
1557 
1558 	if(sizeof(void *) == 8)
1559 	{
1560 		if(unsignedIndex)
1561 		{
1562 			index = createZExt(index, T(Ice::IceType_i64));
1563 		}
1564 		else
1565 		{
1566 			index = createSExt(index, T(Ice::IceType_i64));
1567 		}
1568 	}
1569 
1570 	return createAdd(ptr, index);
1571 }
1572 
createAtomicRMW(Ice::Intrinsics::AtomicRMWOperation rmwOp,Value * ptr,Value * value,std::memory_order memoryOrder)1573 static Value *createAtomicRMW(Ice::Intrinsics::AtomicRMWOperation rmwOp, Value *ptr, Value *value, std::memory_order memoryOrder)
1574 {
1575 	Ice::Variable *result = ::function->makeVariable(value->getType());
1576 
1577 	const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::AtomicRMW, Ice::Intrinsics::SideEffects_T, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_T };
1578 	auto inst = Ice::InstIntrinsic::create(::function, 0, result, intrinsic);
1579 	auto op = ::context->getConstantInt32(rmwOp);
1580 	auto order = ::context->getConstantInt32(stdToIceMemoryOrder(memoryOrder));
1581 	inst->addArg(op);
1582 	inst->addArg(ptr);
1583 	inst->addArg(value);
1584 	inst->addArg(order);
1585 	::basicBlock->appendInst(inst);
1586 
1587 	return V(result);
1588 }
1589 
createAtomicAdd(Value * ptr,Value * value,std::memory_order memoryOrder)1590 Value *Nucleus::createAtomicAdd(Value *ptr, Value *value, std::memory_order memoryOrder)
1591 {
1592 	RR_DEBUG_INFO_UPDATE_LOC();
1593 	return createAtomicRMW(Ice::Intrinsics::AtomicAdd, ptr, value, memoryOrder);
1594 }
1595 
createAtomicSub(Value * ptr,Value * value,std::memory_order memoryOrder)1596 Value *Nucleus::createAtomicSub(Value *ptr, Value *value, std::memory_order memoryOrder)
1597 {
1598 	RR_DEBUG_INFO_UPDATE_LOC();
1599 	return createAtomicRMW(Ice::Intrinsics::AtomicSub, ptr, value, memoryOrder);
1600 }
1601 
createAtomicAnd(Value * ptr,Value * value,std::memory_order memoryOrder)1602 Value *Nucleus::createAtomicAnd(Value *ptr, Value *value, std::memory_order memoryOrder)
1603 {
1604 	RR_DEBUG_INFO_UPDATE_LOC();
1605 	return createAtomicRMW(Ice::Intrinsics::AtomicAnd, ptr, value, memoryOrder);
1606 }
1607 
createAtomicOr(Value * ptr,Value * value,std::memory_order memoryOrder)1608 Value *Nucleus::createAtomicOr(Value *ptr, Value *value, std::memory_order memoryOrder)
1609 {
1610 	RR_DEBUG_INFO_UPDATE_LOC();
1611 	return createAtomicRMW(Ice::Intrinsics::AtomicOr, ptr, value, memoryOrder);
1612 }
1613 
createAtomicXor(Value * ptr,Value * value,std::memory_order memoryOrder)1614 Value *Nucleus::createAtomicXor(Value *ptr, Value *value, std::memory_order memoryOrder)
1615 {
1616 	RR_DEBUG_INFO_UPDATE_LOC();
1617 	return createAtomicRMW(Ice::Intrinsics::AtomicXor, ptr, value, memoryOrder);
1618 }
1619 
createAtomicExchange(Value * ptr,Value * value,std::memory_order memoryOrder)1620 Value *Nucleus::createAtomicExchange(Value *ptr, Value *value, std::memory_order memoryOrder)
1621 {
1622 	RR_DEBUG_INFO_UPDATE_LOC();
1623 	return createAtomicRMW(Ice::Intrinsics::AtomicExchange, ptr, value, memoryOrder);
1624 }
1625 
createAtomicCompareExchange(Value * ptr,Value * value,Value * compare,std::memory_order memoryOrderEqual,std::memory_order memoryOrderUnequal)1626 Value *Nucleus::createAtomicCompareExchange(Value *ptr, Value *value, Value *compare, std::memory_order memoryOrderEqual, std::memory_order memoryOrderUnequal)
1627 {
1628 	RR_DEBUG_INFO_UPDATE_LOC();
1629 	Ice::Variable *result = ::function->makeVariable(value->getType());
1630 
1631 	const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::AtomicCmpxchg, Ice::Intrinsics::SideEffects_T, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_T };
1632 	auto inst = Ice::InstIntrinsic::create(::function, 0, result, intrinsic);
1633 	auto orderEq = ::context->getConstantInt32(stdToIceMemoryOrder(memoryOrderEqual));
1634 	auto orderNeq = ::context->getConstantInt32(stdToIceMemoryOrder(memoryOrderUnequal));
1635 	inst->addArg(ptr);
1636 	inst->addArg(compare);
1637 	inst->addArg(value);
1638 	inst->addArg(orderEq);
1639 	inst->addArg(orderNeq);
1640 	::basicBlock->appendInst(inst);
1641 
1642 	return V(result);
1643 }
1644 
createCast(Ice::InstCast::OpKind op,Value * v,Type * destType)1645 static Value *createCast(Ice::InstCast::OpKind op, Value *v, Type *destType)
1646 {
1647 	if(v->getType() == T(destType))
1648 	{
1649 		return v;
1650 	}
1651 
1652 	Ice::Variable *result = ::function->makeVariable(T(destType));
1653 	Ice::InstCast *cast = Ice::InstCast::create(::function, op, result, v);
1654 	::basicBlock->appendInst(cast);
1655 
1656 	return V(result);
1657 }
1658 
createTrunc(Value * v,Type * destType)1659 Value *Nucleus::createTrunc(Value *v, Type *destType)
1660 {
1661 	RR_DEBUG_INFO_UPDATE_LOC();
1662 	return createCast(Ice::InstCast::Trunc, v, destType);
1663 }
1664 
createZExt(Value * v,Type * destType)1665 Value *Nucleus::createZExt(Value *v, Type *destType)
1666 {
1667 	RR_DEBUG_INFO_UPDATE_LOC();
1668 	return createCast(Ice::InstCast::Zext, v, destType);
1669 }
1670 
createSExt(Value * v,Type * destType)1671 Value *Nucleus::createSExt(Value *v, Type *destType)
1672 {
1673 	RR_DEBUG_INFO_UPDATE_LOC();
1674 	return createCast(Ice::InstCast::Sext, v, destType);
1675 }
1676 
createFPToUI(Value * v,Type * destType)1677 Value *Nucleus::createFPToUI(Value *v, Type *destType)
1678 {
1679 	RR_DEBUG_INFO_UPDATE_LOC();
1680 	return createCast(Ice::InstCast::Fptoui, v, destType);
1681 }
1682 
createFPToSI(Value * v,Type * destType)1683 Value *Nucleus::createFPToSI(Value *v, Type *destType)
1684 {
1685 	RR_DEBUG_INFO_UPDATE_LOC();
1686 	return createCast(Ice::InstCast::Fptosi, v, destType);
1687 }
1688 
createSIToFP(Value * v,Type * destType)1689 Value *Nucleus::createSIToFP(Value *v, Type *destType)
1690 {
1691 	RR_DEBUG_INFO_UPDATE_LOC();
1692 	return createCast(Ice::InstCast::Sitofp, v, destType);
1693 }
1694 
createFPTrunc(Value * v,Type * destType)1695 Value *Nucleus::createFPTrunc(Value *v, Type *destType)
1696 {
1697 	RR_DEBUG_INFO_UPDATE_LOC();
1698 	return createCast(Ice::InstCast::Fptrunc, v, destType);
1699 }
1700 
createFPExt(Value * v,Type * destType)1701 Value *Nucleus::createFPExt(Value *v, Type *destType)
1702 {
1703 	RR_DEBUG_INFO_UPDATE_LOC();
1704 	return createCast(Ice::InstCast::Fpext, v, destType);
1705 }
1706 
createBitCast(Value * v,Type * destType)1707 Value *Nucleus::createBitCast(Value *v, Type *destType)
1708 {
1709 	RR_DEBUG_INFO_UPDATE_LOC();
1710 	// Bitcasts must be between types of the same logical size. But with emulated narrow vectors we need
1711 	// support for casting between scalars and wide vectors. For platforms where this is not supported,
1712 	// emulate them by writing to the stack and reading back as the destination type.
1713 	if(emulateMismatchedBitCast)
1714 	{
1715 		if(!Ice::isVectorType(v->getType()) && Ice::isVectorType(T(destType)))
1716 		{
1717 			Value *address = allocateStackVariable(destType);
1718 			createStore(v, address, T(v->getType()));
1719 			return createLoad(address, destType);
1720 		}
1721 		else if(Ice::isVectorType(v->getType()) && !Ice::isVectorType(T(destType)))
1722 		{
1723 			Value *address = allocateStackVariable(T(v->getType()));
1724 			createStore(v, address, T(v->getType()));
1725 			return createLoad(address, destType);
1726 		}
1727 	}
1728 
1729 	return createCast(Ice::InstCast::Bitcast, v, destType);
1730 }
1731 
createIntCompare(Ice::InstIcmp::ICond condition,Value * lhs,Value * rhs)1732 static Value *createIntCompare(Ice::InstIcmp::ICond condition, Value *lhs, Value *rhs)
1733 {
1734 	ASSERT(lhs->getType() == rhs->getType());
1735 
1736 	auto result = ::function->makeVariable(Ice::isScalarIntegerType(lhs->getType()) ? Ice::IceType_i1 : lhs->getType());
1737 	auto cmp = Ice::InstIcmp::create(::function, condition, result, lhs, rhs);
1738 	::basicBlock->appendInst(cmp);
1739 
1740 	return V(result);
1741 }
1742 
createICmpEQ(Value * lhs,Value * rhs)1743 Value *Nucleus::createICmpEQ(Value *lhs, Value *rhs)
1744 {
1745 	RR_DEBUG_INFO_UPDATE_LOC();
1746 	return createIntCompare(Ice::InstIcmp::Eq, lhs, rhs);
1747 }
1748 
createICmpNE(Value * lhs,Value * rhs)1749 Value *Nucleus::createICmpNE(Value *lhs, Value *rhs)
1750 {
1751 	RR_DEBUG_INFO_UPDATE_LOC();
1752 	return createIntCompare(Ice::InstIcmp::Ne, lhs, rhs);
1753 }
1754 
createICmpUGT(Value * lhs,Value * rhs)1755 Value *Nucleus::createICmpUGT(Value *lhs, Value *rhs)
1756 {
1757 	RR_DEBUG_INFO_UPDATE_LOC();
1758 	return createIntCompare(Ice::InstIcmp::Ugt, lhs, rhs);
1759 }
1760 
createICmpUGE(Value * lhs,Value * rhs)1761 Value *Nucleus::createICmpUGE(Value *lhs, Value *rhs)
1762 {
1763 	RR_DEBUG_INFO_UPDATE_LOC();
1764 	return createIntCompare(Ice::InstIcmp::Uge, lhs, rhs);
1765 }
1766 
createICmpULT(Value * lhs,Value * rhs)1767 Value *Nucleus::createICmpULT(Value *lhs, Value *rhs)
1768 {
1769 	RR_DEBUG_INFO_UPDATE_LOC();
1770 	return createIntCompare(Ice::InstIcmp::Ult, lhs, rhs);
1771 }
1772 
createICmpULE(Value * lhs,Value * rhs)1773 Value *Nucleus::createICmpULE(Value *lhs, Value *rhs)
1774 {
1775 	RR_DEBUG_INFO_UPDATE_LOC();
1776 	return createIntCompare(Ice::InstIcmp::Ule, lhs, rhs);
1777 }
1778 
createICmpSGT(Value * lhs,Value * rhs)1779 Value *Nucleus::createICmpSGT(Value *lhs, Value *rhs)
1780 {
1781 	RR_DEBUG_INFO_UPDATE_LOC();
1782 	return createIntCompare(Ice::InstIcmp::Sgt, lhs, rhs);
1783 }
1784 
createICmpSGE(Value * lhs,Value * rhs)1785 Value *Nucleus::createICmpSGE(Value *lhs, Value *rhs)
1786 {
1787 	RR_DEBUG_INFO_UPDATE_LOC();
1788 	return createIntCompare(Ice::InstIcmp::Sge, lhs, rhs);
1789 }
1790 
createICmpSLT(Value * lhs,Value * rhs)1791 Value *Nucleus::createICmpSLT(Value *lhs, Value *rhs)
1792 {
1793 	RR_DEBUG_INFO_UPDATE_LOC();
1794 	return createIntCompare(Ice::InstIcmp::Slt, lhs, rhs);
1795 }
1796 
createICmpSLE(Value * lhs,Value * rhs)1797 Value *Nucleus::createICmpSLE(Value *lhs, Value *rhs)
1798 {
1799 	RR_DEBUG_INFO_UPDATE_LOC();
1800 	return createIntCompare(Ice::InstIcmp::Sle, lhs, rhs);
1801 }
1802 
createFloatCompare(Ice::InstFcmp::FCond condition,Value * lhs,Value * rhs)1803 static Value *createFloatCompare(Ice::InstFcmp::FCond condition, Value *lhs, Value *rhs)
1804 {
1805 	ASSERT(lhs->getType() == rhs->getType());
1806 	ASSERT(Ice::isScalarFloatingType(lhs->getType()) || lhs->getType() == Ice::IceType_v4f32);
1807 
1808 	auto result = ::function->makeVariable(Ice::isScalarFloatingType(lhs->getType()) ? Ice::IceType_i1 : Ice::IceType_v4i32);
1809 	auto cmp = Ice::InstFcmp::create(::function, condition, result, lhs, rhs);
1810 	::basicBlock->appendInst(cmp);
1811 
1812 	return V(result);
1813 }
1814 
createFCmpOEQ(Value * lhs,Value * rhs)1815 Value *Nucleus::createFCmpOEQ(Value *lhs, Value *rhs)
1816 {
1817 	RR_DEBUG_INFO_UPDATE_LOC();
1818 	return createFloatCompare(Ice::InstFcmp::Oeq, lhs, rhs);
1819 }
1820 
createFCmpOGT(Value * lhs,Value * rhs)1821 Value *Nucleus::createFCmpOGT(Value *lhs, Value *rhs)
1822 {
1823 	RR_DEBUG_INFO_UPDATE_LOC();
1824 	return createFloatCompare(Ice::InstFcmp::Ogt, lhs, rhs);
1825 }
1826 
createFCmpOGE(Value * lhs,Value * rhs)1827 Value *Nucleus::createFCmpOGE(Value *lhs, Value *rhs)
1828 {
1829 	RR_DEBUG_INFO_UPDATE_LOC();
1830 	return createFloatCompare(Ice::InstFcmp::Oge, lhs, rhs);
1831 }
1832 
createFCmpOLT(Value * lhs,Value * rhs)1833 Value *Nucleus::createFCmpOLT(Value *lhs, Value *rhs)
1834 {
1835 	RR_DEBUG_INFO_UPDATE_LOC();
1836 	return createFloatCompare(Ice::InstFcmp::Olt, lhs, rhs);
1837 }
1838 
createFCmpOLE(Value * lhs,Value * rhs)1839 Value *Nucleus::createFCmpOLE(Value *lhs, Value *rhs)
1840 {
1841 	RR_DEBUG_INFO_UPDATE_LOC();
1842 	return createFloatCompare(Ice::InstFcmp::Ole, lhs, rhs);
1843 }
1844 
createFCmpONE(Value * lhs,Value * rhs)1845 Value *Nucleus::createFCmpONE(Value *lhs, Value *rhs)
1846 {
1847 	RR_DEBUG_INFO_UPDATE_LOC();
1848 	return createFloatCompare(Ice::InstFcmp::One, lhs, rhs);
1849 }
1850 
createFCmpORD(Value * lhs,Value * rhs)1851 Value *Nucleus::createFCmpORD(Value *lhs, Value *rhs)
1852 {
1853 	RR_DEBUG_INFO_UPDATE_LOC();
1854 	return createFloatCompare(Ice::InstFcmp::Ord, lhs, rhs);
1855 }
1856 
createFCmpUNO(Value * lhs,Value * rhs)1857 Value *Nucleus::createFCmpUNO(Value *lhs, Value *rhs)
1858 {
1859 	RR_DEBUG_INFO_UPDATE_LOC();
1860 	return createFloatCompare(Ice::InstFcmp::Uno, lhs, rhs);
1861 }
1862 
createFCmpUEQ(Value * lhs,Value * rhs)1863 Value *Nucleus::createFCmpUEQ(Value *lhs, Value *rhs)
1864 {
1865 	RR_DEBUG_INFO_UPDATE_LOC();
1866 	return createFloatCompare(Ice::InstFcmp::Ueq, lhs, rhs);
1867 }
1868 
createFCmpUGT(Value * lhs,Value * rhs)1869 Value *Nucleus::createFCmpUGT(Value *lhs, Value *rhs)
1870 {
1871 	RR_DEBUG_INFO_UPDATE_LOC();
1872 	return createFloatCompare(Ice::InstFcmp::Ugt, lhs, rhs);
1873 }
1874 
createFCmpUGE(Value * lhs,Value * rhs)1875 Value *Nucleus::createFCmpUGE(Value *lhs, Value *rhs)
1876 {
1877 	RR_DEBUG_INFO_UPDATE_LOC();
1878 	return createFloatCompare(Ice::InstFcmp::Uge, lhs, rhs);
1879 }
1880 
createFCmpULT(Value * lhs,Value * rhs)1881 Value *Nucleus::createFCmpULT(Value *lhs, Value *rhs)
1882 {
1883 	RR_DEBUG_INFO_UPDATE_LOC();
1884 	return createFloatCompare(Ice::InstFcmp::Ult, lhs, rhs);
1885 }
1886 
createFCmpULE(Value * lhs,Value * rhs)1887 Value *Nucleus::createFCmpULE(Value *lhs, Value *rhs)
1888 {
1889 	RR_DEBUG_INFO_UPDATE_LOC();
1890 	return createFloatCompare(Ice::InstFcmp::Ule, lhs, rhs);
1891 }
1892 
createFCmpUNE(Value * lhs,Value * rhs)1893 Value *Nucleus::createFCmpUNE(Value *lhs, Value *rhs)
1894 {
1895 	RR_DEBUG_INFO_UPDATE_LOC();
1896 	return createFloatCompare(Ice::InstFcmp::Une, lhs, rhs);
1897 }
1898 
createExtractElement(Value * vector,Type * type,int index)1899 Value *Nucleus::createExtractElement(Value *vector, Type *type, int index)
1900 {
1901 	RR_DEBUG_INFO_UPDATE_LOC();
1902 	auto result = ::function->makeVariable(T(type));
1903 	auto extract = Ice::InstExtractElement::create(::function, result, V(vector), ::context->getConstantInt32(index));
1904 	::basicBlock->appendInst(extract);
1905 
1906 	return V(result);
1907 }
1908 
createInsertElement(Value * vector,Value * element,int index)1909 Value *Nucleus::createInsertElement(Value *vector, Value *element, int index)
1910 {
1911 	RR_DEBUG_INFO_UPDATE_LOC();
1912 	auto result = ::function->makeVariable(vector->getType());
1913 	auto insert = Ice::InstInsertElement::create(::function, result, vector, element, ::context->getConstantInt32(index));
1914 	::basicBlock->appendInst(insert);
1915 
1916 	return V(result);
1917 }
1918 
createShuffleVector(Value * V1,Value * V2,const int * select)1919 Value *Nucleus::createShuffleVector(Value *V1, Value *V2, const int *select)
1920 {
1921 	RR_DEBUG_INFO_UPDATE_LOC();
1922 	ASSERT(V1->getType() == V2->getType());
1923 
1924 	int size = Ice::typeNumElements(V1->getType());
1925 	auto result = ::function->makeVariable(V1->getType());
1926 	auto shuffle = Ice::InstShuffleVector::create(::function, result, V1, V2);
1927 
1928 	for(int i = 0; i < size; i++)
1929 	{
1930 		shuffle->addIndex(llvm::cast<Ice::ConstantInteger32>(::context->getConstantInt32(select[i])));
1931 	}
1932 
1933 	::basicBlock->appendInst(shuffle);
1934 
1935 	return V(result);
1936 }
1937 
createSelect(Value * C,Value * ifTrue,Value * ifFalse)1938 Value *Nucleus::createSelect(Value *C, Value *ifTrue, Value *ifFalse)
1939 {
1940 	RR_DEBUG_INFO_UPDATE_LOC();
1941 	ASSERT(ifTrue->getType() == ifFalse->getType());
1942 
1943 	auto result = ::function->makeVariable(ifTrue->getType());
1944 	auto *select = Ice::InstSelect::create(::function, result, C, ifTrue, ifFalse);
1945 	::basicBlock->appendInst(select);
1946 
1947 	return V(result);
1948 }
1949 
createSwitch(Value * control,BasicBlock * defaultBranch,unsigned numCases)1950 SwitchCases *Nucleus::createSwitch(Value *control, BasicBlock *defaultBranch, unsigned numCases)
1951 {
1952 	RR_DEBUG_INFO_UPDATE_LOC();
1953 	auto switchInst = Ice::InstSwitch::create(::function, numCases, control, defaultBranch);
1954 	::basicBlock->appendInst(switchInst);
1955 
1956 	return reinterpret_cast<SwitchCases *>(switchInst);
1957 }
1958 
addSwitchCase(SwitchCases * switchCases,int label,BasicBlock * branch)1959 void Nucleus::addSwitchCase(SwitchCases *switchCases, int label, BasicBlock *branch)
1960 {
1961 	RR_DEBUG_INFO_UPDATE_LOC();
1962 	switchCases->addBranch(label, label, branch);
1963 }
1964 
createUnreachable()1965 void Nucleus::createUnreachable()
1966 {
1967 	RR_DEBUG_INFO_UPDATE_LOC();
1968 	Ice::InstUnreachable *unreachable = Ice::InstUnreachable::create(::function);
1969 	::basicBlock->appendInst(unreachable);
1970 }
1971 
getType(Value * value)1972 Type *Nucleus::getType(Value *value)
1973 {
1974 	return T(V(value)->getType());
1975 }
1976 
getContainedType(Type * vectorType)1977 Type *Nucleus::getContainedType(Type *vectorType)
1978 {
1979 	Ice::Type vecTy = T(vectorType);
1980 	switch(vecTy)
1981 	{
1982 	case Ice::IceType_v4i1: return T(Ice::IceType_i1);
1983 	case Ice::IceType_v8i1: return T(Ice::IceType_i1);
1984 	case Ice::IceType_v16i1: return T(Ice::IceType_i1);
1985 	case Ice::IceType_v16i8: return T(Ice::IceType_i8);
1986 	case Ice::IceType_v8i16: return T(Ice::IceType_i16);
1987 	case Ice::IceType_v4i32: return T(Ice::IceType_i32);
1988 	case Ice::IceType_v4f32: return T(Ice::IceType_f32);
1989 	default:
1990 		ASSERT_MSG(false, "getContainedType: input type is not a vector type");
1991 		return {};
1992 	}
1993 }
1994 
getPointerType(Type * ElementType)1995 Type *Nucleus::getPointerType(Type *ElementType)
1996 {
1997 	return T(sz::getPointerType(T(ElementType)));
1998 }
1999 
getNaturalIntType()2000 static constexpr Ice::Type getNaturalIntType()
2001 {
2002 	constexpr size_t intSize = sizeof(int);
2003 	static_assert(intSize == 4 || intSize == 8, "");
2004 	return intSize == 4 ? Ice::IceType_i32 : Ice::IceType_i64;
2005 }
2006 
getPrintfStorageType(Type * valueType)2007 Type *Nucleus::getPrintfStorageType(Type *valueType)
2008 {
2009 	Ice::Type valueTy = T(valueType);
2010 	switch(valueTy)
2011 	{
2012 	case Ice::IceType_i32:
2013 		return T(getNaturalIntType());
2014 
2015 	case Ice::IceType_f32:
2016 		return T(Ice::IceType_f64);
2017 
2018 	default:
2019 		UNIMPLEMENTED_NO_BUG("getPrintfStorageType: add more cases as needed");
2020 		return {};
2021 	}
2022 }
2023 
createNullValue(Type * Ty)2024 Value *Nucleus::createNullValue(Type *Ty)
2025 {
2026 	RR_DEBUG_INFO_UPDATE_LOC();
2027 	if(Ice::isVectorType(T(Ty)))
2028 	{
2029 		ASSERT(Ice::typeNumElements(T(Ty)) <= 16);
2030 		int64_t c[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
2031 		return createConstantVector(c, Ty);
2032 	}
2033 	else
2034 	{
2035 		return V(::context->getConstantZero(T(Ty)));
2036 	}
2037 }
2038 
createConstantLong(int64_t i)2039 Value *Nucleus::createConstantLong(int64_t i)
2040 {
2041 	RR_DEBUG_INFO_UPDATE_LOC();
2042 	return V(::context->getConstantInt64(i));
2043 }
2044 
createConstantInt(int i)2045 Value *Nucleus::createConstantInt(int i)
2046 {
2047 	RR_DEBUG_INFO_UPDATE_LOC();
2048 	return V(::context->getConstantInt32(i));
2049 }
2050 
createConstantInt(unsigned int i)2051 Value *Nucleus::createConstantInt(unsigned int i)
2052 {
2053 	RR_DEBUG_INFO_UPDATE_LOC();
2054 	return V(::context->getConstantInt32(i));
2055 }
2056 
createConstantBool(bool b)2057 Value *Nucleus::createConstantBool(bool b)
2058 {
2059 	RR_DEBUG_INFO_UPDATE_LOC();
2060 	return V(::context->getConstantInt1(b));
2061 }
2062 
createConstantByte(signed char i)2063 Value *Nucleus::createConstantByte(signed char i)
2064 {
2065 	RR_DEBUG_INFO_UPDATE_LOC();
2066 	return V(::context->getConstantInt8(i));
2067 }
2068 
createConstantByte(unsigned char i)2069 Value *Nucleus::createConstantByte(unsigned char i)
2070 {
2071 	RR_DEBUG_INFO_UPDATE_LOC();
2072 	return V(::context->getConstantInt8(i));
2073 }
2074 
createConstantShort(short i)2075 Value *Nucleus::createConstantShort(short i)
2076 {
2077 	RR_DEBUG_INFO_UPDATE_LOC();
2078 	return V(::context->getConstantInt16(i));
2079 }
2080 
createConstantShort(unsigned short i)2081 Value *Nucleus::createConstantShort(unsigned short i)
2082 {
2083 	RR_DEBUG_INFO_UPDATE_LOC();
2084 	return V(::context->getConstantInt16(i));
2085 }
2086 
createConstantFloat(float x)2087 Value *Nucleus::createConstantFloat(float x)
2088 {
2089 	RR_DEBUG_INFO_UPDATE_LOC();
2090 	return V(::context->getConstantFloat(x));
2091 }
2092 
createNullPointer(Type * Ty)2093 Value *Nucleus::createNullPointer(Type *Ty)
2094 {
2095 	RR_DEBUG_INFO_UPDATE_LOC();
2096 	return createNullValue(T(sizeof(void *) == 8 ? Ice::IceType_i64 : Ice::IceType_i32));
2097 }
2098 
IceConstantData(void const * data,size_t size,size_t alignment=1)2099 static Ice::Constant *IceConstantData(void const *data, size_t size, size_t alignment = 1)
2100 {
2101 	return sz::getConstantPointer(::context, ::routine->addConstantData(data, size, alignment));
2102 }
2103 
createConstantVector(const int64_t * constants,Type * type)2104 Value *Nucleus::createConstantVector(const int64_t *constants, Type *type)
2105 {
2106 	RR_DEBUG_INFO_UPDATE_LOC();
2107 	const int vectorSize = 16;
2108 	ASSERT(Ice::typeWidthInBytes(T(type)) == vectorSize);
2109 	const int alignment = vectorSize;
2110 
2111 	const int64_t *i = constants;
2112 	const double *f = reinterpret_cast<const double *>(constants);
2113 
2114 	// TODO(b/148082873): Fix global variable constants when generating multiple functions
2115 	Ice::Constant *ptr = nullptr;
2116 
2117 	switch((int)reinterpret_cast<intptr_t>(type))
2118 	{
2119 	case Ice::IceType_v4i32:
2120 	case Ice::IceType_v4i1:
2121 		{
2122 			const int initializer[4] = { (int)i[0], (int)i[1], (int)i[2], (int)i[3] };
2123 			static_assert(sizeof(initializer) == vectorSize, "!");
2124 			ptr = IceConstantData(initializer, vectorSize, alignment);
2125 		}
2126 		break;
2127 	case Ice::IceType_v4f32:
2128 		{
2129 			const float initializer[4] = { (float)f[0], (float)f[1], (float)f[2], (float)f[3] };
2130 			static_assert(sizeof(initializer) == vectorSize, "!");
2131 			ptr = IceConstantData(initializer, vectorSize, alignment);
2132 		}
2133 		break;
2134 	case Ice::IceType_v8i16:
2135 	case Ice::IceType_v8i1:
2136 		{
2137 			const short initializer[8] = { (short)i[0], (short)i[1], (short)i[2], (short)i[3], (short)i[4], (short)i[5], (short)i[6], (short)i[7] };
2138 			static_assert(sizeof(initializer) == vectorSize, "!");
2139 			ptr = IceConstantData(initializer, vectorSize, alignment);
2140 		}
2141 		break;
2142 	case Ice::IceType_v16i8:
2143 	case Ice::IceType_v16i1:
2144 		{
2145 			const char initializer[16] = { (char)i[0], (char)i[1], (char)i[2], (char)i[3], (char)i[4], (char)i[5], (char)i[6], (char)i[7], (char)i[8], (char)i[9], (char)i[10], (char)i[11], (char)i[12], (char)i[13], (char)i[14], (char)i[15] };
2146 			static_assert(sizeof(initializer) == vectorSize, "!");
2147 			ptr = IceConstantData(initializer, vectorSize, alignment);
2148 		}
2149 		break;
2150 	case Type_v2i32:
2151 		{
2152 			const int initializer[4] = { (int)i[0], (int)i[1], (int)i[0], (int)i[1] };
2153 			static_assert(sizeof(initializer) == vectorSize, "!");
2154 			ptr = IceConstantData(initializer, vectorSize, alignment);
2155 		}
2156 		break;
2157 	case Type_v2f32:
2158 		{
2159 			const float initializer[4] = { (float)f[0], (float)f[1], (float)f[0], (float)f[1] };
2160 			static_assert(sizeof(initializer) == vectorSize, "!");
2161 			ptr = IceConstantData(initializer, vectorSize, alignment);
2162 		}
2163 		break;
2164 	case Type_v4i16:
2165 		{
2166 			const short initializer[8] = { (short)i[0], (short)i[1], (short)i[2], (short)i[3], (short)i[0], (short)i[1], (short)i[2], (short)i[3] };
2167 			static_assert(sizeof(initializer) == vectorSize, "!");
2168 			ptr = IceConstantData(initializer, vectorSize, alignment);
2169 		}
2170 		break;
2171 	case Type_v8i8:
2172 		{
2173 			const char initializer[16] = { (char)i[0], (char)i[1], (char)i[2], (char)i[3], (char)i[4], (char)i[5], (char)i[6], (char)i[7], (char)i[0], (char)i[1], (char)i[2], (char)i[3], (char)i[4], (char)i[5], (char)i[6], (char)i[7] };
2174 			static_assert(sizeof(initializer) == vectorSize, "!");
2175 			ptr = IceConstantData(initializer, vectorSize, alignment);
2176 		}
2177 		break;
2178 	case Type_v4i8:
2179 		{
2180 			const char initializer[16] = { (char)i[0], (char)i[1], (char)i[2], (char)i[3], (char)i[0], (char)i[1], (char)i[2], (char)i[3], (char)i[0], (char)i[1], (char)i[2], (char)i[3], (char)i[0], (char)i[1], (char)i[2], (char)i[3] };
2181 			static_assert(sizeof(initializer) == vectorSize, "!");
2182 			ptr = IceConstantData(initializer, vectorSize, alignment);
2183 		}
2184 		break;
2185 	default:
2186 		UNREACHABLE("Unknown constant vector type: %d", (int)reinterpret_cast<intptr_t>(type));
2187 	}
2188 
2189 	ASSERT(ptr);
2190 
2191 	Ice::Variable *result = sz::createLoad(::function, ::basicBlock, ptr, T(type), alignment);
2192 	return V(result);
2193 }
2194 
createConstantVector(const double * constants,Type * type)2195 Value *Nucleus::createConstantVector(const double *constants, Type *type)
2196 {
2197 	return createConstantVector((const int64_t *)constants, type);
2198 }
2199 
createConstantString(const char * v)2200 Value *Nucleus::createConstantString(const char *v)
2201 {
2202 	// NOTE: Do not call RR_DEBUG_INFO_UPDATE_LOC() here to avoid recursion when called from rr::Printv
2203 	return V(IceConstantData(v, strlen(v) + 1));
2204 }
2205 
setOptimizerCallback(OptimizerCallback * callback)2206 void Nucleus::setOptimizerCallback(OptimizerCallback *callback)
2207 {
2208 	::optimizerCallback = callback;
2209 }
2210 
type()2211 Type *Void::type()
2212 {
2213 	return T(Ice::IceType_void);
2214 }
2215 
type()2216 Type *Bool::type()
2217 {
2218 	return T(Ice::IceType_i1);
2219 }
2220 
type()2221 Type *Byte::type()
2222 {
2223 	return T(Ice::IceType_i8);
2224 }
2225 
type()2226 Type *SByte::type()
2227 {
2228 	return T(Ice::IceType_i8);
2229 }
2230 
type()2231 Type *Short::type()
2232 {
2233 	return T(Ice::IceType_i16);
2234 }
2235 
type()2236 Type *UShort::type()
2237 {
2238 	return T(Ice::IceType_i16);
2239 }
2240 
type()2241 Type *Byte4::type()
2242 {
2243 	return T(Type_v4i8);
2244 }
2245 
type()2246 Type *SByte4::type()
2247 {
2248 	return T(Type_v4i8);
2249 }
2250 
2251 namespace {
SaturateUnsigned(RValue<Short> x)2252 RValue<Byte> SaturateUnsigned(RValue<Short> x)
2253 {
2254 	return Byte(IfThenElse(Int(x) > 0xFF, Int(0xFF), IfThenElse(Int(x) < 0, Int(0), Int(x))));
2255 }
2256 
Extract(RValue<Byte8> val,int i)2257 RValue<Byte> Extract(RValue<Byte8> val, int i)
2258 {
2259 	return RValue<Byte>(Nucleus::createExtractElement(val.value(), Byte::type(), i));
2260 }
2261 
Insert(RValue<Byte8> val,RValue<Byte> element,int i)2262 RValue<Byte8> Insert(RValue<Byte8> val, RValue<Byte> element, int i)
2263 {
2264 	return RValue<Byte8>(Nucleus::createInsertElement(val.value(), element.value(), i));
2265 }
2266 }  // namespace
2267 
AddSat(RValue<Byte8> x,RValue<Byte8> y)2268 RValue<Byte8> AddSat(RValue<Byte8> x, RValue<Byte8> y)
2269 {
2270 	RR_DEBUG_INFO_UPDATE_LOC();
2271 	if(emulateIntrinsics)
2272 	{
2273 		Byte8 result;
2274 		result = Insert(result, SaturateUnsigned(Short(Int(Extract(x, 0)) + Int(Extract(y, 0)))), 0);
2275 		result = Insert(result, SaturateUnsigned(Short(Int(Extract(x, 1)) + Int(Extract(y, 1)))), 1);
2276 		result = Insert(result, SaturateUnsigned(Short(Int(Extract(x, 2)) + Int(Extract(y, 2)))), 2);
2277 		result = Insert(result, SaturateUnsigned(Short(Int(Extract(x, 3)) + Int(Extract(y, 3)))), 3);
2278 		result = Insert(result, SaturateUnsigned(Short(Int(Extract(x, 4)) + Int(Extract(y, 4)))), 4);
2279 		result = Insert(result, SaturateUnsigned(Short(Int(Extract(x, 5)) + Int(Extract(y, 5)))), 5);
2280 		result = Insert(result, SaturateUnsigned(Short(Int(Extract(x, 6)) + Int(Extract(y, 6)))), 6);
2281 		result = Insert(result, SaturateUnsigned(Short(Int(Extract(x, 7)) + Int(Extract(y, 7)))), 7);
2282 
2283 		return result;
2284 	}
2285 	else
2286 	{
2287 		Ice::Variable *result = ::function->makeVariable(Ice::IceType_v16i8);
2288 		const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::AddSaturateUnsigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
2289 		auto paddusb = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
2290 		paddusb->addArg(x.value());
2291 		paddusb->addArg(y.value());
2292 		::basicBlock->appendInst(paddusb);
2293 
2294 		return RValue<Byte8>(V(result));
2295 	}
2296 }
2297 
SubSat(RValue<Byte8> x,RValue<Byte8> y)2298 RValue<Byte8> SubSat(RValue<Byte8> x, RValue<Byte8> y)
2299 {
2300 	RR_DEBUG_INFO_UPDATE_LOC();
2301 	if(emulateIntrinsics)
2302 	{
2303 		Byte8 result;
2304 		result = Insert(result, SaturateUnsigned(Short(Int(Extract(x, 0)) - Int(Extract(y, 0)))), 0);
2305 		result = Insert(result, SaturateUnsigned(Short(Int(Extract(x, 1)) - Int(Extract(y, 1)))), 1);
2306 		result = Insert(result, SaturateUnsigned(Short(Int(Extract(x, 2)) - Int(Extract(y, 2)))), 2);
2307 		result = Insert(result, SaturateUnsigned(Short(Int(Extract(x, 3)) - Int(Extract(y, 3)))), 3);
2308 		result = Insert(result, SaturateUnsigned(Short(Int(Extract(x, 4)) - Int(Extract(y, 4)))), 4);
2309 		result = Insert(result, SaturateUnsigned(Short(Int(Extract(x, 5)) - Int(Extract(y, 5)))), 5);
2310 		result = Insert(result, SaturateUnsigned(Short(Int(Extract(x, 6)) - Int(Extract(y, 6)))), 6);
2311 		result = Insert(result, SaturateUnsigned(Short(Int(Extract(x, 7)) - Int(Extract(y, 7)))), 7);
2312 
2313 		return result;
2314 	}
2315 	else
2316 	{
2317 		Ice::Variable *result = ::function->makeVariable(Ice::IceType_v16i8);
2318 		const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::SubtractSaturateUnsigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
2319 		auto psubusw = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
2320 		psubusw->addArg(x.value());
2321 		psubusw->addArg(y.value());
2322 		::basicBlock->appendInst(psubusw);
2323 
2324 		return RValue<Byte8>(V(result));
2325 	}
2326 }
2327 
Extract(RValue<SByte8> val,int i)2328 RValue<SByte> Extract(RValue<SByte8> val, int i)
2329 {
2330 	RR_DEBUG_INFO_UPDATE_LOC();
2331 	return RValue<SByte>(Nucleus::createExtractElement(val.value(), SByte::type(), i));
2332 }
2333 
Insert(RValue<SByte8> val,RValue<SByte> element,int i)2334 RValue<SByte8> Insert(RValue<SByte8> val, RValue<SByte> element, int i)
2335 {
2336 	RR_DEBUG_INFO_UPDATE_LOC();
2337 	return RValue<SByte8>(Nucleus::createInsertElement(val.value(), element.value(), i));
2338 }
2339 
operator >>(RValue<SByte8> lhs,unsigned char rhs)2340 RValue<SByte8> operator>>(RValue<SByte8> lhs, unsigned char rhs)
2341 {
2342 	RR_DEBUG_INFO_UPDATE_LOC();
2343 	if(emulateIntrinsics)
2344 	{
2345 		SByte8 result;
2346 		result = Insert(result, Extract(lhs, 0) >> SByte(rhs), 0);
2347 		result = Insert(result, Extract(lhs, 1) >> SByte(rhs), 1);
2348 		result = Insert(result, Extract(lhs, 2) >> SByte(rhs), 2);
2349 		result = Insert(result, Extract(lhs, 3) >> SByte(rhs), 3);
2350 		result = Insert(result, Extract(lhs, 4) >> SByte(rhs), 4);
2351 		result = Insert(result, Extract(lhs, 5) >> SByte(rhs), 5);
2352 		result = Insert(result, Extract(lhs, 6) >> SByte(rhs), 6);
2353 		result = Insert(result, Extract(lhs, 7) >> SByte(rhs), 7);
2354 
2355 		return result;
2356 	}
2357 	else
2358 	{
2359 #if defined(__i386__) || defined(__x86_64__)
2360 		// SSE2 doesn't support byte vector shifts, so shift as shorts and recombine.
2361 		RValue<Short4> hi = (As<Short4>(lhs) >> rhs) & Short4(0xFF00u);
2362 		RValue<Short4> lo = As<Short4>(As<UShort4>((As<Short4>(lhs) << 8) >> rhs) >> 8);
2363 
2364 		return As<SByte8>(hi | lo);
2365 #else
2366 		return RValue<SByte8>(Nucleus::createAShr(lhs.value(), V(::context->getConstantInt32(rhs))));
2367 #endif
2368 	}
2369 }
2370 
SignMask(RValue<Byte8> x)2371 RValue<Int> SignMask(RValue<Byte8> x)
2372 {
2373 	RR_DEBUG_INFO_UPDATE_LOC();
2374 	if(emulateIntrinsics || CPUID::ARM)
2375 	{
2376 		Byte8 xx = As<Byte8>(As<SByte8>(x) >> 7) & Byte8(0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80);
2377 		return Int(Extract(xx, 0)) | Int(Extract(xx, 1)) | Int(Extract(xx, 2)) | Int(Extract(xx, 3)) | Int(Extract(xx, 4)) | Int(Extract(xx, 5)) | Int(Extract(xx, 6)) | Int(Extract(xx, 7));
2378 	}
2379 	else
2380 	{
2381 		Ice::Variable *result = ::function->makeVariable(Ice::IceType_i32);
2382 		const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::SignMask, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
2383 		auto movmsk = Ice::InstIntrinsic::create(::function, 1, result, intrinsic);
2384 		movmsk->addArg(x.value());
2385 		::basicBlock->appendInst(movmsk);
2386 
2387 		return RValue<Int>(V(result)) & 0xFF;
2388 	}
2389 }
2390 
2391 //	RValue<Byte8> CmpGT(RValue<Byte8> x, RValue<Byte8> y)
2392 //	{
2393 //		return RValue<Byte8>(createIntCompare(Ice::InstIcmp::Ugt, x.value(), y.value()));
2394 //	}
2395 
CmpEQ(RValue<Byte8> x,RValue<Byte8> y)2396 RValue<Byte8> CmpEQ(RValue<Byte8> x, RValue<Byte8> y)
2397 {
2398 	RR_DEBUG_INFO_UPDATE_LOC();
2399 	return RValue<Byte8>(Nucleus::createICmpEQ(x.value(), y.value()));
2400 }
2401 
type()2402 Type *Byte8::type()
2403 {
2404 	return T(Type_v8i8);
2405 }
2406 
2407 //	RValue<SByte8> operator<<(RValue<SByte8> lhs, unsigned char rhs)
2408 //	{
2409 //		return RValue<SByte8>(Nucleus::createShl(lhs.value(), V(::context->getConstantInt32(rhs))));
2410 //	}
2411 
2412 //	RValue<SByte8> operator>>(RValue<SByte8> lhs, unsigned char rhs)
2413 //	{
2414 //		return RValue<SByte8>(Nucleus::createAShr(lhs.value(), V(::context->getConstantInt32(rhs))));
2415 //	}
2416 
SaturateSigned(RValue<Short> x)2417 RValue<SByte> SaturateSigned(RValue<Short> x)
2418 {
2419 	RR_DEBUG_INFO_UPDATE_LOC();
2420 	return SByte(IfThenElse(Int(x) > 0x7F, Int(0x7F), IfThenElse(Int(x) < -0x80, Int(0x80), Int(x))));
2421 }
2422 
AddSat(RValue<SByte8> x,RValue<SByte8> y)2423 RValue<SByte8> AddSat(RValue<SByte8> x, RValue<SByte8> y)
2424 {
2425 	RR_DEBUG_INFO_UPDATE_LOC();
2426 	if(emulateIntrinsics)
2427 	{
2428 		SByte8 result;
2429 		result = Insert(result, SaturateSigned(Short(Int(Extract(x, 0)) + Int(Extract(y, 0)))), 0);
2430 		result = Insert(result, SaturateSigned(Short(Int(Extract(x, 1)) + Int(Extract(y, 1)))), 1);
2431 		result = Insert(result, SaturateSigned(Short(Int(Extract(x, 2)) + Int(Extract(y, 2)))), 2);
2432 		result = Insert(result, SaturateSigned(Short(Int(Extract(x, 3)) + Int(Extract(y, 3)))), 3);
2433 		result = Insert(result, SaturateSigned(Short(Int(Extract(x, 4)) + Int(Extract(y, 4)))), 4);
2434 		result = Insert(result, SaturateSigned(Short(Int(Extract(x, 5)) + Int(Extract(y, 5)))), 5);
2435 		result = Insert(result, SaturateSigned(Short(Int(Extract(x, 6)) + Int(Extract(y, 6)))), 6);
2436 		result = Insert(result, SaturateSigned(Short(Int(Extract(x, 7)) + Int(Extract(y, 7)))), 7);
2437 
2438 		return result;
2439 	}
2440 	else
2441 	{
2442 		Ice::Variable *result = ::function->makeVariable(Ice::IceType_v16i8);
2443 		const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::AddSaturateSigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
2444 		auto paddsb = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
2445 		paddsb->addArg(x.value());
2446 		paddsb->addArg(y.value());
2447 		::basicBlock->appendInst(paddsb);
2448 
2449 		return RValue<SByte8>(V(result));
2450 	}
2451 }
2452 
SubSat(RValue<SByte8> x,RValue<SByte8> y)2453 RValue<SByte8> SubSat(RValue<SByte8> x, RValue<SByte8> y)
2454 {
2455 	RR_DEBUG_INFO_UPDATE_LOC();
2456 	if(emulateIntrinsics)
2457 	{
2458 		SByte8 result;
2459 		result = Insert(result, SaturateSigned(Short(Int(Extract(x, 0)) - Int(Extract(y, 0)))), 0);
2460 		result = Insert(result, SaturateSigned(Short(Int(Extract(x, 1)) - Int(Extract(y, 1)))), 1);
2461 		result = Insert(result, SaturateSigned(Short(Int(Extract(x, 2)) - Int(Extract(y, 2)))), 2);
2462 		result = Insert(result, SaturateSigned(Short(Int(Extract(x, 3)) - Int(Extract(y, 3)))), 3);
2463 		result = Insert(result, SaturateSigned(Short(Int(Extract(x, 4)) - Int(Extract(y, 4)))), 4);
2464 		result = Insert(result, SaturateSigned(Short(Int(Extract(x, 5)) - Int(Extract(y, 5)))), 5);
2465 		result = Insert(result, SaturateSigned(Short(Int(Extract(x, 6)) - Int(Extract(y, 6)))), 6);
2466 		result = Insert(result, SaturateSigned(Short(Int(Extract(x, 7)) - Int(Extract(y, 7)))), 7);
2467 
2468 		return result;
2469 	}
2470 	else
2471 	{
2472 		Ice::Variable *result = ::function->makeVariable(Ice::IceType_v16i8);
2473 		const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::SubtractSaturateSigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
2474 		auto psubsb = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
2475 		psubsb->addArg(x.value());
2476 		psubsb->addArg(y.value());
2477 		::basicBlock->appendInst(psubsb);
2478 
2479 		return RValue<SByte8>(V(result));
2480 	}
2481 }
2482 
SignMask(RValue<SByte8> x)2483 RValue<Int> SignMask(RValue<SByte8> x)
2484 {
2485 	RR_DEBUG_INFO_UPDATE_LOC();
2486 	if(emulateIntrinsics || CPUID::ARM)
2487 	{
2488 		SByte8 xx = (x >> 7) & SByte8(0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80);
2489 		return Int(Extract(xx, 0)) | Int(Extract(xx, 1)) | Int(Extract(xx, 2)) | Int(Extract(xx, 3)) | Int(Extract(xx, 4)) | Int(Extract(xx, 5)) | Int(Extract(xx, 6)) | Int(Extract(xx, 7));
2490 	}
2491 	else
2492 	{
2493 		Ice::Variable *result = ::function->makeVariable(Ice::IceType_i32);
2494 		const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::SignMask, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
2495 		auto movmsk = Ice::InstIntrinsic::create(::function, 1, result, intrinsic);
2496 		movmsk->addArg(x.value());
2497 		::basicBlock->appendInst(movmsk);
2498 
2499 		return RValue<Int>(V(result)) & 0xFF;
2500 	}
2501 }
2502 
CmpGT(RValue<SByte8> x,RValue<SByte8> y)2503 RValue<Byte8> CmpGT(RValue<SByte8> x, RValue<SByte8> y)
2504 {
2505 	RR_DEBUG_INFO_UPDATE_LOC();
2506 	return RValue<Byte8>(createIntCompare(Ice::InstIcmp::Sgt, x.value(), y.value()));
2507 }
2508 
CmpEQ(RValue<SByte8> x,RValue<SByte8> y)2509 RValue<Byte8> CmpEQ(RValue<SByte8> x, RValue<SByte8> y)
2510 {
2511 	RR_DEBUG_INFO_UPDATE_LOC();
2512 	return RValue<Byte8>(Nucleus::createICmpEQ(x.value(), y.value()));
2513 }
2514 
type()2515 Type *SByte8::type()
2516 {
2517 	return T(Type_v8i8);
2518 }
2519 
type()2520 Type *Byte16::type()
2521 {
2522 	return T(Ice::IceType_v16i8);
2523 }
2524 
type()2525 Type *SByte16::type()
2526 {
2527 	return T(Ice::IceType_v16i8);
2528 }
2529 
type()2530 Type *Short2::type()
2531 {
2532 	return T(Type_v2i16);
2533 }
2534 
type()2535 Type *UShort2::type()
2536 {
2537 	return T(Type_v2i16);
2538 }
2539 
Short4(RValue<Int4> cast)2540 Short4::Short4(RValue<Int4> cast)
2541 {
2542 	int select[8] = { 0, 2, 4, 6, 0, 2, 4, 6 };
2543 	Value *short8 = Nucleus::createBitCast(cast.value(), Short8::type());
2544 	Value *packed = Nucleus::createShuffleVector(short8, short8, select);
2545 
2546 	Value *int2 = RValue<Int2>(Int2(As<Int4>(packed))).value();
2547 	Value *short4 = Nucleus::createBitCast(int2, Short4::type());
2548 
2549 	storeValue(short4);
2550 }
2551 
2552 //	Short4::Short4(RValue<Float> cast)
2553 //	{
2554 //	}
2555 
Short4(RValue<Float4> cast)2556 Short4::Short4(RValue<Float4> cast)
2557 {
2558 	// TODO(b/150791192): Generalize and optimize
2559 	auto smin = std::numeric_limits<short>::min();
2560 	auto smax = std::numeric_limits<short>::max();
2561 	*this = Short4(Int4(Max(Min(cast, Float4(smax)), Float4(smin))));
2562 }
2563 
operator <<(RValue<Short4> lhs,unsigned char rhs)2564 RValue<Short4> operator<<(RValue<Short4> lhs, unsigned char rhs)
2565 {
2566 	RR_DEBUG_INFO_UPDATE_LOC();
2567 	if(emulateIntrinsics)
2568 	{
2569 		Short4 result;
2570 		result = Insert(result, Extract(lhs, 0) << Short(rhs), 0);
2571 		result = Insert(result, Extract(lhs, 1) << Short(rhs), 1);
2572 		result = Insert(result, Extract(lhs, 2) << Short(rhs), 2);
2573 		result = Insert(result, Extract(lhs, 3) << Short(rhs), 3);
2574 
2575 		return result;
2576 	}
2577 	else
2578 	{
2579 		return RValue<Short4>(Nucleus::createShl(lhs.value(), V(::context->getConstantInt32(rhs))));
2580 	}
2581 }
2582 
operator >>(RValue<Short4> lhs,unsigned char rhs)2583 RValue<Short4> operator>>(RValue<Short4> lhs, unsigned char rhs)
2584 {
2585 	RR_DEBUG_INFO_UPDATE_LOC();
2586 	if(emulateIntrinsics)
2587 	{
2588 		Short4 result;
2589 		result = Insert(result, Extract(lhs, 0) >> Short(rhs), 0);
2590 		result = Insert(result, Extract(lhs, 1) >> Short(rhs), 1);
2591 		result = Insert(result, Extract(lhs, 2) >> Short(rhs), 2);
2592 		result = Insert(result, Extract(lhs, 3) >> Short(rhs), 3);
2593 
2594 		return result;
2595 	}
2596 	else
2597 	{
2598 		return RValue<Short4>(Nucleus::createAShr(lhs.value(), V(::context->getConstantInt32(rhs))));
2599 	}
2600 }
2601 
Max(RValue<Short4> x,RValue<Short4> y)2602 RValue<Short4> Max(RValue<Short4> x, RValue<Short4> y)
2603 {
2604 	RR_DEBUG_INFO_UPDATE_LOC();
2605 	Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v8i1);
2606 	auto cmp = Ice::InstIcmp::create(::function, Ice::InstIcmp::Sle, condition, x.value(), y.value());
2607 	::basicBlock->appendInst(cmp);
2608 
2609 	Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16);
2610 	auto select = Ice::InstSelect::create(::function, result, condition, y.value(), x.value());
2611 	::basicBlock->appendInst(select);
2612 
2613 	return RValue<Short4>(V(result));
2614 }
2615 
Min(RValue<Short4> x,RValue<Short4> y)2616 RValue<Short4> Min(RValue<Short4> x, RValue<Short4> y)
2617 {
2618 	RR_DEBUG_INFO_UPDATE_LOC();
2619 	Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v8i1);
2620 	auto cmp = Ice::InstIcmp::create(::function, Ice::InstIcmp::Sgt, condition, x.value(), y.value());
2621 	::basicBlock->appendInst(cmp);
2622 
2623 	Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16);
2624 	auto select = Ice::InstSelect::create(::function, result, condition, y.value(), x.value());
2625 	::basicBlock->appendInst(select);
2626 
2627 	return RValue<Short4>(V(result));
2628 }
2629 
SaturateSigned(RValue<Int> x)2630 RValue<Short> SaturateSigned(RValue<Int> x)
2631 {
2632 	RR_DEBUG_INFO_UPDATE_LOC();
2633 	return Short(IfThenElse(x > 0x7FFF, Int(0x7FFF), IfThenElse(x < -0x8000, Int(0x8000), x)));
2634 }
2635 
AddSat(RValue<Short4> x,RValue<Short4> y)2636 RValue<Short4> AddSat(RValue<Short4> x, RValue<Short4> y)
2637 {
2638 	RR_DEBUG_INFO_UPDATE_LOC();
2639 	if(emulateIntrinsics)
2640 	{
2641 		Short4 result;
2642 		result = Insert(result, SaturateSigned(Int(Extract(x, 0)) + Int(Extract(y, 0))), 0);
2643 		result = Insert(result, SaturateSigned(Int(Extract(x, 1)) + Int(Extract(y, 1))), 1);
2644 		result = Insert(result, SaturateSigned(Int(Extract(x, 2)) + Int(Extract(y, 2))), 2);
2645 		result = Insert(result, SaturateSigned(Int(Extract(x, 3)) + Int(Extract(y, 3))), 3);
2646 
2647 		return result;
2648 	}
2649 	else
2650 	{
2651 		Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16);
2652 		const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::AddSaturateSigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
2653 		auto paddsw = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
2654 		paddsw->addArg(x.value());
2655 		paddsw->addArg(y.value());
2656 		::basicBlock->appendInst(paddsw);
2657 
2658 		return RValue<Short4>(V(result));
2659 	}
2660 }
2661 
SubSat(RValue<Short4> x,RValue<Short4> y)2662 RValue<Short4> SubSat(RValue<Short4> x, RValue<Short4> y)
2663 {
2664 	RR_DEBUG_INFO_UPDATE_LOC();
2665 	if(emulateIntrinsics)
2666 	{
2667 		Short4 result;
2668 		result = Insert(result, SaturateSigned(Int(Extract(x, 0)) - Int(Extract(y, 0))), 0);
2669 		result = Insert(result, SaturateSigned(Int(Extract(x, 1)) - Int(Extract(y, 1))), 1);
2670 		result = Insert(result, SaturateSigned(Int(Extract(x, 2)) - Int(Extract(y, 2))), 2);
2671 		result = Insert(result, SaturateSigned(Int(Extract(x, 3)) - Int(Extract(y, 3))), 3);
2672 
2673 		return result;
2674 	}
2675 	else
2676 	{
2677 		Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16);
2678 		const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::SubtractSaturateSigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
2679 		auto psubsw = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
2680 		psubsw->addArg(x.value());
2681 		psubsw->addArg(y.value());
2682 		::basicBlock->appendInst(psubsw);
2683 
2684 		return RValue<Short4>(V(result));
2685 	}
2686 }
2687 
MulHigh(RValue<Short4> x,RValue<Short4> y)2688 RValue<Short4> MulHigh(RValue<Short4> x, RValue<Short4> y)
2689 {
2690 	RR_DEBUG_INFO_UPDATE_LOC();
2691 	if(emulateIntrinsics)
2692 	{
2693 		Short4 result;
2694 		result = Insert(result, Short((Int(Extract(x, 0)) * Int(Extract(y, 0))) >> 16), 0);
2695 		result = Insert(result, Short((Int(Extract(x, 1)) * Int(Extract(y, 1))) >> 16), 1);
2696 		result = Insert(result, Short((Int(Extract(x, 2)) * Int(Extract(y, 2))) >> 16), 2);
2697 		result = Insert(result, Short((Int(Extract(x, 3)) * Int(Extract(y, 3))) >> 16), 3);
2698 
2699 		return result;
2700 	}
2701 	else
2702 	{
2703 		Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16);
2704 		const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::MultiplyHighSigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
2705 		auto pmulhw = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
2706 		pmulhw->addArg(x.value());
2707 		pmulhw->addArg(y.value());
2708 		::basicBlock->appendInst(pmulhw);
2709 
2710 		return RValue<Short4>(V(result));
2711 	}
2712 }
2713 
MulAdd(RValue<Short4> x,RValue<Short4> y)2714 RValue<Int2> MulAdd(RValue<Short4> x, RValue<Short4> y)
2715 {
2716 	RR_DEBUG_INFO_UPDATE_LOC();
2717 	if(emulateIntrinsics)
2718 	{
2719 		Int2 result;
2720 		result = Insert(result, Int(Extract(x, 0)) * Int(Extract(y, 0)) + Int(Extract(x, 1)) * Int(Extract(y, 1)), 0);
2721 		result = Insert(result, Int(Extract(x, 2)) * Int(Extract(y, 2)) + Int(Extract(x, 3)) * Int(Extract(y, 3)), 1);
2722 
2723 		return result;
2724 	}
2725 	else
2726 	{
2727 		Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16);
2728 		const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::MultiplyAddPairs, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
2729 		auto pmaddwd = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
2730 		pmaddwd->addArg(x.value());
2731 		pmaddwd->addArg(y.value());
2732 		::basicBlock->appendInst(pmaddwd);
2733 
2734 		return As<Int2>(V(result));
2735 	}
2736 }
2737 
PackSigned(RValue<Short4> x,RValue<Short4> y)2738 RValue<SByte8> PackSigned(RValue<Short4> x, RValue<Short4> y)
2739 {
2740 	RR_DEBUG_INFO_UPDATE_LOC();
2741 	if(emulateIntrinsics)
2742 	{
2743 		SByte8 result;
2744 		result = Insert(result, SaturateSigned(Extract(x, 0)), 0);
2745 		result = Insert(result, SaturateSigned(Extract(x, 1)), 1);
2746 		result = Insert(result, SaturateSigned(Extract(x, 2)), 2);
2747 		result = Insert(result, SaturateSigned(Extract(x, 3)), 3);
2748 		result = Insert(result, SaturateSigned(Extract(y, 0)), 4);
2749 		result = Insert(result, SaturateSigned(Extract(y, 1)), 5);
2750 		result = Insert(result, SaturateSigned(Extract(y, 2)), 6);
2751 		result = Insert(result, SaturateSigned(Extract(y, 3)), 7);
2752 
2753 		return result;
2754 	}
2755 	else
2756 	{
2757 		Ice::Variable *result = ::function->makeVariable(Ice::IceType_v16i8);
2758 		const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::VectorPackSigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
2759 		auto pack = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
2760 		pack->addArg(x.value());
2761 		pack->addArg(y.value());
2762 		::basicBlock->appendInst(pack);
2763 
2764 		return As<SByte8>(Swizzle(As<Int4>(V(result)), 0x0202));
2765 	}
2766 }
2767 
PackUnsigned(RValue<Short4> x,RValue<Short4> y)2768 RValue<Byte8> PackUnsigned(RValue<Short4> x, RValue<Short4> y)
2769 {
2770 	RR_DEBUG_INFO_UPDATE_LOC();
2771 	if(emulateIntrinsics)
2772 	{
2773 		Byte8 result;
2774 		result = Insert(result, SaturateUnsigned(Extract(x, 0)), 0);
2775 		result = Insert(result, SaturateUnsigned(Extract(x, 1)), 1);
2776 		result = Insert(result, SaturateUnsigned(Extract(x, 2)), 2);
2777 		result = Insert(result, SaturateUnsigned(Extract(x, 3)), 3);
2778 		result = Insert(result, SaturateUnsigned(Extract(y, 0)), 4);
2779 		result = Insert(result, SaturateUnsigned(Extract(y, 1)), 5);
2780 		result = Insert(result, SaturateUnsigned(Extract(y, 2)), 6);
2781 		result = Insert(result, SaturateUnsigned(Extract(y, 3)), 7);
2782 
2783 		return result;
2784 	}
2785 	else
2786 	{
2787 		Ice::Variable *result = ::function->makeVariable(Ice::IceType_v16i8);
2788 		const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::VectorPackUnsigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
2789 		auto pack = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
2790 		pack->addArg(x.value());
2791 		pack->addArg(y.value());
2792 		::basicBlock->appendInst(pack);
2793 
2794 		return As<Byte8>(Swizzle(As<Int4>(V(result)), 0x0202));
2795 	}
2796 }
2797 
CmpGT(RValue<Short4> x,RValue<Short4> y)2798 RValue<Short4> CmpGT(RValue<Short4> x, RValue<Short4> y)
2799 {
2800 	RR_DEBUG_INFO_UPDATE_LOC();
2801 	return RValue<Short4>(createIntCompare(Ice::InstIcmp::Sgt, x.value(), y.value()));
2802 }
2803 
CmpEQ(RValue<Short4> x,RValue<Short4> y)2804 RValue<Short4> CmpEQ(RValue<Short4> x, RValue<Short4> y)
2805 {
2806 	RR_DEBUG_INFO_UPDATE_LOC();
2807 	return RValue<Short4>(Nucleus::createICmpEQ(x.value(), y.value()));
2808 }
2809 
type()2810 Type *Short4::type()
2811 {
2812 	return T(Type_v4i16);
2813 }
2814 
UShort4(RValue<Float4> cast,bool saturate)2815 UShort4::UShort4(RValue<Float4> cast, bool saturate)
2816 {
2817 	if(saturate)
2818 	{
2819 		if(CPUID::SSE4_1)
2820 		{
2821 			// x86 produces 0x80000000 on 32-bit integer overflow/underflow.
2822 			// PackUnsigned takes care of 0x0000 saturation.
2823 			Int4 int4(Min(cast, Float4(0xFFFF)));
2824 			*this = As<UShort4>(PackUnsigned(int4, int4));
2825 		}
2826 		else if(CPUID::ARM)
2827 		{
2828 			// ARM saturates the 32-bit integer result on overflow/undeflow.
2829 			Int4 int4(cast);
2830 			*this = As<UShort4>(PackUnsigned(int4, int4));
2831 		}
2832 		else
2833 		{
2834 			*this = Short4(Int4(Max(Min(cast, Float4(0xFFFF)), Float4(0x0000))));
2835 		}
2836 	}
2837 	else
2838 	{
2839 		*this = Short4(Int4(cast));
2840 	}
2841 }
2842 
Extract(RValue<UShort4> val,int i)2843 RValue<UShort> Extract(RValue<UShort4> val, int i)
2844 {
2845 	return RValue<UShort>(Nucleus::createExtractElement(val.value(), UShort::type(), i));
2846 }
2847 
operator <<(RValue<UShort4> lhs,unsigned char rhs)2848 RValue<UShort4> operator<<(RValue<UShort4> lhs, unsigned char rhs)
2849 {
2850 	RR_DEBUG_INFO_UPDATE_LOC();
2851 	if(emulateIntrinsics)
2852 
2853 	{
2854 		UShort4 result;
2855 		result = Insert(result, Extract(lhs, 0) << UShort(rhs), 0);
2856 		result = Insert(result, Extract(lhs, 1) << UShort(rhs), 1);
2857 		result = Insert(result, Extract(lhs, 2) << UShort(rhs), 2);
2858 		result = Insert(result, Extract(lhs, 3) << UShort(rhs), 3);
2859 
2860 		return result;
2861 	}
2862 	else
2863 	{
2864 		return RValue<UShort4>(Nucleus::createShl(lhs.value(), V(::context->getConstantInt32(rhs))));
2865 	}
2866 }
2867 
operator >>(RValue<UShort4> lhs,unsigned char rhs)2868 RValue<UShort4> operator>>(RValue<UShort4> lhs, unsigned char rhs)
2869 {
2870 	RR_DEBUG_INFO_UPDATE_LOC();
2871 	if(emulateIntrinsics)
2872 	{
2873 		UShort4 result;
2874 		result = Insert(result, Extract(lhs, 0) >> UShort(rhs), 0);
2875 		result = Insert(result, Extract(lhs, 1) >> UShort(rhs), 1);
2876 		result = Insert(result, Extract(lhs, 2) >> UShort(rhs), 2);
2877 		result = Insert(result, Extract(lhs, 3) >> UShort(rhs), 3);
2878 
2879 		return result;
2880 	}
2881 	else
2882 	{
2883 		return RValue<UShort4>(Nucleus::createLShr(lhs.value(), V(::context->getConstantInt32(rhs))));
2884 	}
2885 }
2886 
Max(RValue<UShort4> x,RValue<UShort4> y)2887 RValue<UShort4> Max(RValue<UShort4> x, RValue<UShort4> y)
2888 {
2889 	RR_DEBUG_INFO_UPDATE_LOC();
2890 	Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v8i1);
2891 	auto cmp = Ice::InstIcmp::create(::function, Ice::InstIcmp::Ule, condition, x.value(), y.value());
2892 	::basicBlock->appendInst(cmp);
2893 
2894 	Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16);
2895 	auto select = Ice::InstSelect::create(::function, result, condition, y.value(), x.value());
2896 	::basicBlock->appendInst(select);
2897 
2898 	return RValue<UShort4>(V(result));
2899 }
2900 
Min(RValue<UShort4> x,RValue<UShort4> y)2901 RValue<UShort4> Min(RValue<UShort4> x, RValue<UShort4> y)
2902 {
2903 	Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v8i1);
2904 	auto cmp = Ice::InstIcmp::create(::function, Ice::InstIcmp::Ugt, condition, x.value(), y.value());
2905 	::basicBlock->appendInst(cmp);
2906 
2907 	Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16);
2908 	auto select = Ice::InstSelect::create(::function, result, condition, y.value(), x.value());
2909 	::basicBlock->appendInst(select);
2910 
2911 	return RValue<UShort4>(V(result));
2912 }
2913 
SaturateUnsigned(RValue<Int> x)2914 RValue<UShort> SaturateUnsigned(RValue<Int> x)
2915 {
2916 	RR_DEBUG_INFO_UPDATE_LOC();
2917 	return UShort(IfThenElse(x > 0xFFFF, Int(0xFFFF), IfThenElse(x < 0, Int(0), x)));
2918 }
2919 
AddSat(RValue<UShort4> x,RValue<UShort4> y)2920 RValue<UShort4> AddSat(RValue<UShort4> x, RValue<UShort4> y)
2921 {
2922 	RR_DEBUG_INFO_UPDATE_LOC();
2923 	if(emulateIntrinsics)
2924 	{
2925 		UShort4 result;
2926 		result = Insert(result, SaturateUnsigned(Int(Extract(x, 0)) + Int(Extract(y, 0))), 0);
2927 		result = Insert(result, SaturateUnsigned(Int(Extract(x, 1)) + Int(Extract(y, 1))), 1);
2928 		result = Insert(result, SaturateUnsigned(Int(Extract(x, 2)) + Int(Extract(y, 2))), 2);
2929 		result = Insert(result, SaturateUnsigned(Int(Extract(x, 3)) + Int(Extract(y, 3))), 3);
2930 
2931 		return result;
2932 	}
2933 	else
2934 	{
2935 		Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16);
2936 		const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::AddSaturateUnsigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
2937 		auto paddusw = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
2938 		paddusw->addArg(x.value());
2939 		paddusw->addArg(y.value());
2940 		::basicBlock->appendInst(paddusw);
2941 
2942 		return RValue<UShort4>(V(result));
2943 	}
2944 }
2945 
SubSat(RValue<UShort4> x,RValue<UShort4> y)2946 RValue<UShort4> SubSat(RValue<UShort4> x, RValue<UShort4> y)
2947 {
2948 	RR_DEBUG_INFO_UPDATE_LOC();
2949 	if(emulateIntrinsics)
2950 	{
2951 		UShort4 result;
2952 		result = Insert(result, SaturateUnsigned(Int(Extract(x, 0)) - Int(Extract(y, 0))), 0);
2953 		result = Insert(result, SaturateUnsigned(Int(Extract(x, 1)) - Int(Extract(y, 1))), 1);
2954 		result = Insert(result, SaturateUnsigned(Int(Extract(x, 2)) - Int(Extract(y, 2))), 2);
2955 		result = Insert(result, SaturateUnsigned(Int(Extract(x, 3)) - Int(Extract(y, 3))), 3);
2956 
2957 		return result;
2958 	}
2959 	else
2960 	{
2961 		Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16);
2962 		const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::SubtractSaturateUnsigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
2963 		auto psubusw = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
2964 		psubusw->addArg(x.value());
2965 		psubusw->addArg(y.value());
2966 		::basicBlock->appendInst(psubusw);
2967 
2968 		return RValue<UShort4>(V(result));
2969 	}
2970 }
2971 
MulHigh(RValue<UShort4> x,RValue<UShort4> y)2972 RValue<UShort4> MulHigh(RValue<UShort4> x, RValue<UShort4> y)
2973 {
2974 	RR_DEBUG_INFO_UPDATE_LOC();
2975 	if(emulateIntrinsics)
2976 	{
2977 		UShort4 result;
2978 		result = Insert(result, UShort((UInt(Extract(x, 0)) * UInt(Extract(y, 0))) >> 16), 0);
2979 		result = Insert(result, UShort((UInt(Extract(x, 1)) * UInt(Extract(y, 1))) >> 16), 1);
2980 		result = Insert(result, UShort((UInt(Extract(x, 2)) * UInt(Extract(y, 2))) >> 16), 2);
2981 		result = Insert(result, UShort((UInt(Extract(x, 3)) * UInt(Extract(y, 3))) >> 16), 3);
2982 
2983 		return result;
2984 	}
2985 	else
2986 	{
2987 		Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16);
2988 		const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::MultiplyHighUnsigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
2989 		auto pmulhuw = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
2990 		pmulhuw->addArg(x.value());
2991 		pmulhuw->addArg(y.value());
2992 		::basicBlock->appendInst(pmulhuw);
2993 
2994 		return RValue<UShort4>(V(result));
2995 	}
2996 }
2997 
MulHigh(RValue<Int4> x,RValue<Int4> y)2998 RValue<Int4> MulHigh(RValue<Int4> x, RValue<Int4> y)
2999 {
3000 	RR_DEBUG_INFO_UPDATE_LOC();
3001 	// TODO: For x86, build an intrinsics version of this which uses shuffles + pmuludq.
3002 
3003 	// Scalarized implementation.
3004 	Int4 result;
3005 	result = Insert(result, Int((Long(Extract(x, 0)) * Long(Extract(y, 0))) >> Long(Int(32))), 0);
3006 	result = Insert(result, Int((Long(Extract(x, 1)) * Long(Extract(y, 1))) >> Long(Int(32))), 1);
3007 	result = Insert(result, Int((Long(Extract(x, 2)) * Long(Extract(y, 2))) >> Long(Int(32))), 2);
3008 	result = Insert(result, Int((Long(Extract(x, 3)) * Long(Extract(y, 3))) >> Long(Int(32))), 3);
3009 
3010 	return result;
3011 }
3012 
MulHigh(RValue<UInt4> x,RValue<UInt4> y)3013 RValue<UInt4> MulHigh(RValue<UInt4> x, RValue<UInt4> y)
3014 {
3015 	RR_DEBUG_INFO_UPDATE_LOC();
3016 	// TODO: For x86, build an intrinsics version of this which uses shuffles + pmuludq.
3017 
3018 	if(false)  // Partial product based implementation.
3019 	{
3020 		auto xh = x >> 16;
3021 		auto yh = y >> 16;
3022 		auto xl = x & UInt4(0x0000FFFF);
3023 		auto yl = y & UInt4(0x0000FFFF);
3024 		auto xlyh = xl * yh;
3025 		auto xhyl = xh * yl;
3026 		auto xlyhh = xlyh >> 16;
3027 		auto xhylh = xhyl >> 16;
3028 		auto xlyhl = xlyh & UInt4(0x0000FFFF);
3029 		auto xhyll = xhyl & UInt4(0x0000FFFF);
3030 		auto xlylh = (xl * yl) >> 16;
3031 		auto oflow = (xlyhl + xhyll + xlylh) >> 16;
3032 
3033 		return (xh * yh) + (xlyhh + xhylh) + oflow;
3034 	}
3035 
3036 	// Scalarized implementation.
3037 	Int4 result;
3038 	result = Insert(result, Int((Long(UInt(Extract(As<Int4>(x), 0))) * Long(UInt(Extract(As<Int4>(y), 0)))) >> Long(Int(32))), 0);
3039 	result = Insert(result, Int((Long(UInt(Extract(As<Int4>(x), 1))) * Long(UInt(Extract(As<Int4>(y), 1)))) >> Long(Int(32))), 1);
3040 	result = Insert(result, Int((Long(UInt(Extract(As<Int4>(x), 2))) * Long(UInt(Extract(As<Int4>(y), 2)))) >> Long(Int(32))), 2);
3041 	result = Insert(result, Int((Long(UInt(Extract(As<Int4>(x), 3))) * Long(UInt(Extract(As<Int4>(y), 3)))) >> Long(Int(32))), 3);
3042 
3043 	return As<UInt4>(result);
3044 }
3045 
Average(RValue<UShort4> x,RValue<UShort4> y)3046 RValue<UShort4> Average(RValue<UShort4> x, RValue<UShort4> y)
3047 {
3048 	RR_DEBUG_INFO_UPDATE_LOC();
3049 	UNIMPLEMENTED_NO_BUG("RValue<UShort4> Average(RValue<UShort4> x, RValue<UShort4> y)");
3050 	return UShort4(0);
3051 }
3052 
type()3053 Type *UShort4::type()
3054 {
3055 	return T(Type_v4i16);
3056 }
3057 
Extract(RValue<Short8> val,int i)3058 RValue<Short> Extract(RValue<Short8> val, int i)
3059 {
3060 	RR_DEBUG_INFO_UPDATE_LOC();
3061 	return RValue<Short>(Nucleus::createExtractElement(val.value(), Short::type(), i));
3062 }
3063 
Insert(RValue<Short8> val,RValue<Short> element,int i)3064 RValue<Short8> Insert(RValue<Short8> val, RValue<Short> element, int i)
3065 {
3066 	RR_DEBUG_INFO_UPDATE_LOC();
3067 	return RValue<Short8>(Nucleus::createInsertElement(val.value(), element.value(), i));
3068 }
3069 
operator <<(RValue<Short8> lhs,unsigned char rhs)3070 RValue<Short8> operator<<(RValue<Short8> lhs, unsigned char rhs)
3071 {
3072 	RR_DEBUG_INFO_UPDATE_LOC();
3073 	if(emulateIntrinsics)
3074 	{
3075 		Short8 result;
3076 		result = Insert(result, Extract(lhs, 0) << Short(rhs), 0);
3077 		result = Insert(result, Extract(lhs, 1) << Short(rhs), 1);
3078 		result = Insert(result, Extract(lhs, 2) << Short(rhs), 2);
3079 		result = Insert(result, Extract(lhs, 3) << Short(rhs), 3);
3080 		result = Insert(result, Extract(lhs, 4) << Short(rhs), 4);
3081 		result = Insert(result, Extract(lhs, 5) << Short(rhs), 5);
3082 		result = Insert(result, Extract(lhs, 6) << Short(rhs), 6);
3083 		result = Insert(result, Extract(lhs, 7) << Short(rhs), 7);
3084 
3085 		return result;
3086 	}
3087 	else
3088 	{
3089 		return RValue<Short8>(Nucleus::createShl(lhs.value(), V(::context->getConstantInt32(rhs))));
3090 	}
3091 }
3092 
operator >>(RValue<Short8> lhs,unsigned char rhs)3093 RValue<Short8> operator>>(RValue<Short8> lhs, unsigned char rhs)
3094 {
3095 	RR_DEBUG_INFO_UPDATE_LOC();
3096 	if(emulateIntrinsics)
3097 	{
3098 		Short8 result;
3099 		result = Insert(result, Extract(lhs, 0) >> Short(rhs), 0);
3100 		result = Insert(result, Extract(lhs, 1) >> Short(rhs), 1);
3101 		result = Insert(result, Extract(lhs, 2) >> Short(rhs), 2);
3102 		result = Insert(result, Extract(lhs, 3) >> Short(rhs), 3);
3103 		result = Insert(result, Extract(lhs, 4) >> Short(rhs), 4);
3104 		result = Insert(result, Extract(lhs, 5) >> Short(rhs), 5);
3105 		result = Insert(result, Extract(lhs, 6) >> Short(rhs), 6);
3106 		result = Insert(result, Extract(lhs, 7) >> Short(rhs), 7);
3107 
3108 		return result;
3109 	}
3110 	else
3111 	{
3112 		return RValue<Short8>(Nucleus::createAShr(lhs.value(), V(::context->getConstantInt32(rhs))));
3113 	}
3114 }
3115 
MulAdd(RValue<Short8> x,RValue<Short8> y)3116 RValue<Int4> MulAdd(RValue<Short8> x, RValue<Short8> y)
3117 {
3118 	RR_DEBUG_INFO_UPDATE_LOC();
3119 	UNIMPLEMENTED_NO_BUG("RValue<Int4> MulAdd(RValue<Short8> x, RValue<Short8> y)");
3120 	return Int4(0);
3121 }
3122 
MulHigh(RValue<Short8> x,RValue<Short8> y)3123 RValue<Short8> MulHigh(RValue<Short8> x, RValue<Short8> y)
3124 {
3125 	RR_DEBUG_INFO_UPDATE_LOC();
3126 	UNIMPLEMENTED_NO_BUG("RValue<Short8> MulHigh(RValue<Short8> x, RValue<Short8> y)");
3127 	return Short8(0);
3128 }
3129 
type()3130 Type *Short8::type()
3131 {
3132 	return T(Ice::IceType_v8i16);
3133 }
3134 
Extract(RValue<UShort8> val,int i)3135 RValue<UShort> Extract(RValue<UShort8> val, int i)
3136 {
3137 	RR_DEBUG_INFO_UPDATE_LOC();
3138 	return RValue<UShort>(Nucleus::createExtractElement(val.value(), UShort::type(), i));
3139 }
3140 
Insert(RValue<UShort8> val,RValue<UShort> element,int i)3141 RValue<UShort8> Insert(RValue<UShort8> val, RValue<UShort> element, int i)
3142 {
3143 	RR_DEBUG_INFO_UPDATE_LOC();
3144 	return RValue<UShort8>(Nucleus::createInsertElement(val.value(), element.value(), i));
3145 }
3146 
operator <<(RValue<UShort8> lhs,unsigned char rhs)3147 RValue<UShort8> operator<<(RValue<UShort8> lhs, unsigned char rhs)
3148 {
3149 	RR_DEBUG_INFO_UPDATE_LOC();
3150 	if(emulateIntrinsics)
3151 	{
3152 		UShort8 result;
3153 		result = Insert(result, Extract(lhs, 0) << UShort(rhs), 0);
3154 		result = Insert(result, Extract(lhs, 1) << UShort(rhs), 1);
3155 		result = Insert(result, Extract(lhs, 2) << UShort(rhs), 2);
3156 		result = Insert(result, Extract(lhs, 3) << UShort(rhs), 3);
3157 		result = Insert(result, Extract(lhs, 4) << UShort(rhs), 4);
3158 		result = Insert(result, Extract(lhs, 5) << UShort(rhs), 5);
3159 		result = Insert(result, Extract(lhs, 6) << UShort(rhs), 6);
3160 		result = Insert(result, Extract(lhs, 7) << UShort(rhs), 7);
3161 
3162 		return result;
3163 	}
3164 	else
3165 	{
3166 		return RValue<UShort8>(Nucleus::createShl(lhs.value(), V(::context->getConstantInt32(rhs))));
3167 	}
3168 }
3169 
operator >>(RValue<UShort8> lhs,unsigned char rhs)3170 RValue<UShort8> operator>>(RValue<UShort8> lhs, unsigned char rhs)
3171 {
3172 	RR_DEBUG_INFO_UPDATE_LOC();
3173 	if(emulateIntrinsics)
3174 	{
3175 		UShort8 result;
3176 		result = Insert(result, Extract(lhs, 0) >> UShort(rhs), 0);
3177 		result = Insert(result, Extract(lhs, 1) >> UShort(rhs), 1);
3178 		result = Insert(result, Extract(lhs, 2) >> UShort(rhs), 2);
3179 		result = Insert(result, Extract(lhs, 3) >> UShort(rhs), 3);
3180 		result = Insert(result, Extract(lhs, 4) >> UShort(rhs), 4);
3181 		result = Insert(result, Extract(lhs, 5) >> UShort(rhs), 5);
3182 		result = Insert(result, Extract(lhs, 6) >> UShort(rhs), 6);
3183 		result = Insert(result, Extract(lhs, 7) >> UShort(rhs), 7);
3184 
3185 		return result;
3186 	}
3187 	else
3188 	{
3189 		return RValue<UShort8>(Nucleus::createLShr(lhs.value(), V(::context->getConstantInt32(rhs))));
3190 	}
3191 }
3192 
MulHigh(RValue<UShort8> x,RValue<UShort8> y)3193 RValue<UShort8> MulHigh(RValue<UShort8> x, RValue<UShort8> y)
3194 {
3195 	RR_DEBUG_INFO_UPDATE_LOC();
3196 	UNIMPLEMENTED_NO_BUG("RValue<UShort8> MulHigh(RValue<UShort8> x, RValue<UShort8> y)");
3197 	return UShort8(0);
3198 }
3199 
type()3200 Type *UShort8::type()
3201 {
3202 	return T(Ice::IceType_v8i16);
3203 }
3204 
operator ++(Int & val,int)3205 RValue<Int> operator++(Int &val, int)  // Post-increment
3206 {
3207 	RR_DEBUG_INFO_UPDATE_LOC();
3208 	RValue<Int> res = val;
3209 	val += 1;
3210 	return res;
3211 }
3212 
operator ++(Int & val)3213 const Int &operator++(Int &val)  // Pre-increment
3214 {
3215 	RR_DEBUG_INFO_UPDATE_LOC();
3216 	val += 1;
3217 	return val;
3218 }
3219 
operator --(Int & val,int)3220 RValue<Int> operator--(Int &val, int)  // Post-decrement
3221 {
3222 	RR_DEBUG_INFO_UPDATE_LOC();
3223 	RValue<Int> res = val;
3224 	val -= 1;
3225 	return res;
3226 }
3227 
operator --(Int & val)3228 const Int &operator--(Int &val)  // Pre-decrement
3229 {
3230 	RR_DEBUG_INFO_UPDATE_LOC();
3231 	val -= 1;
3232 	return val;
3233 }
3234 
RoundInt(RValue<Float> cast)3235 RValue<Int> RoundInt(RValue<Float> cast)
3236 {
3237 	RR_DEBUG_INFO_UPDATE_LOC();
3238 	if(emulateIntrinsics || CPUID::ARM)
3239 	{
3240 		// Push the fractional part off the mantissa. Accurate up to +/-2^22.
3241 		return Int((cast + Float(0x00C00000)) - Float(0x00C00000));
3242 	}
3243 	else
3244 	{
3245 		Ice::Variable *result = ::function->makeVariable(Ice::IceType_i32);
3246 		const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Nearbyint, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
3247 		auto nearbyint = Ice::InstIntrinsic::create(::function, 1, result, intrinsic);
3248 		nearbyint->addArg(cast.value());
3249 		::basicBlock->appendInst(nearbyint);
3250 
3251 		return RValue<Int>(V(result));
3252 	}
3253 }
3254 
type()3255 Type *Int::type()
3256 {
3257 	return T(Ice::IceType_i32);
3258 }
3259 
type()3260 Type *Long::type()
3261 {
3262 	return T(Ice::IceType_i64);
3263 }
3264 
UInt(RValue<Float> cast)3265 UInt::UInt(RValue<Float> cast)
3266 {
3267 	RR_DEBUG_INFO_UPDATE_LOC();
3268 	// Smallest positive value representable in UInt, but not in Int
3269 	const unsigned int ustart = 0x80000000u;
3270 	const float ustartf = float(ustart);
3271 
3272 	// If the value is negative, store 0, otherwise store the result of the conversion
3273 	storeValue((~(As<Int>(cast) >> 31) &
3274 	            // Check if the value can be represented as an Int
3275 	            IfThenElse(cast >= ustartf,
3276 	                       // If the value is too large, subtract ustart and re-add it after conversion.
3277 	                       As<Int>(As<UInt>(Int(cast - Float(ustartf))) + UInt(ustart)),
3278 	                       // Otherwise, just convert normally
3279 	                       Int(cast)))
3280 	               .value());
3281 }
3282 
operator ++(UInt & val,int)3283 RValue<UInt> operator++(UInt &val, int)  // Post-increment
3284 {
3285 	RR_DEBUG_INFO_UPDATE_LOC();
3286 	RValue<UInt> res = val;
3287 	val += 1;
3288 	return res;
3289 }
3290 
operator ++(UInt & val)3291 const UInt &operator++(UInt &val)  // Pre-increment
3292 {
3293 	RR_DEBUG_INFO_UPDATE_LOC();
3294 	val += 1;
3295 	return val;
3296 }
3297 
operator --(UInt & val,int)3298 RValue<UInt> operator--(UInt &val, int)  // Post-decrement
3299 {
3300 	RR_DEBUG_INFO_UPDATE_LOC();
3301 	RValue<UInt> res = val;
3302 	val -= 1;
3303 	return res;
3304 }
3305 
operator --(UInt & val)3306 const UInt &operator--(UInt &val)  // Pre-decrement
3307 {
3308 	RR_DEBUG_INFO_UPDATE_LOC();
3309 	val -= 1;
3310 	return val;
3311 }
3312 
3313 //	RValue<UInt> RoundUInt(RValue<Float> cast)
3314 //	{
3315 //		ASSERT(false && "UNIMPLEMENTED"); return RValue<UInt>(V(nullptr));
3316 //	}
3317 
type()3318 Type *UInt::type()
3319 {
3320 	return T(Ice::IceType_i32);
3321 }
3322 
3323 //	Int2::Int2(RValue<Int> cast)
3324 //	{
3325 //		Value *extend = Nucleus::createZExt(cast.value(), Long::type());
3326 //		Value *vector = Nucleus::createBitCast(extend, Int2::type());
3327 //
3328 //		Constant *shuffle[2];
3329 //		shuffle[0] = Nucleus::createConstantInt(0);
3330 //		shuffle[1] = Nucleus::createConstantInt(0);
3331 //
3332 //		Value *replicate = Nucleus::createShuffleVector(vector, UndefValue::get(Int2::type()), Nucleus::createConstantVector(shuffle, 2));
3333 //
3334 //		storeValue(replicate);
3335 //	}
3336 
operator <<(RValue<Int2> lhs,unsigned char rhs)3337 RValue<Int2> operator<<(RValue<Int2> lhs, unsigned char rhs)
3338 {
3339 	RR_DEBUG_INFO_UPDATE_LOC();
3340 	if(emulateIntrinsics)
3341 	{
3342 		Int2 result;
3343 		result = Insert(result, Extract(lhs, 0) << Int(rhs), 0);
3344 		result = Insert(result, Extract(lhs, 1) << Int(rhs), 1);
3345 
3346 		return result;
3347 	}
3348 	else
3349 	{
3350 		return RValue<Int2>(Nucleus::createShl(lhs.value(), V(::context->getConstantInt32(rhs))));
3351 	}
3352 }
3353 
operator >>(RValue<Int2> lhs,unsigned char rhs)3354 RValue<Int2> operator>>(RValue<Int2> lhs, unsigned char rhs)
3355 {
3356 	RR_DEBUG_INFO_UPDATE_LOC();
3357 	if(emulateIntrinsics)
3358 	{
3359 		Int2 result;
3360 		result = Insert(result, Extract(lhs, 0) >> Int(rhs), 0);
3361 		result = Insert(result, Extract(lhs, 1) >> Int(rhs), 1);
3362 
3363 		return result;
3364 	}
3365 	else
3366 	{
3367 		return RValue<Int2>(Nucleus::createAShr(lhs.value(), V(::context->getConstantInt32(rhs))));
3368 	}
3369 }
3370 
type()3371 Type *Int2::type()
3372 {
3373 	return T(Type_v2i32);
3374 }
3375 
operator <<(RValue<UInt2> lhs,unsigned char rhs)3376 RValue<UInt2> operator<<(RValue<UInt2> lhs, unsigned char rhs)
3377 {
3378 	RR_DEBUG_INFO_UPDATE_LOC();
3379 	if(emulateIntrinsics)
3380 	{
3381 		UInt2 result;
3382 		result = Insert(result, Extract(lhs, 0) << UInt(rhs), 0);
3383 		result = Insert(result, Extract(lhs, 1) << UInt(rhs), 1);
3384 
3385 		return result;
3386 	}
3387 	else
3388 	{
3389 		return RValue<UInt2>(Nucleus::createShl(lhs.value(), V(::context->getConstantInt32(rhs))));
3390 	}
3391 }
3392 
operator >>(RValue<UInt2> lhs,unsigned char rhs)3393 RValue<UInt2> operator>>(RValue<UInt2> lhs, unsigned char rhs)
3394 {
3395 	RR_DEBUG_INFO_UPDATE_LOC();
3396 	if(emulateIntrinsics)
3397 	{
3398 		UInt2 result;
3399 		result = Insert(result, Extract(lhs, 0) >> UInt(rhs), 0);
3400 		result = Insert(result, Extract(lhs, 1) >> UInt(rhs), 1);
3401 
3402 		return result;
3403 	}
3404 	else
3405 	{
3406 		return RValue<UInt2>(Nucleus::createLShr(lhs.value(), V(::context->getConstantInt32(rhs))));
3407 	}
3408 }
3409 
type()3410 Type *UInt2::type()
3411 {
3412 	return T(Type_v2i32);
3413 }
3414 
Int4(RValue<Byte4> cast)3415 Int4::Int4(RValue<Byte4> cast)
3416     : XYZW(this)
3417 {
3418 	RR_DEBUG_INFO_UPDATE_LOC();
3419 	Value *x = Nucleus::createBitCast(cast.value(), Int::type());
3420 	Value *a = Nucleus::createInsertElement(loadValue(), x, 0);
3421 
3422 	Value *e;
3423 	int swizzle[16] = { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 };
3424 	Value *b = Nucleus::createBitCast(a, Byte16::type());
3425 	Value *c = Nucleus::createShuffleVector(b, Nucleus::createNullValue(Byte16::type()), swizzle);
3426 
3427 	int swizzle2[8] = { 0, 8, 1, 9, 2, 10, 3, 11 };
3428 	Value *d = Nucleus::createBitCast(c, Short8::type());
3429 	e = Nucleus::createShuffleVector(d, Nucleus::createNullValue(Short8::type()), swizzle2);
3430 
3431 	Value *f = Nucleus::createBitCast(e, Int4::type());
3432 	storeValue(f);
3433 }
3434 
Int4(RValue<SByte4> cast)3435 Int4::Int4(RValue<SByte4> cast)
3436     : XYZW(this)
3437 {
3438 	RR_DEBUG_INFO_UPDATE_LOC();
3439 	Value *x = Nucleus::createBitCast(cast.value(), Int::type());
3440 	Value *a = Nucleus::createInsertElement(loadValue(), x, 0);
3441 
3442 	int swizzle[16] = { 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7 };
3443 	Value *b = Nucleus::createBitCast(a, Byte16::type());
3444 	Value *c = Nucleus::createShuffleVector(b, b, swizzle);
3445 
3446 	int swizzle2[8] = { 0, 0, 1, 1, 2, 2, 3, 3 };
3447 	Value *d = Nucleus::createBitCast(c, Short8::type());
3448 	Value *e = Nucleus::createShuffleVector(d, d, swizzle2);
3449 
3450 	*this = As<Int4>(e) >> 24;
3451 }
3452 
Int4(RValue<Short4> cast)3453 Int4::Int4(RValue<Short4> cast)
3454     : XYZW(this)
3455 {
3456 	RR_DEBUG_INFO_UPDATE_LOC();
3457 	int swizzle[8] = { 0, 0, 1, 1, 2, 2, 3, 3 };
3458 	Value *c = Nucleus::createShuffleVector(cast.value(), cast.value(), swizzle);
3459 
3460 	*this = As<Int4>(c) >> 16;
3461 }
3462 
Int4(RValue<UShort4> cast)3463 Int4::Int4(RValue<UShort4> cast)
3464     : XYZW(this)
3465 {
3466 	RR_DEBUG_INFO_UPDATE_LOC();
3467 	int swizzle[8] = { 0, 8, 1, 9, 2, 10, 3, 11 };
3468 	Value *c = Nucleus::createShuffleVector(cast.value(), Short8(0, 0, 0, 0, 0, 0, 0, 0).loadValue(), swizzle);
3469 	Value *d = Nucleus::createBitCast(c, Int4::type());
3470 	storeValue(d);
3471 }
3472 
Int4(RValue<Int> rhs)3473 Int4::Int4(RValue<Int> rhs)
3474     : XYZW(this)
3475 {
3476 	RR_DEBUG_INFO_UPDATE_LOC();
3477 	Value *vector = Nucleus::createBitCast(rhs.value(), Int4::type());
3478 
3479 	int swizzle[4] = { 0, 0, 0, 0 };
3480 	Value *replicate = Nucleus::createShuffleVector(vector, vector, swizzle);
3481 
3482 	storeValue(replicate);
3483 }
3484 
operator <<(RValue<Int4> lhs,unsigned char rhs)3485 RValue<Int4> operator<<(RValue<Int4> lhs, unsigned char rhs)
3486 {
3487 	RR_DEBUG_INFO_UPDATE_LOC();
3488 	if(emulateIntrinsics)
3489 	{
3490 		Int4 result;
3491 		result = Insert(result, Extract(lhs, 0) << Int(rhs), 0);
3492 		result = Insert(result, Extract(lhs, 1) << Int(rhs), 1);
3493 		result = Insert(result, Extract(lhs, 2) << Int(rhs), 2);
3494 		result = Insert(result, Extract(lhs, 3) << Int(rhs), 3);
3495 
3496 		return result;
3497 	}
3498 	else
3499 	{
3500 		return RValue<Int4>(Nucleus::createShl(lhs.value(), V(::context->getConstantInt32(rhs))));
3501 	}
3502 }
3503 
operator >>(RValue<Int4> lhs,unsigned char rhs)3504 RValue<Int4> operator>>(RValue<Int4> lhs, unsigned char rhs)
3505 {
3506 	RR_DEBUG_INFO_UPDATE_LOC();
3507 	if(emulateIntrinsics)
3508 	{
3509 		Int4 result;
3510 		result = Insert(result, Extract(lhs, 0) >> Int(rhs), 0);
3511 		result = Insert(result, Extract(lhs, 1) >> Int(rhs), 1);
3512 		result = Insert(result, Extract(lhs, 2) >> Int(rhs), 2);
3513 		result = Insert(result, Extract(lhs, 3) >> Int(rhs), 3);
3514 
3515 		return result;
3516 	}
3517 	else
3518 	{
3519 		return RValue<Int4>(Nucleus::createAShr(lhs.value(), V(::context->getConstantInt32(rhs))));
3520 	}
3521 }
3522 
CmpEQ(RValue<Int4> x,RValue<Int4> y)3523 RValue<Int4> CmpEQ(RValue<Int4> x, RValue<Int4> y)
3524 {
3525 	RR_DEBUG_INFO_UPDATE_LOC();
3526 	return RValue<Int4>(Nucleus::createICmpEQ(x.value(), y.value()));
3527 }
3528 
CmpLT(RValue<Int4> x,RValue<Int4> y)3529 RValue<Int4> CmpLT(RValue<Int4> x, RValue<Int4> y)
3530 {
3531 	RR_DEBUG_INFO_UPDATE_LOC();
3532 	return RValue<Int4>(Nucleus::createICmpSLT(x.value(), y.value()));
3533 }
3534 
CmpLE(RValue<Int4> x,RValue<Int4> y)3535 RValue<Int4> CmpLE(RValue<Int4> x, RValue<Int4> y)
3536 {
3537 	RR_DEBUG_INFO_UPDATE_LOC();
3538 	return RValue<Int4>(Nucleus::createICmpSLE(x.value(), y.value()));
3539 }
3540 
CmpNEQ(RValue<Int4> x,RValue<Int4> y)3541 RValue<Int4> CmpNEQ(RValue<Int4> x, RValue<Int4> y)
3542 {
3543 	RR_DEBUG_INFO_UPDATE_LOC();
3544 	return RValue<Int4>(Nucleus::createICmpNE(x.value(), y.value()));
3545 }
3546 
CmpNLT(RValue<Int4> x,RValue<Int4> y)3547 RValue<Int4> CmpNLT(RValue<Int4> x, RValue<Int4> y)
3548 {
3549 	RR_DEBUG_INFO_UPDATE_LOC();
3550 	return RValue<Int4>(Nucleus::createICmpSGE(x.value(), y.value()));
3551 }
3552 
CmpNLE(RValue<Int4> x,RValue<Int4> y)3553 RValue<Int4> CmpNLE(RValue<Int4> x, RValue<Int4> y)
3554 {
3555 	RR_DEBUG_INFO_UPDATE_LOC();
3556 	return RValue<Int4>(Nucleus::createICmpSGT(x.value(), y.value()));
3557 }
3558 
Abs(RValue<Int4> x)3559 RValue<Int4> Abs(RValue<Int4> x)
3560 {
3561 	// TODO: Optimize.
3562 	auto negative = x >> 31;
3563 	return (x ^ negative) - negative;
3564 }
3565 
Max(RValue<Int4> x,RValue<Int4> y)3566 RValue<Int4> Max(RValue<Int4> x, RValue<Int4> y)
3567 {
3568 	RR_DEBUG_INFO_UPDATE_LOC();
3569 	Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v4i1);
3570 	auto cmp = Ice::InstIcmp::create(::function, Ice::InstIcmp::Sle, condition, x.value(), y.value());
3571 	::basicBlock->appendInst(cmp);
3572 
3573 	Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4i32);
3574 	auto select = Ice::InstSelect::create(::function, result, condition, y.value(), x.value());
3575 	::basicBlock->appendInst(select);
3576 
3577 	return RValue<Int4>(V(result));
3578 }
3579 
Min(RValue<Int4> x,RValue<Int4> y)3580 RValue<Int4> Min(RValue<Int4> x, RValue<Int4> y)
3581 {
3582 	RR_DEBUG_INFO_UPDATE_LOC();
3583 	Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v4i1);
3584 	auto cmp = Ice::InstIcmp::create(::function, Ice::InstIcmp::Sgt, condition, x.value(), y.value());
3585 	::basicBlock->appendInst(cmp);
3586 
3587 	Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4i32);
3588 	auto select = Ice::InstSelect::create(::function, result, condition, y.value(), x.value());
3589 	::basicBlock->appendInst(select);
3590 
3591 	return RValue<Int4>(V(result));
3592 }
3593 
RoundInt(RValue<Float4> cast)3594 RValue<Int4> RoundInt(RValue<Float4> cast)
3595 {
3596 	RR_DEBUG_INFO_UPDATE_LOC();
3597 	if(emulateIntrinsics || CPUID::ARM)
3598 	{
3599 		// Push the fractional part off the mantissa. Accurate up to +/-2^22.
3600 		return Int4((cast + Float4(0x00C00000)) - Float4(0x00C00000));
3601 	}
3602 	else
3603 	{
3604 		Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4i32);
3605 		const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Nearbyint, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
3606 		auto nearbyint = Ice::InstIntrinsic::create(::function, 1, result, intrinsic);
3607 		nearbyint->addArg(cast.value());
3608 		::basicBlock->appendInst(nearbyint);
3609 
3610 		return RValue<Int4>(V(result));
3611 	}
3612 }
3613 
RoundIntClamped(RValue<Float4> cast)3614 RValue<Int4> RoundIntClamped(RValue<Float4> cast)
3615 {
3616 	RR_DEBUG_INFO_UPDATE_LOC();
3617 
3618 	// cvtps2dq produces 0x80000000, a negative value, for input larger than
3619 	// 2147483520.0, so clamp to 2147483520. Values less than -2147483520.0
3620 	// saturate to 0x80000000.
3621 	RValue<Float4> clamped = Min(cast, Float4(0x7FFFFF80));
3622 
3623 	if(emulateIntrinsics || CPUID::ARM)
3624 	{
3625 		// Push the fractional part off the mantissa. Accurate up to +/-2^22.
3626 		return Int4((clamped + Float4(0x00C00000)) - Float4(0x00C00000));
3627 	}
3628 	else
3629 	{
3630 		Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4i32);
3631 		const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Nearbyint, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
3632 		auto nearbyint = Ice::InstIntrinsic::create(::function, 1, result, intrinsic);
3633 		nearbyint->addArg(clamped.value());
3634 		::basicBlock->appendInst(nearbyint);
3635 
3636 		return RValue<Int4>(V(result));
3637 	}
3638 }
3639 
PackSigned(RValue<Int4> x,RValue<Int4> y)3640 RValue<Short8> PackSigned(RValue<Int4> x, RValue<Int4> y)
3641 {
3642 	RR_DEBUG_INFO_UPDATE_LOC();
3643 	if(emulateIntrinsics)
3644 	{
3645 		Short8 result;
3646 		result = Insert(result, SaturateSigned(Extract(x, 0)), 0);
3647 		result = Insert(result, SaturateSigned(Extract(x, 1)), 1);
3648 		result = Insert(result, SaturateSigned(Extract(x, 2)), 2);
3649 		result = Insert(result, SaturateSigned(Extract(x, 3)), 3);
3650 		result = Insert(result, SaturateSigned(Extract(y, 0)), 4);
3651 		result = Insert(result, SaturateSigned(Extract(y, 1)), 5);
3652 		result = Insert(result, SaturateSigned(Extract(y, 2)), 6);
3653 		result = Insert(result, SaturateSigned(Extract(y, 3)), 7);
3654 
3655 		return result;
3656 	}
3657 	else
3658 	{
3659 		Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16);
3660 		const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::VectorPackSigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
3661 		auto pack = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
3662 		pack->addArg(x.value());
3663 		pack->addArg(y.value());
3664 		::basicBlock->appendInst(pack);
3665 
3666 		return RValue<Short8>(V(result));
3667 	}
3668 }
3669 
PackUnsigned(RValue<Int4> x,RValue<Int4> y)3670 RValue<UShort8> PackUnsigned(RValue<Int4> x, RValue<Int4> y)
3671 {
3672 	RR_DEBUG_INFO_UPDATE_LOC();
3673 	if(emulateIntrinsics || !(CPUID::SSE4_1 || CPUID::ARM))
3674 	{
3675 		RValue<Int4> sx = As<Int4>(x);
3676 		RValue<Int4> bx = (sx & ~(sx >> 31)) - Int4(0x8000);
3677 
3678 		RValue<Int4> sy = As<Int4>(y);
3679 		RValue<Int4> by = (sy & ~(sy >> 31)) - Int4(0x8000);
3680 
3681 		return As<UShort8>(PackSigned(bx, by) + Short8(0x8000u));
3682 	}
3683 	else
3684 	{
3685 		Ice::Variable *result = ::function->makeVariable(Ice::IceType_v8i16);
3686 		const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::VectorPackUnsigned, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
3687 		auto pack = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
3688 		pack->addArg(x.value());
3689 		pack->addArg(y.value());
3690 		::basicBlock->appendInst(pack);
3691 
3692 		return RValue<UShort8>(V(result));
3693 	}
3694 }
3695 
SignMask(RValue<Int4> x)3696 RValue<Int> SignMask(RValue<Int4> x)
3697 {
3698 	RR_DEBUG_INFO_UPDATE_LOC();
3699 	if(emulateIntrinsics || CPUID::ARM)
3700 	{
3701 		Int4 xx = (x >> 31) & Int4(0x00000001, 0x00000002, 0x00000004, 0x00000008);
3702 		return Extract(xx, 0) | Extract(xx, 1) | Extract(xx, 2) | Extract(xx, 3);
3703 	}
3704 	else
3705 	{
3706 		Ice::Variable *result = ::function->makeVariable(Ice::IceType_i32);
3707 		const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::SignMask, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
3708 		auto movmsk = Ice::InstIntrinsic::create(::function, 1, result, intrinsic);
3709 		movmsk->addArg(x.value());
3710 		::basicBlock->appendInst(movmsk);
3711 
3712 		return RValue<Int>(V(result));
3713 	}
3714 }
3715 
type()3716 Type *Int4::type()
3717 {
3718 	return T(Ice::IceType_v4i32);
3719 }
3720 
UInt4(RValue<Float4> cast)3721 UInt4::UInt4(RValue<Float4> cast)
3722     : XYZW(this)
3723 {
3724 	RR_DEBUG_INFO_UPDATE_LOC();
3725 	// Smallest positive value representable in UInt, but not in Int
3726 	const unsigned int ustart = 0x80000000u;
3727 	const float ustartf = float(ustart);
3728 
3729 	// Check if the value can be represented as an Int
3730 	Int4 uiValue = CmpNLT(cast, Float4(ustartf));
3731 	// If the value is too large, subtract ustart and re-add it after conversion.
3732 	uiValue = (uiValue & As<Int4>(As<UInt4>(Int4(cast - Float4(ustartf))) + UInt4(ustart))) |
3733 	          // Otherwise, just convert normally
3734 	          (~uiValue & Int4(cast));
3735 	// If the value is negative, store 0, otherwise store the result of the conversion
3736 	storeValue((~(As<Int4>(cast) >> 31) & uiValue).value());
3737 }
3738 
UInt4(RValue<UInt> rhs)3739 UInt4::UInt4(RValue<UInt> rhs)
3740     : XYZW(this)
3741 {
3742 	RR_DEBUG_INFO_UPDATE_LOC();
3743 	Value *vector = Nucleus::createBitCast(rhs.value(), UInt4::type());
3744 
3745 	int swizzle[4] = { 0, 0, 0, 0 };
3746 	Value *replicate = Nucleus::createShuffleVector(vector, vector, swizzle);
3747 
3748 	storeValue(replicate);
3749 }
3750 
operator <<(RValue<UInt4> lhs,unsigned char rhs)3751 RValue<UInt4> operator<<(RValue<UInt4> lhs, unsigned char rhs)
3752 {
3753 	RR_DEBUG_INFO_UPDATE_LOC();
3754 	if(emulateIntrinsics)
3755 	{
3756 		UInt4 result;
3757 		result = Insert(result, Extract(lhs, 0) << UInt(rhs), 0);
3758 		result = Insert(result, Extract(lhs, 1) << UInt(rhs), 1);
3759 		result = Insert(result, Extract(lhs, 2) << UInt(rhs), 2);
3760 		result = Insert(result, Extract(lhs, 3) << UInt(rhs), 3);
3761 
3762 		return result;
3763 	}
3764 	else
3765 	{
3766 		return RValue<UInt4>(Nucleus::createShl(lhs.value(), V(::context->getConstantInt32(rhs))));
3767 	}
3768 }
3769 
operator >>(RValue<UInt4> lhs,unsigned char rhs)3770 RValue<UInt4> operator>>(RValue<UInt4> lhs, unsigned char rhs)
3771 {
3772 	RR_DEBUG_INFO_UPDATE_LOC();
3773 	if(emulateIntrinsics)
3774 	{
3775 		UInt4 result;
3776 		result = Insert(result, Extract(lhs, 0) >> UInt(rhs), 0);
3777 		result = Insert(result, Extract(lhs, 1) >> UInt(rhs), 1);
3778 		result = Insert(result, Extract(lhs, 2) >> UInt(rhs), 2);
3779 		result = Insert(result, Extract(lhs, 3) >> UInt(rhs), 3);
3780 
3781 		return result;
3782 	}
3783 	else
3784 	{
3785 		return RValue<UInt4>(Nucleus::createLShr(lhs.value(), V(::context->getConstantInt32(rhs))));
3786 	}
3787 }
3788 
CmpEQ(RValue<UInt4> x,RValue<UInt4> y)3789 RValue<UInt4> CmpEQ(RValue<UInt4> x, RValue<UInt4> y)
3790 {
3791 	RR_DEBUG_INFO_UPDATE_LOC();
3792 	return RValue<UInt4>(Nucleus::createICmpEQ(x.value(), y.value()));
3793 }
3794 
CmpLT(RValue<UInt4> x,RValue<UInt4> y)3795 RValue<UInt4> CmpLT(RValue<UInt4> x, RValue<UInt4> y)
3796 {
3797 	RR_DEBUG_INFO_UPDATE_LOC();
3798 	return RValue<UInt4>(Nucleus::createICmpULT(x.value(), y.value()));
3799 }
3800 
CmpLE(RValue<UInt4> x,RValue<UInt4> y)3801 RValue<UInt4> CmpLE(RValue<UInt4> x, RValue<UInt4> y)
3802 {
3803 	RR_DEBUG_INFO_UPDATE_LOC();
3804 	return RValue<UInt4>(Nucleus::createICmpULE(x.value(), y.value()));
3805 }
3806 
CmpNEQ(RValue<UInt4> x,RValue<UInt4> y)3807 RValue<UInt4> CmpNEQ(RValue<UInt4> x, RValue<UInt4> y)
3808 {
3809 	RR_DEBUG_INFO_UPDATE_LOC();
3810 	return RValue<UInt4>(Nucleus::createICmpNE(x.value(), y.value()));
3811 }
3812 
CmpNLT(RValue<UInt4> x,RValue<UInt4> y)3813 RValue<UInt4> CmpNLT(RValue<UInt4> x, RValue<UInt4> y)
3814 {
3815 	RR_DEBUG_INFO_UPDATE_LOC();
3816 	return RValue<UInt4>(Nucleus::createICmpUGE(x.value(), y.value()));
3817 }
3818 
CmpNLE(RValue<UInt4> x,RValue<UInt4> y)3819 RValue<UInt4> CmpNLE(RValue<UInt4> x, RValue<UInt4> y)
3820 {
3821 	RR_DEBUG_INFO_UPDATE_LOC();
3822 	return RValue<UInt4>(Nucleus::createICmpUGT(x.value(), y.value()));
3823 }
3824 
Max(RValue<UInt4> x,RValue<UInt4> y)3825 RValue<UInt4> Max(RValue<UInt4> x, RValue<UInt4> y)
3826 {
3827 	RR_DEBUG_INFO_UPDATE_LOC();
3828 	Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v4i1);
3829 	auto cmp = Ice::InstIcmp::create(::function, Ice::InstIcmp::Ule, condition, x.value(), y.value());
3830 	::basicBlock->appendInst(cmp);
3831 
3832 	Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4i32);
3833 	auto select = Ice::InstSelect::create(::function, result, condition, y.value(), x.value());
3834 	::basicBlock->appendInst(select);
3835 
3836 	return RValue<UInt4>(V(result));
3837 }
3838 
Min(RValue<UInt4> x,RValue<UInt4> y)3839 RValue<UInt4> Min(RValue<UInt4> x, RValue<UInt4> y)
3840 {
3841 	RR_DEBUG_INFO_UPDATE_LOC();
3842 	Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v4i1);
3843 	auto cmp = Ice::InstIcmp::create(::function, Ice::InstIcmp::Ugt, condition, x.value(), y.value());
3844 	::basicBlock->appendInst(cmp);
3845 
3846 	Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4i32);
3847 	auto select = Ice::InstSelect::create(::function, result, condition, y.value(), x.value());
3848 	::basicBlock->appendInst(select);
3849 
3850 	return RValue<UInt4>(V(result));
3851 }
3852 
type()3853 Type *UInt4::type()
3854 {
3855 	return T(Ice::IceType_v4i32);
3856 }
3857 
type()3858 Type *Half::type()
3859 {
3860 	return T(Ice::IceType_i16);
3861 }
3862 
Rcp_pp(RValue<Float> x,bool exactAtPow2)3863 RValue<Float> Rcp_pp(RValue<Float> x, bool exactAtPow2)
3864 {
3865 	RR_DEBUG_INFO_UPDATE_LOC();
3866 	return 1.0f / x;
3867 }
3868 
RcpSqrt_pp(RValue<Float> x)3869 RValue<Float> RcpSqrt_pp(RValue<Float> x)
3870 {
3871 	RR_DEBUG_INFO_UPDATE_LOC();
3872 	return Rcp_pp(Sqrt(x));
3873 }
3874 
Sqrt(RValue<Float> x)3875 RValue<Float> Sqrt(RValue<Float> x)
3876 {
3877 	RR_DEBUG_INFO_UPDATE_LOC();
3878 	Ice::Variable *result = ::function->makeVariable(Ice::IceType_f32);
3879 	const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Sqrt, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
3880 	auto sqrt = Ice::InstIntrinsic::create(::function, 1, result, intrinsic);
3881 	sqrt->addArg(x.value());
3882 	::basicBlock->appendInst(sqrt);
3883 
3884 	return RValue<Float>(V(result));
3885 }
3886 
Round(RValue<Float> x)3887 RValue<Float> Round(RValue<Float> x)
3888 {
3889 	RR_DEBUG_INFO_UPDATE_LOC();
3890 	return Float4(Round(Float4(x))).x;
3891 }
3892 
Trunc(RValue<Float> x)3893 RValue<Float> Trunc(RValue<Float> x)
3894 {
3895 	RR_DEBUG_INFO_UPDATE_LOC();
3896 	return Float4(Trunc(Float4(x))).x;
3897 }
3898 
Frac(RValue<Float> x)3899 RValue<Float> Frac(RValue<Float> x)
3900 {
3901 	RR_DEBUG_INFO_UPDATE_LOC();
3902 	return Float4(Frac(Float4(x))).x;
3903 }
3904 
Floor(RValue<Float> x)3905 RValue<Float> Floor(RValue<Float> x)
3906 {
3907 	RR_DEBUG_INFO_UPDATE_LOC();
3908 	return Float4(Floor(Float4(x))).x;
3909 }
3910 
Ceil(RValue<Float> x)3911 RValue<Float> Ceil(RValue<Float> x)
3912 {
3913 	RR_DEBUG_INFO_UPDATE_LOC();
3914 	return Float4(Ceil(Float4(x))).x;
3915 }
3916 
type()3917 Type *Float::type()
3918 {
3919 	return T(Ice::IceType_f32);
3920 }
3921 
type()3922 Type *Float2::type()
3923 {
3924 	return T(Type_v2f32);
3925 }
3926 
Float4(RValue<Float> rhs)3927 Float4::Float4(RValue<Float> rhs)
3928     : XYZW(this)
3929 {
3930 	RR_DEBUG_INFO_UPDATE_LOC();
3931 	Value *vector = Nucleus::createBitCast(rhs.value(), Float4::type());
3932 
3933 	int swizzle[4] = { 0, 0, 0, 0 };
3934 	Value *replicate = Nucleus::createShuffleVector(vector, vector, swizzle);
3935 
3936 	storeValue(replicate);
3937 }
3938 
3939 // Call single arg function on a vector type
3940 template<typename Func, typename T>
call4(Func func,const RValue<T> & x)3941 static RValue<T> call4(Func func, const RValue<T> &x)
3942 {
3943 	T result;
3944 	result = Insert(result, Call(func, Extract(x, 0)), 0);
3945 	result = Insert(result, Call(func, Extract(x, 1)), 1);
3946 	result = Insert(result, Call(func, Extract(x, 2)), 2);
3947 	result = Insert(result, Call(func, Extract(x, 3)), 3);
3948 	return result;
3949 }
3950 
3951 // Call two arg function on a vector type
3952 template<typename Func, typename T>
call4(Func func,const RValue<T> & x,const RValue<T> & y)3953 static RValue<T> call4(Func func, const RValue<T> &x, const RValue<T> &y)
3954 {
3955 	T result;
3956 	result = Insert(result, Call(func, Extract(x, 0), Extract(y, 0)), 0);
3957 	result = Insert(result, Call(func, Extract(x, 1), Extract(y, 1)), 1);
3958 	result = Insert(result, Call(func, Extract(x, 2), Extract(y, 2)), 2);
3959 	result = Insert(result, Call(func, Extract(x, 3), Extract(y, 3)), 3);
3960 	return result;
3961 }
3962 
3963 // Call three arg function on a vector type
3964 template<typename Func, typename T>
call4(Func func,const RValue<T> & x,const RValue<T> & y,const RValue<T> & z)3965 static RValue<T> call4(Func func, const RValue<T> &x, const RValue<T> &y, const RValue<T> &z)
3966 {
3967 	T result;
3968 	result = Insert(result, Call(func, Extract(x, 0), Extract(y, 0), Extract(z, 0)), 0);
3969 	result = Insert(result, Call(func, Extract(x, 1), Extract(y, 1), Extract(z, 1)), 1);
3970 	result = Insert(result, Call(func, Extract(x, 2), Extract(y, 2), Extract(z, 2)), 2);
3971 	result = Insert(result, Call(func, Extract(x, 3), Extract(y, 3), Extract(z, 3)), 3);
3972 	return result;
3973 }
3974 
operator %(RValue<Float4> lhs,RValue<Float4> rhs)3975 RValue<Float4> operator%(RValue<Float4> lhs, RValue<Float4> rhs)
3976 {
3977 	return call4(fmodf, lhs, rhs);
3978 }
3979 
MulAdd(RValue<Float4> x,RValue<Float4> y,RValue<Float4> z)3980 RValue<Float4> MulAdd(RValue<Float4> x, RValue<Float4> y, RValue<Float4> z)
3981 {
3982 	// TODO(b/214591655): Use FMA when available.
3983 	return x * y + z;
3984 }
3985 
FMA(RValue<Float4> x,RValue<Float4> y,RValue<Float4> z)3986 RValue<Float4> FMA(RValue<Float4> x, RValue<Float4> y, RValue<Float4> z)
3987 {
3988 	// TODO(b/214591655): Use FMA instructions when available.
3989 	return call4(fmaf, x, y, z);
3990 }
3991 
Abs(RValue<Float4> x)3992 RValue<Float4> Abs(RValue<Float4> x)
3993 {
3994 	// TODO: Optimize.
3995 	Value *vector = Nucleus::createBitCast(x.value(), Int4::type());
3996 	int64_t constantVector[4] = { 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF };
3997 	Value *result = Nucleus::createAnd(vector, Nucleus::createConstantVector(constantVector, Int4::type()));
3998 
3999 	return As<Float4>(result);
4000 }
4001 
Max(RValue<Float4> x,RValue<Float4> y)4002 RValue<Float4> Max(RValue<Float4> x, RValue<Float4> y)
4003 {
4004 	RR_DEBUG_INFO_UPDATE_LOC();
4005 	Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v4i1);
4006 	auto cmp = Ice::InstFcmp::create(::function, Ice::InstFcmp::Ogt, condition, x.value(), y.value());
4007 	::basicBlock->appendInst(cmp);
4008 
4009 	Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4f32);
4010 	auto select = Ice::InstSelect::create(::function, result, condition, x.value(), y.value());
4011 	::basicBlock->appendInst(select);
4012 
4013 	return RValue<Float4>(V(result));
4014 }
4015 
Min(RValue<Float4> x,RValue<Float4> y)4016 RValue<Float4> Min(RValue<Float4> x, RValue<Float4> y)
4017 {
4018 	RR_DEBUG_INFO_UPDATE_LOC();
4019 	Ice::Variable *condition = ::function->makeVariable(Ice::IceType_v4i1);
4020 	auto cmp = Ice::InstFcmp::create(::function, Ice::InstFcmp::Olt, condition, x.value(), y.value());
4021 	::basicBlock->appendInst(cmp);
4022 
4023 	Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4f32);
4024 	auto select = Ice::InstSelect::create(::function, result, condition, x.value(), y.value());
4025 	::basicBlock->appendInst(select);
4026 
4027 	return RValue<Float4>(V(result));
4028 }
4029 
Rcp_pp(RValue<Float4> x,bool exactAtPow2)4030 RValue<Float4> Rcp_pp(RValue<Float4> x, bool exactAtPow2)
4031 {
4032 	RR_DEBUG_INFO_UPDATE_LOC();
4033 	return Float4(1.0f) / x;
4034 }
4035 
RcpSqrt_pp(RValue<Float4> x)4036 RValue<Float4> RcpSqrt_pp(RValue<Float4> x)
4037 {
4038 	RR_DEBUG_INFO_UPDATE_LOC();
4039 	return Rcp_pp(Sqrt(x));
4040 }
4041 
HasRcpApprox()4042 bool HasRcpApprox()
4043 {
4044 	// TODO(b/175612820): Update once we implement x86 SSE rcp_ss and rsqrt_ss intrinsics in Subzero
4045 	return false;
4046 }
4047 
RcpApprox(RValue<Float4> x,bool exactAtPow2)4048 RValue<Float4> RcpApprox(RValue<Float4> x, bool exactAtPow2)
4049 {
4050 	// TODO(b/175612820): Update once we implement x86 SSE rcp_ss and rsqrt_ss intrinsics in Subzero
4051 	UNREACHABLE("RValue<Float4> RcpApprox()");
4052 	return { 0.0f };
4053 }
4054 
RcpApprox(RValue<Float> x,bool exactAtPow2)4055 RValue<Float> RcpApprox(RValue<Float> x, bool exactAtPow2)
4056 {
4057 	// TODO(b/175612820): Update once we implement x86 SSE rcp_ss and rsqrt_ss intrinsics in Subzero
4058 	UNREACHABLE("RValue<Float> RcpApprox()");
4059 	return { 0.0f };
4060 }
4061 
HasRcpSqrtApprox()4062 bool HasRcpSqrtApprox()
4063 {
4064 	return false;
4065 }
4066 
RcpSqrtApprox(RValue<Float4> x)4067 RValue<Float4> RcpSqrtApprox(RValue<Float4> x)
4068 {
4069 	// TODO(b/175612820): Update once we implement x86 SSE rcp_ss and rsqrt_ss intrinsics in Subzero
4070 	UNREACHABLE("RValue<Float4> RcpSqrtApprox()");
4071 	return { 0.0f };
4072 }
4073 
RcpSqrtApprox(RValue<Float> x)4074 RValue<Float> RcpSqrtApprox(RValue<Float> x)
4075 {
4076 	// TODO(b/175612820): Update once we implement x86 SSE rcp_ss and rsqrt_ss intrinsics in Subzero
4077 	UNREACHABLE("RValue<Float> RcpSqrtApprox()");
4078 	return { 0.0f };
4079 }
4080 
Sqrt(RValue<Float4> x)4081 RValue<Float4> Sqrt(RValue<Float4> x)
4082 {
4083 	RR_DEBUG_INFO_UPDATE_LOC();
4084 	if(emulateIntrinsics || CPUID::ARM)
4085 	{
4086 		Float4 result;
4087 		result.x = Sqrt(Float(Float4(x).x));
4088 		result.y = Sqrt(Float(Float4(x).y));
4089 		result.z = Sqrt(Float(Float4(x).z));
4090 		result.w = Sqrt(Float(Float4(x).w));
4091 
4092 		return result;
4093 	}
4094 	else
4095 	{
4096 		Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4f32);
4097 		const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Sqrt, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
4098 		auto sqrt = Ice::InstIntrinsic::create(::function, 1, result, intrinsic);
4099 		sqrt->addArg(x.value());
4100 		::basicBlock->appendInst(sqrt);
4101 
4102 		return RValue<Float4>(V(result));
4103 	}
4104 }
4105 
SignMask(RValue<Float4> x)4106 RValue<Int> SignMask(RValue<Float4> x)
4107 {
4108 	RR_DEBUG_INFO_UPDATE_LOC();
4109 	if(emulateIntrinsics || CPUID::ARM)
4110 	{
4111 		Int4 xx = (As<Int4>(x) >> 31) & Int4(0x00000001, 0x00000002, 0x00000004, 0x00000008);
4112 		return Extract(xx, 0) | Extract(xx, 1) | Extract(xx, 2) | Extract(xx, 3);
4113 	}
4114 	else
4115 	{
4116 		Ice::Variable *result = ::function->makeVariable(Ice::IceType_i32);
4117 		const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::SignMask, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
4118 		auto movmsk = Ice::InstIntrinsic::create(::function, 1, result, intrinsic);
4119 		movmsk->addArg(x.value());
4120 		::basicBlock->appendInst(movmsk);
4121 
4122 		return RValue<Int>(V(result));
4123 	}
4124 }
4125 
CmpEQ(RValue<Float4> x,RValue<Float4> y)4126 RValue<Int4> CmpEQ(RValue<Float4> x, RValue<Float4> y)
4127 {
4128 	RR_DEBUG_INFO_UPDATE_LOC();
4129 	return RValue<Int4>(Nucleus::createFCmpOEQ(x.value(), y.value()));
4130 }
4131 
CmpLT(RValue<Float4> x,RValue<Float4> y)4132 RValue<Int4> CmpLT(RValue<Float4> x, RValue<Float4> y)
4133 {
4134 	RR_DEBUG_INFO_UPDATE_LOC();
4135 	return RValue<Int4>(Nucleus::createFCmpOLT(x.value(), y.value()));
4136 }
4137 
CmpLE(RValue<Float4> x,RValue<Float4> y)4138 RValue<Int4> CmpLE(RValue<Float4> x, RValue<Float4> y)
4139 {
4140 	RR_DEBUG_INFO_UPDATE_LOC();
4141 	return RValue<Int4>(Nucleus::createFCmpOLE(x.value(), y.value()));
4142 }
4143 
CmpNEQ(RValue<Float4> x,RValue<Float4> y)4144 RValue<Int4> CmpNEQ(RValue<Float4> x, RValue<Float4> y)
4145 {
4146 	RR_DEBUG_INFO_UPDATE_LOC();
4147 	return RValue<Int4>(Nucleus::createFCmpONE(x.value(), y.value()));
4148 }
4149 
CmpNLT(RValue<Float4> x,RValue<Float4> y)4150 RValue<Int4> CmpNLT(RValue<Float4> x, RValue<Float4> y)
4151 {
4152 	RR_DEBUG_INFO_UPDATE_LOC();
4153 	return RValue<Int4>(Nucleus::createFCmpOGE(x.value(), y.value()));
4154 }
4155 
CmpNLE(RValue<Float4> x,RValue<Float4> y)4156 RValue<Int4> CmpNLE(RValue<Float4> x, RValue<Float4> y)
4157 {
4158 	RR_DEBUG_INFO_UPDATE_LOC();
4159 	return RValue<Int4>(Nucleus::createFCmpOGT(x.value(), y.value()));
4160 }
4161 
CmpUEQ(RValue<Float4> x,RValue<Float4> y)4162 RValue<Int4> CmpUEQ(RValue<Float4> x, RValue<Float4> y)
4163 {
4164 	RR_DEBUG_INFO_UPDATE_LOC();
4165 	return RValue<Int4>(Nucleus::createFCmpUEQ(x.value(), y.value()));
4166 }
4167 
CmpULT(RValue<Float4> x,RValue<Float4> y)4168 RValue<Int4> CmpULT(RValue<Float4> x, RValue<Float4> y)
4169 {
4170 	RR_DEBUG_INFO_UPDATE_LOC();
4171 	return RValue<Int4>(Nucleus::createFCmpULT(x.value(), y.value()));
4172 }
4173 
CmpULE(RValue<Float4> x,RValue<Float4> y)4174 RValue<Int4> CmpULE(RValue<Float4> x, RValue<Float4> y)
4175 {
4176 	RR_DEBUG_INFO_UPDATE_LOC();
4177 	return RValue<Int4>(Nucleus::createFCmpULE(x.value(), y.value()));
4178 }
4179 
CmpUNEQ(RValue<Float4> x,RValue<Float4> y)4180 RValue<Int4> CmpUNEQ(RValue<Float4> x, RValue<Float4> y)
4181 {
4182 	RR_DEBUG_INFO_UPDATE_LOC();
4183 	return RValue<Int4>(Nucleus::createFCmpUNE(x.value(), y.value()));
4184 }
4185 
CmpUNLT(RValue<Float4> x,RValue<Float4> y)4186 RValue<Int4> CmpUNLT(RValue<Float4> x, RValue<Float4> y)
4187 {
4188 	RR_DEBUG_INFO_UPDATE_LOC();
4189 	return RValue<Int4>(Nucleus::createFCmpUGE(x.value(), y.value()));
4190 }
4191 
CmpUNLE(RValue<Float4> x,RValue<Float4> y)4192 RValue<Int4> CmpUNLE(RValue<Float4> x, RValue<Float4> y)
4193 {
4194 	RR_DEBUG_INFO_UPDATE_LOC();
4195 	return RValue<Int4>(Nucleus::createFCmpUGT(x.value(), y.value()));
4196 }
4197 
Round(RValue<Float4> x)4198 RValue<Float4> Round(RValue<Float4> x)
4199 {
4200 	RR_DEBUG_INFO_UPDATE_LOC();
4201 	if(emulateIntrinsics || CPUID::ARM)
4202 	{
4203 		// Push the fractional part off the mantissa. Accurate up to +/-2^22.
4204 		return (x + Float4(0x00C00000)) - Float4(0x00C00000);
4205 	}
4206 	else if(CPUID::SSE4_1)
4207 	{
4208 		Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4f32);
4209 		const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Round, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
4210 		auto round = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
4211 		round->addArg(x.value());
4212 		round->addArg(::context->getConstantInt32(0));
4213 		::basicBlock->appendInst(round);
4214 
4215 		return RValue<Float4>(V(result));
4216 	}
4217 	else
4218 	{
4219 		return Float4(RoundInt(x));
4220 	}
4221 }
4222 
Trunc(RValue<Float4> x)4223 RValue<Float4> Trunc(RValue<Float4> x)
4224 {
4225 	RR_DEBUG_INFO_UPDATE_LOC();
4226 	if(CPUID::SSE4_1)
4227 	{
4228 		Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4f32);
4229 		const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Round, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
4230 		auto round = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
4231 		round->addArg(x.value());
4232 		round->addArg(::context->getConstantInt32(3));
4233 		::basicBlock->appendInst(round);
4234 
4235 		return RValue<Float4>(V(result));
4236 	}
4237 	else
4238 	{
4239 		return Float4(Int4(x));
4240 	}
4241 }
4242 
Frac(RValue<Float4> x)4243 RValue<Float4> Frac(RValue<Float4> x)
4244 {
4245 	RR_DEBUG_INFO_UPDATE_LOC();
4246 	Float4 frc;
4247 
4248 	if(CPUID::SSE4_1)
4249 	{
4250 		frc = x - Floor(x);
4251 	}
4252 	else
4253 	{
4254 		frc = x - Float4(Int4(x));  // Signed fractional part.
4255 
4256 		frc += As<Float4>(As<Int4>(CmpNLE(Float4(0.0f), frc)) & As<Int4>(Float4(1, 1, 1, 1)));  // Add 1.0 if negative.
4257 	}
4258 
4259 	// x - floor(x) can be 1.0 for very small negative x.
4260 	// Clamp against the value just below 1.0.
4261 	return Min(frc, As<Float4>(Int4(0x3F7FFFFF)));
4262 }
4263 
Floor(RValue<Float4> x)4264 RValue<Float4> Floor(RValue<Float4> x)
4265 {
4266 	RR_DEBUG_INFO_UPDATE_LOC();
4267 	if(CPUID::SSE4_1)
4268 	{
4269 		Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4f32);
4270 		const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Round, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
4271 		auto round = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
4272 		round->addArg(x.value());
4273 		round->addArg(::context->getConstantInt32(1));
4274 		::basicBlock->appendInst(round);
4275 
4276 		return RValue<Float4>(V(result));
4277 	}
4278 	else
4279 	{
4280 		return x - Frac(x);
4281 	}
4282 }
4283 
Ceil(RValue<Float4> x)4284 RValue<Float4> Ceil(RValue<Float4> x)
4285 {
4286 	RR_DEBUG_INFO_UPDATE_LOC();
4287 	if(CPUID::SSE4_1)
4288 	{
4289 		Ice::Variable *result = ::function->makeVariable(Ice::IceType_v4f32);
4290 		const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Round, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
4291 		auto round = Ice::InstIntrinsic::create(::function, 2, result, intrinsic);
4292 		round->addArg(x.value());
4293 		round->addArg(::context->getConstantInt32(2));
4294 		::basicBlock->appendInst(round);
4295 
4296 		return RValue<Float4>(V(result));
4297 	}
4298 	else
4299 	{
4300 		return -Floor(-x);
4301 	}
4302 }
4303 
type()4304 Type *Float4::type()
4305 {
4306 	return T(Ice::IceType_v4f32);
4307 }
4308 
Ticks()4309 RValue<Long> Ticks()
4310 {
4311 	RR_DEBUG_INFO_UPDATE_LOC();
4312 	UNIMPLEMENTED_NO_BUG("RValue<Long> Ticks()");
4313 	return Long(Int(0));
4314 }
4315 
ConstantPointer(void const * ptr)4316 RValue<Pointer<Byte>> ConstantPointer(void const *ptr)
4317 {
4318 	RR_DEBUG_INFO_UPDATE_LOC();
4319 	return RValue<Pointer<Byte>>{ V(sz::getConstantPointer(::context, ptr)) };
4320 }
4321 
ConstantData(void const * data,size_t size)4322 RValue<Pointer<Byte>> ConstantData(void const *data, size_t size)
4323 {
4324 	RR_DEBUG_INFO_UPDATE_LOC();
4325 	return RValue<Pointer<Byte>>{ V(IceConstantData(data, size)) };
4326 }
4327 
Call(RValue<Pointer<Byte>> fptr,Type * retTy,std::initializer_list<Value * > args,std::initializer_list<Type * > argTys)4328 Value *Call(RValue<Pointer<Byte>> fptr, Type *retTy, std::initializer_list<Value *> args, std::initializer_list<Type *> argTys)
4329 {
4330 	RR_DEBUG_INFO_UPDATE_LOC();
4331 	return V(sz::Call(::function, ::basicBlock, T(retTy), V(fptr.value()), V(args), false));
4332 }
4333 
Breakpoint()4334 void Breakpoint()
4335 {
4336 	RR_DEBUG_INFO_UPDATE_LOC();
4337 	const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Trap, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
4338 	auto trap = Ice::InstIntrinsic::create(::function, 0, nullptr, intrinsic);
4339 	::basicBlock->appendInst(trap);
4340 }
4341 
createFence(std::memory_order memoryOrder)4342 void Nucleus::createFence(std::memory_order memoryOrder)
4343 {
4344 	RR_DEBUG_INFO_UPDATE_LOC();
4345 	const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::AtomicFence, Ice::Intrinsics::SideEffects_T, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
4346 	auto inst = Ice::InstIntrinsic::create(::function, 0, nullptr, intrinsic);
4347 	auto order = ::context->getConstantInt32(stdToIceMemoryOrder(memoryOrder));
4348 	inst->addArg(order);
4349 	::basicBlock->appendInst(inst);
4350 }
4351 
createMaskedLoad(Value * ptr,Type * elTy,Value * mask,unsigned int alignment,bool zeroMaskedLanes)4352 Value *Nucleus::createMaskedLoad(Value *ptr, Type *elTy, Value *mask, unsigned int alignment, bool zeroMaskedLanes)
4353 {
4354 	RR_DEBUG_INFO_UPDATE_LOC();
4355 	UNIMPLEMENTED("b/155867273 Subzero createMaskedLoad()");
4356 	return nullptr;
4357 }
4358 
createMaskedStore(Value * ptr,Value * val,Value * mask,unsigned int alignment)4359 void Nucleus::createMaskedStore(Value *ptr, Value *val, Value *mask, unsigned int alignment)
4360 {
4361 	RR_DEBUG_INFO_UPDATE_LOC();
4362 	UNIMPLEMENTED("b/155867273 Subzero createMaskedStore()");
4363 }
4364 
4365 template<typename T>
4366 struct UnderlyingType
4367 {
4368 	using Type = typename decltype(rr::Extract(std::declval<RValue<T>>(), 0))::rvalue_underlying_type;
4369 };
4370 
4371 template<typename T>
4372 using UnderlyingTypeT = typename UnderlyingType<T>::Type;
4373 
4374 template<typename T, typename EL = UnderlyingTypeT<T>>
gather(T & out,RValue<Pointer<EL>> base,RValue<Int4> offsets,RValue<Int4> mask,unsigned int alignment,bool zeroMaskedLanes)4375 static void gather(T &out, RValue<Pointer<EL>> base, RValue<Int4> offsets, RValue<Int4> mask, unsigned int alignment, bool zeroMaskedLanes)
4376 {
4377 	constexpr bool atomic = false;
4378 	constexpr std::memory_order order = std::memory_order_relaxed;
4379 
4380 	Pointer<Byte> baseBytePtr = base;
4381 
4382 	out = T(0);
4383 	for(int i = 0; i < 4; i++)
4384 	{
4385 		If(Extract(mask, i) != 0)
4386 		{
4387 			auto offset = Extract(offsets, i);
4388 			auto el = Load(Pointer<EL>(&baseBytePtr[offset]), alignment, atomic, order);
4389 			out = Insert(out, el, i);
4390 		}
4391 		Else If(zeroMaskedLanes)
4392 		{
4393 			out = Insert(out, EL(0), i);
4394 		}
4395 	}
4396 }
4397 
4398 template<typename T, typename EL = UnderlyingTypeT<T>>
scatter(RValue<Pointer<EL>> base,RValue<T> val,RValue<Int4> offsets,RValue<Int4> mask,unsigned int alignment)4399 static void scatter(RValue<Pointer<EL>> base, RValue<T> val, RValue<Int4> offsets, RValue<Int4> mask, unsigned int alignment)
4400 {
4401 	constexpr bool atomic = false;
4402 	constexpr std::memory_order order = std::memory_order_relaxed;
4403 
4404 	Pointer<Byte> baseBytePtr = base;
4405 
4406 	for(int i = 0; i < 4; i++)
4407 	{
4408 		If(Extract(mask, i) != 0)
4409 		{
4410 			auto offset = Extract(offsets, i);
4411 			Store(Extract(val, i), Pointer<EL>(&baseBytePtr[offset]), alignment, atomic, order);
4412 		}
4413 	}
4414 }
4415 
Gather(RValue<Pointer<Float>> base,RValue<Int4> offsets,RValue<Int4> mask,unsigned int alignment,bool zeroMaskedLanes)4416 RValue<Float4> Gather(RValue<Pointer<Float>> base, RValue<Int4> offsets, RValue<Int4> mask, unsigned int alignment, bool zeroMaskedLanes /* = false */)
4417 {
4418 	RR_DEBUG_INFO_UPDATE_LOC();
4419 	Float4 result{};
4420 	gather(result, base, offsets, mask, alignment, zeroMaskedLanes);
4421 	return result;
4422 }
4423 
Gather(RValue<Pointer<Int>> base,RValue<Int4> offsets,RValue<Int4> mask,unsigned int alignment,bool zeroMaskedLanes)4424 RValue<Int4> Gather(RValue<Pointer<Int>> base, RValue<Int4> offsets, RValue<Int4> mask, unsigned int alignment, bool zeroMaskedLanes /* = false */)
4425 {
4426 	RR_DEBUG_INFO_UPDATE_LOC();
4427 	Int4 result{};
4428 	gather(result, base, offsets, mask, alignment, zeroMaskedLanes);
4429 	return result;
4430 }
4431 
Scatter(RValue<Pointer<Float>> base,RValue<Float4> val,RValue<Int4> offsets,RValue<Int4> mask,unsigned int alignment)4432 void Scatter(RValue<Pointer<Float>> base, RValue<Float4> val, RValue<Int4> offsets, RValue<Int4> mask, unsigned int alignment)
4433 {
4434 	RR_DEBUG_INFO_UPDATE_LOC();
4435 	scatter(base, val, offsets, mask, alignment);
4436 }
4437 
Scatter(RValue<Pointer<Int>> base,RValue<Int4> val,RValue<Int4> offsets,RValue<Int4> mask,unsigned int alignment)4438 void Scatter(RValue<Pointer<Int>> base, RValue<Int4> val, RValue<Int4> offsets, RValue<Int4> mask, unsigned int alignment)
4439 {
4440 	RR_DEBUG_INFO_UPDATE_LOC();
4441 	scatter<Int4>(base, val, offsets, mask, alignment);
4442 }
4443 
Exp2(RValue<Float> x)4444 RValue<Float> Exp2(RValue<Float> x)
4445 {
4446 	RR_DEBUG_INFO_UPDATE_LOC();
4447 	return Call(exp2f, x);
4448 }
4449 
Log2(RValue<Float> x)4450 RValue<Float> Log2(RValue<Float> x)
4451 {
4452 	RR_DEBUG_INFO_UPDATE_LOC();
4453 	return Call(log2f, x);
4454 }
4455 
Sin(RValue<Float4> x)4456 RValue<Float4> Sin(RValue<Float4> x)
4457 {
4458 	RR_DEBUG_INFO_UPDATE_LOC();
4459 	return call4(sinf, x);
4460 }
4461 
Cos(RValue<Float4> x)4462 RValue<Float4> Cos(RValue<Float4> x)
4463 {
4464 	RR_DEBUG_INFO_UPDATE_LOC();
4465 	return call4(cosf, x);
4466 }
4467 
Tan(RValue<Float4> x)4468 RValue<Float4> Tan(RValue<Float4> x)
4469 {
4470 	RR_DEBUG_INFO_UPDATE_LOC();
4471 	return call4(tanf, x);
4472 }
4473 
Asin(RValue<Float4> x)4474 RValue<Float4> Asin(RValue<Float4> x)
4475 {
4476 	RR_DEBUG_INFO_UPDATE_LOC();
4477 	return call4(asinf, x);
4478 }
4479 
Acos(RValue<Float4> x)4480 RValue<Float4> Acos(RValue<Float4> x)
4481 {
4482 	RR_DEBUG_INFO_UPDATE_LOC();
4483 	return call4(acosf, x);
4484 }
4485 
Atan(RValue<Float4> x)4486 RValue<Float4> Atan(RValue<Float4> x)
4487 {
4488 	RR_DEBUG_INFO_UPDATE_LOC();
4489 	return call4(atanf, x);
4490 }
4491 
Sinh(RValue<Float4> x)4492 RValue<Float4> Sinh(RValue<Float4> x)
4493 {
4494 	RR_DEBUG_INFO_UPDATE_LOC();
4495 	return call4(sinhf, x);
4496 }
4497 
Cosh(RValue<Float4> x)4498 RValue<Float4> Cosh(RValue<Float4> x)
4499 {
4500 	RR_DEBUG_INFO_UPDATE_LOC();
4501 	return call4(coshf, x);
4502 }
4503 
Tanh(RValue<Float4> x)4504 RValue<Float4> Tanh(RValue<Float4> x)
4505 {
4506 	RR_DEBUG_INFO_UPDATE_LOC();
4507 	return call4(tanhf, x);
4508 }
4509 
Asinh(RValue<Float4> x)4510 RValue<Float4> Asinh(RValue<Float4> x)
4511 {
4512 	RR_DEBUG_INFO_UPDATE_LOC();
4513 	return call4(asinhf, x);
4514 }
4515 
Acosh(RValue<Float4> x)4516 RValue<Float4> Acosh(RValue<Float4> x)
4517 {
4518 	RR_DEBUG_INFO_UPDATE_LOC();
4519 	return call4(acoshf, x);
4520 }
4521 
Atanh(RValue<Float4> x)4522 RValue<Float4> Atanh(RValue<Float4> x)
4523 {
4524 	RR_DEBUG_INFO_UPDATE_LOC();
4525 	return call4(atanhf, x);
4526 }
4527 
Atan2(RValue<Float4> x,RValue<Float4> y)4528 RValue<Float4> Atan2(RValue<Float4> x, RValue<Float4> y)
4529 {
4530 	RR_DEBUG_INFO_UPDATE_LOC();
4531 	return call4(atan2f, x, y);
4532 }
4533 
Pow(RValue<Float4> x,RValue<Float4> y)4534 RValue<Float4> Pow(RValue<Float4> x, RValue<Float4> y)
4535 {
4536 	RR_DEBUG_INFO_UPDATE_LOC();
4537 	return call4(powf, x, y);
4538 }
4539 
Exp(RValue<Float4> x)4540 RValue<Float4> Exp(RValue<Float4> x)
4541 {
4542 	RR_DEBUG_INFO_UPDATE_LOC();
4543 	return call4(expf, x);
4544 }
4545 
Log(RValue<Float4> x)4546 RValue<Float4> Log(RValue<Float4> x)
4547 {
4548 	RR_DEBUG_INFO_UPDATE_LOC();
4549 	return call4(logf, x);
4550 }
4551 
Exp2(RValue<Float4> x)4552 RValue<Float4> Exp2(RValue<Float4> x)
4553 {
4554 	RR_DEBUG_INFO_UPDATE_LOC();
4555 	return call4(exp2f, x);
4556 }
4557 
Log2(RValue<Float4> x)4558 RValue<Float4> Log2(RValue<Float4> x)
4559 {
4560 	RR_DEBUG_INFO_UPDATE_LOC();
4561 	return call4(log2f, x);
4562 }
4563 
Ctlz(RValue<UInt> x,bool isZeroUndef)4564 RValue<UInt> Ctlz(RValue<UInt> x, bool isZeroUndef)
4565 {
4566 	RR_DEBUG_INFO_UPDATE_LOC();
4567 	if(emulateIntrinsics)
4568 	{
4569 		UNIMPLEMENTED_NO_BUG("Subzero Ctlz()");
4570 		return UInt(0);
4571 	}
4572 	else
4573 	{
4574 		Ice::Variable *result = ::function->makeVariable(Ice::IceType_i32);
4575 		const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Ctlz, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
4576 		auto ctlz = Ice::InstIntrinsic::create(::function, 1, result, intrinsic);
4577 		ctlz->addArg(x.value());
4578 		::basicBlock->appendInst(ctlz);
4579 
4580 		return RValue<UInt>(V(result));
4581 	}
4582 }
4583 
Ctlz(RValue<UInt4> x,bool isZeroUndef)4584 RValue<UInt4> Ctlz(RValue<UInt4> x, bool isZeroUndef)
4585 {
4586 	RR_DEBUG_INFO_UPDATE_LOC();
4587 	if(emulateIntrinsics)
4588 	{
4589 		UNIMPLEMENTED_NO_BUG("Subzero Ctlz()");
4590 		return UInt4(0);
4591 	}
4592 	else
4593 	{
4594 		// TODO: implement vectorized version in Subzero
4595 		UInt4 result;
4596 		result = Insert(result, Ctlz(Extract(x, 0), isZeroUndef), 0);
4597 		result = Insert(result, Ctlz(Extract(x, 1), isZeroUndef), 1);
4598 		result = Insert(result, Ctlz(Extract(x, 2), isZeroUndef), 2);
4599 		result = Insert(result, Ctlz(Extract(x, 3), isZeroUndef), 3);
4600 		return result;
4601 	}
4602 }
4603 
Cttz(RValue<UInt> x,bool isZeroUndef)4604 RValue<UInt> Cttz(RValue<UInt> x, bool isZeroUndef)
4605 {
4606 	RR_DEBUG_INFO_UPDATE_LOC();
4607 	if(emulateIntrinsics)
4608 	{
4609 		UNIMPLEMENTED_NO_BUG("Subzero Cttz()");
4610 		return UInt(0);
4611 	}
4612 	else
4613 	{
4614 		Ice::Variable *result = ::function->makeVariable(Ice::IceType_i32);
4615 		const Ice::Intrinsics::IntrinsicInfo intrinsic = { Ice::Intrinsics::Cttz, Ice::Intrinsics::SideEffects_F, Ice::Intrinsics::ReturnsTwice_F, Ice::Intrinsics::MemoryWrite_F };
4616 		auto ctlz = Ice::InstIntrinsic::create(::function, 1, result, intrinsic);
4617 		ctlz->addArg(x.value());
4618 		::basicBlock->appendInst(ctlz);
4619 
4620 		return RValue<UInt>(V(result));
4621 	}
4622 }
4623 
Cttz(RValue<UInt4> x,bool isZeroUndef)4624 RValue<UInt4> Cttz(RValue<UInt4> x, bool isZeroUndef)
4625 {
4626 	RR_DEBUG_INFO_UPDATE_LOC();
4627 	if(emulateIntrinsics)
4628 	{
4629 		UNIMPLEMENTED_NO_BUG("Subzero Cttz()");
4630 		return UInt4(0);
4631 	}
4632 	else
4633 	{
4634 		// TODO: implement vectorized version in Subzero
4635 		UInt4 result;
4636 		result = Insert(result, Cttz(Extract(x, 0), isZeroUndef), 0);
4637 		result = Insert(result, Cttz(Extract(x, 1), isZeroUndef), 1);
4638 		result = Insert(result, Cttz(Extract(x, 2), isZeroUndef), 2);
4639 		result = Insert(result, Cttz(Extract(x, 3), isZeroUndef), 3);
4640 		return result;
4641 	}
4642 }
4643 
4644 // TODO(b/148276653): Both atomicMin and atomicMax use a static (global) mutex that makes all min
4645 // operations for a given T mutually exclusive, rather than only the ones on the value pointed to
4646 // by ptr. Use a CAS loop, as is done for LLVMReactor's min/max atomic for Android.
4647 // TODO(b/148207274): Or, move this down into Subzero as a CAS-based operation.
4648 template<typename T>
atomicMin(T * ptr,T value)4649 static T atomicMin(T *ptr, T value)
4650 {
4651 	static std::mutex m;
4652 
4653 	std::lock_guard<std::mutex> lock(m);
4654 	T origValue = *ptr;
4655 	*ptr = std::min(origValue, value);
4656 	return origValue;
4657 }
4658 
4659 template<typename T>
atomicMax(T * ptr,T value)4660 static T atomicMax(T *ptr, T value)
4661 {
4662 	static std::mutex m;
4663 
4664 	std::lock_guard<std::mutex> lock(m);
4665 	T origValue = *ptr;
4666 	*ptr = std::max(origValue, value);
4667 	return origValue;
4668 }
4669 
MinAtomic(RValue<Pointer<Int>> x,RValue<Int> y,std::memory_order memoryOrder)4670 RValue<Int> MinAtomic(RValue<Pointer<Int>> x, RValue<Int> y, std::memory_order memoryOrder)
4671 {
4672 	RR_DEBUG_INFO_UPDATE_LOC();
4673 	return Call(atomicMin<int32_t>, x, y);
4674 }
4675 
MinAtomic(RValue<Pointer<UInt>> x,RValue<UInt> y,std::memory_order memoryOrder)4676 RValue<UInt> MinAtomic(RValue<Pointer<UInt>> x, RValue<UInt> y, std::memory_order memoryOrder)
4677 {
4678 	RR_DEBUG_INFO_UPDATE_LOC();
4679 	return Call(atomicMin<uint32_t>, x, y);
4680 }
4681 
MaxAtomic(RValue<Pointer<Int>> x,RValue<Int> y,std::memory_order memoryOrder)4682 RValue<Int> MaxAtomic(RValue<Pointer<Int>> x, RValue<Int> y, std::memory_order memoryOrder)
4683 {
4684 	RR_DEBUG_INFO_UPDATE_LOC();
4685 	return Call(atomicMax<int32_t>, x, y);
4686 }
4687 
MaxAtomic(RValue<Pointer<UInt>> x,RValue<UInt> y,std::memory_order memoryOrder)4688 RValue<UInt> MaxAtomic(RValue<Pointer<UInt>> x, RValue<UInt> y, std::memory_order memoryOrder)
4689 {
4690 	RR_DEBUG_INFO_UPDATE_LOC();
4691 	return Call(atomicMax<uint32_t>, x, y);
4692 }
4693 
EmitDebugLocation()4694 void EmitDebugLocation()
4695 {
4696 #ifdef ENABLE_RR_DEBUG_INFO
4697 	emitPrintLocation(getCallerBacktrace());
4698 #endif  // ENABLE_RR_DEBUG_INFO
4699 }
EmitDebugVariable(Value * value)4700 void EmitDebugVariable(Value *value) {}
FlushDebug()4701 void FlushDebug() {}
4702 
4703 namespace {
4704 namespace coro {
4705 
4706 // Instance data per generated coroutine
4707 // This is the "handle" type used for Coroutine functions
4708 // Lifetime: from yield to when CoroutineEntryDestroy generated function is called.
4709 struct CoroutineData
4710 {
4711 	bool useInternalScheduler = false;
4712 	bool done = false;        // the coroutine should stop at the next yield()
4713 	bool terminated = false;  // the coroutine has finished.
4714 	bool inRoutine = false;   // is the coroutine currently executing?
4715 	marl::Scheduler::Fiber *mainFiber = nullptr;
4716 	marl::Scheduler::Fiber *routineFiber = nullptr;
4717 	void *promisePtr = nullptr;
4718 };
4719 
createCoroutineData()4720 CoroutineData *createCoroutineData()
4721 {
4722 	return new CoroutineData{};
4723 }
4724 
destroyCoroutineData(CoroutineData * coroData)4725 void destroyCoroutineData(CoroutineData *coroData)
4726 {
4727 	delete coroData;
4728 }
4729 
4730 // suspend() pauses execution of the coroutine, and resumes execution from the
4731 // caller's call to await().
4732 // Returns true if await() is called again, or false if coroutine_destroy()
4733 // is called.
suspend(Nucleus::CoroutineHandle handle)4734 bool suspend(Nucleus::CoroutineHandle handle)
4735 {
4736 	auto *coroData = reinterpret_cast<CoroutineData *>(handle);
4737 	ASSERT(marl::Scheduler::Fiber::current() == coroData->routineFiber);
4738 	ASSERT(coroData->inRoutine);
4739 	coroData->inRoutine = false;
4740 	coroData->mainFiber->notify();
4741 	while(!coroData->inRoutine)
4742 	{
4743 		coroData->routineFiber->wait();
4744 	}
4745 	return !coroData->done;
4746 }
4747 
4748 // resume() is called by await(), blocking until the coroutine calls yield()
4749 // or the coroutine terminates.
resume(Nucleus::CoroutineHandle handle)4750 void resume(Nucleus::CoroutineHandle handle)
4751 {
4752 	auto *coroData = reinterpret_cast<CoroutineData *>(handle);
4753 	ASSERT(marl::Scheduler::Fiber::current() == coroData->mainFiber);
4754 	ASSERT(!coroData->inRoutine);
4755 	coroData->inRoutine = true;
4756 	coroData->routineFiber->notify();
4757 	while(coroData->inRoutine)
4758 	{
4759 		coroData->mainFiber->wait();
4760 	}
4761 }
4762 
4763 // stop() is called by coroutine_destroy(), signalling that it's done, then blocks
4764 // until the coroutine ends, and deletes the coroutine data.
stop(Nucleus::CoroutineHandle handle)4765 void stop(Nucleus::CoroutineHandle handle)
4766 {
4767 	auto *coroData = reinterpret_cast<CoroutineData *>(handle);
4768 	ASSERT(marl::Scheduler::Fiber::current() == coroData->mainFiber);
4769 	ASSERT(!coroData->inRoutine);
4770 	if(!coroData->terminated)
4771 	{
4772 		coroData->done = true;
4773 		coroData->inRoutine = true;
4774 		coroData->routineFiber->notify();
4775 		while(!coroData->terminated)
4776 		{
4777 			coroData->mainFiber->wait();
4778 		}
4779 	}
4780 	if(coroData->useInternalScheduler)
4781 	{
4782 		::getOrCreateScheduler().unbind();
4783 	}
4784 	coro::destroyCoroutineData(coroData);  // free the coroutine data.
4785 }
4786 
4787 namespace detail {
4788 thread_local rr::Nucleus::CoroutineHandle coroHandle{};
4789 }  // namespace detail
4790 
setHandleParam(Nucleus::CoroutineHandle handle)4791 void setHandleParam(Nucleus::CoroutineHandle handle)
4792 {
4793 	ASSERT(!detail::coroHandle);
4794 	detail::coroHandle = handle;
4795 }
4796 
getHandleParam()4797 Nucleus::CoroutineHandle getHandleParam()
4798 {
4799 	ASSERT(detail::coroHandle);
4800 	auto handle = detail::coroHandle;
4801 	detail::coroHandle = {};
4802 	return handle;
4803 }
4804 
isDone(Nucleus::CoroutineHandle handle)4805 bool isDone(Nucleus::CoroutineHandle handle)
4806 {
4807 	auto *coroData = reinterpret_cast<CoroutineData *>(handle);
4808 	return coroData->done;
4809 }
4810 
setPromisePtr(Nucleus::CoroutineHandle handle,void * promisePtr)4811 void setPromisePtr(Nucleus::CoroutineHandle handle, void *promisePtr)
4812 {
4813 	auto *coroData = reinterpret_cast<CoroutineData *>(handle);
4814 	coroData->promisePtr = promisePtr;
4815 }
4816 
getPromisePtr(Nucleus::CoroutineHandle handle)4817 void *getPromisePtr(Nucleus::CoroutineHandle handle)
4818 {
4819 	auto *coroData = reinterpret_cast<CoroutineData *>(handle);
4820 	return coroData->promisePtr;
4821 }
4822 
4823 }  // namespace coro
4824 }  // namespace
4825 
4826 // Used to generate coroutines.
4827 // Lifetime: from yield to acquireCoroutine
4828 class CoroutineGenerator
4829 {
4830 public:
CoroutineGenerator()4831 	CoroutineGenerator()
4832 	{
4833 	}
4834 
4835 	// Inserts instructions at the top of the current function to make it a coroutine.
generateCoroutineBegin()4836 	void generateCoroutineBegin()
4837 	{
4838 		// Begin building the main coroutine_begin() function.
4839 		// We insert these instructions at the top of the entry node,
4840 		// before existing reactor-generated instructions.
4841 
4842 		//    CoroutineHandle coroutine_begin(<Arguments>)
4843 		//    {
4844 		//        this->handle = coro::getHandleParam();
4845 		//
4846 		//        YieldType promise;
4847 		//        coro::setPromisePtr(handle, &promise); // For await
4848 		//
4849 		//        ... <REACTOR CODE> ...
4850 		//
4851 
4852 		//        this->handle = coro::getHandleParam();
4853 		this->handle = sz::Call(::function, ::entryBlock, coro::getHandleParam);
4854 
4855 		//        YieldType promise;
4856 		//        coro::setPromisePtr(handle, &promise); // For await
4857 		this->promise = sz::allocateStackVariable(::function, T(::coroYieldType));
4858 		sz::Call(::function, ::entryBlock, coro::setPromisePtr, this->handle, this->promise);
4859 	}
4860 
4861 	// Adds instructions for Yield() calls at the current location of the main coroutine function.
generateYield(Value * val)4862 	void generateYield(Value *val)
4863 	{
4864 		//        ... <REACTOR CODE> ...
4865 		//
4866 		//        promise = val;
4867 		//        if (!coro::suspend(handle)) {
4868 		//            return false; // coroutine has been stopped by the caller.
4869 		//        }
4870 		//
4871 		//        ... <REACTOR CODE> ...
4872 
4873 		//        promise = val;
4874 		Nucleus::createStore(val, V(this->promise), ::coroYieldType);
4875 
4876 		//        if (!coro::suspend(handle)) {
4877 		auto result = sz::Call(::function, ::basicBlock, coro::suspend, this->handle);
4878 		auto doneBlock = Nucleus::createBasicBlock();
4879 		auto resumeBlock = Nucleus::createBasicBlock();
4880 		Nucleus::createCondBr(V(result), resumeBlock, doneBlock);
4881 
4882 		//            return false; // coroutine has been stopped by the caller.
4883 		::basicBlock = doneBlock;
4884 		Nucleus::createRetVoid();  // coroutine return value is ignored.
4885 
4886 		//        ... <REACTOR CODE> ...
4887 		::basicBlock = resumeBlock;
4888 	}
4889 
4890 	using FunctionUniquePtr = std::unique_ptr<Ice::Cfg>;
4891 
4892 	// Generates the await function for the current coroutine.
4893 	// Cannot use Nucleus functions that modify ::function and ::basicBlock.
generateAwaitFunction()4894 	static FunctionUniquePtr generateAwaitFunction()
4895 	{
4896 		// bool coroutine_await(CoroutineHandle handle, YieldType* out)
4897 		// {
4898 		//     if (coro::isDone())
4899 		//     {
4900 		//         return false;
4901 		//     }
4902 		//     else // resume
4903 		//     {
4904 		//         YieldType* promise = coro::getPromisePtr(handle);
4905 		//         *out = *promise;
4906 		//         coro::resume(handle);
4907 		//         return true;
4908 		//     }
4909 		// }
4910 
4911 		// Subzero doesn't support bool types (IceType_i1) as return type
4912 		const Ice::Type ReturnType = Ice::IceType_i32;
4913 		const Ice::Type YieldPtrType = sz::getPointerType(T(::coroYieldType));
4914 		const Ice::Type HandleType = sz::getPointerType(Ice::IceType_void);
4915 
4916 		Ice::Cfg *awaitFunc = sz::createFunction(::context, ReturnType, std::vector<Ice::Type>{ HandleType, YieldPtrType });
4917 		Ice::CfgLocalAllocatorScope scopedAlloc{ awaitFunc };
4918 
4919 		Ice::Variable *handle = awaitFunc->getArgs()[0];
4920 		Ice::Variable *outPtr = awaitFunc->getArgs()[1];
4921 
4922 		auto doneBlock = awaitFunc->makeNode();
4923 		{
4924 			//         return false;
4925 			Ice::InstRet *ret = Ice::InstRet::create(awaitFunc, ::context->getConstantInt32(0));
4926 			doneBlock->appendInst(ret);
4927 		}
4928 
4929 		auto resumeBlock = awaitFunc->makeNode();
4930 		{
4931 			//         YieldType* promise = coro::getPromisePtr(handle);
4932 			Ice::Variable *promise = sz::Call(awaitFunc, resumeBlock, coro::getPromisePtr, handle);
4933 
4934 			//         *out = *promise;
4935 			// Load promise value
4936 			Ice::Variable *promiseVal = awaitFunc->makeVariable(T(::coroYieldType));
4937 			auto load = Ice::InstLoad::create(awaitFunc, promiseVal, promise);
4938 			resumeBlock->appendInst(load);
4939 			// Then store it in output param
4940 			auto store = Ice::InstStore::create(awaitFunc, promiseVal, outPtr);
4941 			resumeBlock->appendInst(store);
4942 
4943 			//         coro::resume(handle);
4944 			sz::Call(awaitFunc, resumeBlock, coro::resume, handle);
4945 
4946 			//         return true;
4947 			Ice::InstRet *ret = Ice::InstRet::create(awaitFunc, ::context->getConstantInt32(1));
4948 			resumeBlock->appendInst(ret);
4949 		}
4950 
4951 		//     if (coro::isDone())
4952 		//     {
4953 		//         <doneBlock>
4954 		//     }
4955 		//     else // resume
4956 		//     {
4957 		//         <resumeBlock>
4958 		//     }
4959 		Ice::CfgNode *bb = awaitFunc->getEntryNode();
4960 		Ice::Variable *done = sz::Call(awaitFunc, bb, coro::isDone, handle);
4961 		auto br = Ice::InstBr::create(awaitFunc, done, doneBlock, resumeBlock);
4962 		bb->appendInst(br);
4963 
4964 		return FunctionUniquePtr{ awaitFunc };
4965 	}
4966 
4967 	// Generates the destroy function for the current coroutine.
4968 	// Cannot use Nucleus functions that modify ::function and ::basicBlock.
generateDestroyFunction()4969 	static FunctionUniquePtr generateDestroyFunction()
4970 	{
4971 		// void coroutine_destroy(Nucleus::CoroutineHandle handle)
4972 		// {
4973 		//     coro::stop(handle); // signal and wait for coroutine to stop, and delete coroutine data
4974 		//     return;
4975 		// }
4976 
4977 		const Ice::Type ReturnType = Ice::IceType_void;
4978 		const Ice::Type HandleType = sz::getPointerType(Ice::IceType_void);
4979 
4980 		Ice::Cfg *destroyFunc = sz::createFunction(::context, ReturnType, std::vector<Ice::Type>{ HandleType });
4981 		Ice::CfgLocalAllocatorScope scopedAlloc{ destroyFunc };
4982 
4983 		Ice::Variable *handle = destroyFunc->getArgs()[0];
4984 
4985 		auto *bb = destroyFunc->getEntryNode();
4986 
4987 		//     coro::stop(handle); // signal and wait for coroutine to stop, and delete coroutine data
4988 		sz::Call(destroyFunc, bb, coro::stop, handle);
4989 
4990 		//     return;
4991 		Ice::InstRet *ret = Ice::InstRet::create(destroyFunc);
4992 		bb->appendInst(ret);
4993 
4994 		return FunctionUniquePtr{ destroyFunc };
4995 	}
4996 
4997 private:
4998 	Ice::Variable *handle{};
4999 	Ice::Variable *promise{};
5000 };
5001 
invokeCoroutineBegin(std::function<Nucleus::CoroutineHandle ()> beginFunc)5002 static Nucleus::CoroutineHandle invokeCoroutineBegin(std::function<Nucleus::CoroutineHandle()> beginFunc)
5003 {
5004 	// This doubles up as our coroutine handle
5005 	auto coroData = coro::createCoroutineData();
5006 
5007 	coroData->useInternalScheduler = (marl::Scheduler::get() == nullptr);
5008 	if(coroData->useInternalScheduler)
5009 	{
5010 		::getOrCreateScheduler().bind();
5011 	}
5012 
5013 	auto run = [=] {
5014 		// Store handle in TLS so that the coroutine can grab it right away, before
5015 		// any fiber switch occurs.
5016 		coro::setHandleParam(coroData);
5017 
5018 		ASSERT(!coroData->routineFiber);
5019 		coroData->routineFiber = marl::Scheduler::Fiber::current();
5020 
5021 		beginFunc();
5022 
5023 		ASSERT(coroData->inRoutine);
5024 		coroData->done = true;        // coroutine is done.
5025 		coroData->terminated = true;  // signal that the coroutine data is ready for freeing.
5026 		coroData->inRoutine = false;
5027 		coroData->mainFiber->notify();
5028 	};
5029 
5030 	ASSERT(!coroData->mainFiber);
5031 	coroData->mainFiber = marl::Scheduler::Fiber::current();
5032 
5033 	// block until the first yield or coroutine end
5034 	ASSERT(!coroData->inRoutine);
5035 	coroData->inRoutine = true;
5036 	marl::schedule(marl::Task(run, marl::Task::Flags::SameThread));
5037 	while(coroData->inRoutine)
5038 	{
5039 		coroData->mainFiber->wait();
5040 	}
5041 
5042 	return coroData;
5043 }
5044 
createCoroutine(Type * yieldType,const std::vector<Type * > & params)5045 void Nucleus::createCoroutine(Type *yieldType, const std::vector<Type *> &params)
5046 {
5047 	// Start by creating a regular function
5048 	createFunction(yieldType, params);
5049 
5050 	// Save in case yield() is called
5051 	ASSERT(::coroYieldType == nullptr);  // Only one coroutine can be generated at once
5052 	::coroYieldType = yieldType;
5053 }
5054 
yield(Value * val)5055 void Nucleus::yield(Value *val)
5056 {
5057 	RR_DEBUG_INFO_UPDATE_LOC();
5058 	Variable::materializeAll();
5059 
5060 	// On first yield, we start generating coroutine functions
5061 	if(!::coroGen)
5062 	{
5063 		::coroGen = std::make_shared<CoroutineGenerator>();
5064 		::coroGen->generateCoroutineBegin();
5065 	}
5066 
5067 	ASSERT(::coroGen);
5068 	::coroGen->generateYield(val);
5069 }
5070 
coroutineEntryAwaitStub(Nucleus::CoroutineHandle,void * yieldValue)5071 static bool coroutineEntryAwaitStub(Nucleus::CoroutineHandle, void *yieldValue)
5072 {
5073 	return false;
5074 }
5075 
coroutineEntryDestroyStub(Nucleus::CoroutineHandle handle)5076 static void coroutineEntryDestroyStub(Nucleus::CoroutineHandle handle)
5077 {
5078 }
5079 
acquireCoroutine(const char * name,const Config::Edit * cfgEdit)5080 std::shared_ptr<Routine> Nucleus::acquireCoroutine(const char *name, const Config::Edit *cfgEdit /* = nullptr */)
5081 {
5082 	if(::coroGen)
5083 	{
5084 		// Finish generating coroutine functions
5085 		{
5086 			Ice::CfgLocalAllocatorScope scopedAlloc{ ::function };
5087 			finalizeFunction();
5088 		}
5089 
5090 		auto awaitFunc = ::coroGen->generateAwaitFunction();
5091 		auto destroyFunc = ::coroGen->generateDestroyFunction();
5092 
5093 		// At this point, we no longer need the CoroutineGenerator.
5094 		::coroGen.reset();
5095 		::coroYieldType = nullptr;
5096 
5097 		auto routine = rr::acquireRoutine({ ::function, awaitFunc.get(), destroyFunc.get() },
5098 		                                  { name, "await", "destroy" },
5099 		                                  cfgEdit);
5100 
5101 		return routine;
5102 	}
5103 	else
5104 	{
5105 		{
5106 			Ice::CfgLocalAllocatorScope scopedAlloc{ ::function };
5107 			finalizeFunction();
5108 		}
5109 
5110 		::coroYieldType = nullptr;
5111 
5112 		// Not an actual coroutine (no yields), so return stubs for await and destroy
5113 		auto routine = rr::acquireRoutine({ ::function }, { name }, cfgEdit);
5114 
5115 		auto routineImpl = std::static_pointer_cast<ELFMemoryStreamer>(routine);
5116 		routineImpl->setEntry(Nucleus::CoroutineEntryAwait, reinterpret_cast<const void *>(&coroutineEntryAwaitStub));
5117 		routineImpl->setEntry(Nucleus::CoroutineEntryDestroy, reinterpret_cast<const void *>(&coroutineEntryDestroyStub));
5118 		return routine;
5119 	}
5120 }
5121 
invokeCoroutineBegin(Routine & routine,std::function<Nucleus::CoroutineHandle ()> func)5122 Nucleus::CoroutineHandle Nucleus::invokeCoroutineBegin(Routine &routine, std::function<Nucleus::CoroutineHandle()> func)
5123 {
5124 	const bool isCoroutine = routine.getEntry(Nucleus::CoroutineEntryAwait) != reinterpret_cast<const void *>(&coroutineEntryAwaitStub);
5125 
5126 	if(isCoroutine)
5127 	{
5128 		return rr::invokeCoroutineBegin(func);
5129 	}
5130 	else
5131 	{
5132 		// For regular routines, just invoke the begin func directly
5133 		return func();
5134 	}
5135 }
5136 
5137 }  // namespace rr
5138