• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2010 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 package android.animation;
18 
19 import android.annotation.CallSuper;
20 import android.annotation.FloatRange;
21 import android.annotation.IntDef;
22 import android.annotation.MainThread;
23 import android.annotation.NonNull;
24 import android.annotation.Nullable;
25 import android.annotation.TestApi;
26 import android.compat.annotation.UnsupportedAppUsage;
27 import android.os.Build;
28 import android.os.Looper;
29 import android.os.SystemProperties;
30 import android.os.Trace;
31 import android.util.AndroidRuntimeException;
32 import android.util.Log;
33 import android.view.animation.AccelerateDecelerateInterpolator;
34 import android.view.animation.Animation;
35 import android.view.animation.AnimationUtils;
36 import android.view.animation.LinearInterpolator;
37 
38 import java.lang.annotation.Retention;
39 import java.lang.annotation.RetentionPolicy;
40 import java.lang.ref.WeakReference;
41 import java.util.ArrayList;
42 import java.util.HashMap;
43 import java.util.List;
44 
45 /**
46  * This class provides a simple timing engine for running animations
47  * which calculate animated values and set them on target objects.
48  *
49  * <p>There is a single timing pulse that all animations use. It runs in a
50  * custom handler to ensure that property changes happen on the UI thread.</p>
51  *
52  * <p>By default, ValueAnimator uses non-linear time interpolation, via the
53  * {@link AccelerateDecelerateInterpolator} class, which accelerates into and decelerates
54  * out of an animation. This behavior can be changed by calling
55  * {@link ValueAnimator#setInterpolator(TimeInterpolator)}.</p>
56  *
57  * <p>Animators can be created from either code or resource files. Here is an example
58  * of a ValueAnimator resource file:</p>
59  *
60  * {@sample development/samples/ApiDemos/res/anim/animator.xml ValueAnimatorResources}
61  *
62  * <p>Starting from API 23, it is also possible to use a combination of {@link PropertyValuesHolder}
63  * and {@link Keyframe} resource tags to create a multi-step animation.
64  * Note that you can specify explicit fractional values (from 0 to 1) for
65  * each keyframe to determine when, in the overall duration, the animation should arrive at that
66  * value. Alternatively, you can leave the fractions off and the keyframes will be equally
67  * distributed within the total duration:</p>
68  *
69  * {@sample development/samples/ApiDemos/res/anim/value_animator_pvh_kf.xml
70  * ValueAnimatorKeyframeResources}
71  *
72  * <div class="special reference">
73  * <h3>Developer Guides</h3>
74  * <p>For more information about animating with {@code ValueAnimator}, read the
75  * <a href="{@docRoot}guide/topics/graphics/prop-animation.html#value-animator">Property
76  * Animation</a> developer guide.</p>
77  * </div>
78  */
79 @SuppressWarnings("unchecked")
80 public class ValueAnimator extends Animator implements AnimationHandler.AnimationFrameCallback {
81     private static final String TAG = "ValueAnimator";
82     private static final boolean DEBUG = false;
83     private static final boolean TRACE_ANIMATION_FRACTION = SystemProperties.getBoolean(
84             "persist.debug.animator.trace_fraction", false);
85 
86     /**
87      * Internal constants
88      */
89 
90     /**
91      * System-wide animation scale.
92      *
93      * <p>To check whether animations are enabled system-wise use {@link #areAnimatorsEnabled()}.
94      */
95     @UnsupportedAppUsage(maxTargetSdk = Build.VERSION_CODES.P)
96     private static float sDurationScale = 1.0f;
97 
98     private static final ArrayList<WeakReference<DurationScaleChangeListener>>
99             sDurationScaleChangeListeners = new ArrayList<>();
100 
101     /**
102      * Internal variables
103      * NOTE: This object implements the clone() method, making a deep copy of any referenced
104      * objects. As other non-trivial fields are added to this class, make sure to add logic
105      * to clone() to make deep copies of them.
106      */
107 
108     /**
109      * The first time that the animation's animateFrame() method is called. This time is used to
110      * determine elapsed time (and therefore the elapsed fraction) in subsequent calls
111      * to animateFrame().
112      *
113      * Whenever mStartTime is set, you must also update mStartTimeCommitted.
114      */
115     long mStartTime = -1;
116 
117     /**
118      * When true, the start time has been firmly committed as a chosen reference point in
119      * time by which the progress of the animation will be evaluated.  When false, the
120      * start time may be updated when the first animation frame is committed so as
121      * to compensate for jank that may have occurred between when the start time was
122      * initialized and when the frame was actually drawn.
123      *
124      * This flag is generally set to false during the first frame of the animation
125      * when the animation playing state transitions from STOPPED to RUNNING or
126      * resumes after having been paused.  This flag is set to true when the start time
127      * is firmly committed and should not be further compensated for jank.
128      */
129     boolean mStartTimeCommitted;
130 
131     /**
132      * Set when setCurrentPlayTime() is called. If negative, animation is not currently seeked
133      * to a value.
134      */
135     float mSeekFraction = -1;
136 
137     /**
138      * Set on the next frame after pause() is called, used to calculate a new startTime
139      * or delayStartTime which allows the animator to continue from the point at which
140      * it was paused. If negative, has not yet been set.
141      */
142     private long mPauseTime;
143 
144     /**
145      * Set when an animator is resumed. This triggers logic in the next frame which
146      * actually resumes the animator.
147      */
148     private boolean mResumed = false;
149 
150     // The time interpolator to be used if none is set on the animation
151     private static final TimeInterpolator sDefaultInterpolator =
152             new AccelerateDecelerateInterpolator();
153 
154     /**
155      * Flag to indicate whether this animator is playing in reverse mode, specifically
156      * by being started or interrupted by a call to reverse(). This flag is different than
157      * mPlayingBackwards, which indicates merely whether the current iteration of the
158      * animator is playing in reverse. It is used in corner cases to determine proper end
159      * behavior.
160      */
161     private boolean mReversing;
162 
163     /**
164      * Tracks the overall fraction of the animation, ranging from 0 to mRepeatCount + 1
165      */
166     private float mOverallFraction = 0f;
167 
168     /**
169      * Tracks current elapsed/eased fraction, for querying in getAnimatedFraction().
170      * This is calculated by interpolating the fraction (range: [0, 1]) in the current iteration.
171      */
172     private float mCurrentFraction = 0f;
173 
174     /**
175      * Tracks the time (in milliseconds) when the last frame arrived.
176      */
177     private long mLastFrameTime = -1;
178 
179     /**
180      * Tracks the time (in milliseconds) when the first frame arrived. Note the frame may arrive
181      * during the start delay.
182      */
183     private long mFirstFrameTime = -1;
184 
185     /**
186      * Additional playing state to indicate whether an animator has been start()'d. There is
187      * some lag between a call to start() and the first animation frame. We should still note
188      * that the animation has been started, even if it's first animation frame has not yet
189      * happened, and reflect that state in isRunning().
190      * Note that delayed animations are different: they are not started until their first
191      * animation frame, which occurs after their delay elapses.
192      */
193     private boolean mRunning = false;
194 
195     /**
196      * Additional playing state to indicate whether an animator has been start()'d, whether or
197      * not there is a nonzero startDelay.
198      */
199     private boolean mStarted = false;
200 
201     /**
202      * Tracks whether we've notified listeners of the onAnimationStart() event. This can be
203      * complex to keep track of since we notify listeners at different times depending on
204      * startDelay and whether start() was called before end().
205      */
206     private boolean mStartListenersCalled = false;
207 
208     /**
209      * Flag that denotes whether the animation is set up and ready to go. Used to
210      * set up animation that has not yet been started.
211      */
212     boolean mInitialized = false;
213 
214     /**
215      * Flag that tracks whether animation has been requested to end.
216      */
217     private boolean mAnimationEndRequested = false;
218 
219     //
220     // Backing variables
221     //
222 
223     // How long the animation should last in ms
224     @UnsupportedAppUsage
225     private long mDuration = 300;
226 
227     // The amount of time in ms to delay starting the animation after start() is called. Note
228     // that this start delay is unscaled. When there is a duration scale set on the animator, the
229     // scaling factor will be applied to this delay.
230     private long mStartDelay = 0;
231 
232     // The number of times the animation will repeat. The default is 0, which means the animation
233     // will play only once
234     private int mRepeatCount = 0;
235 
236     /**
237      * The type of repetition that will occur when repeatMode is nonzero. RESTART means the
238      * animation will start from the beginning on every new cycle. REVERSE means the animation
239      * will reverse directions on each iteration.
240      */
241     private int mRepeatMode = RESTART;
242 
243     /**
244      * Whether or not the animator should register for its own animation callback to receive
245      * animation pulse.
246      */
247     private boolean mSelfPulse = true;
248 
249     /**
250      * Whether or not the animator has been requested to start without pulsing. This flag gets set
251      * in startWithoutPulsing(), and reset in start().
252      */
253     private boolean mSuppressSelfPulseRequested = false;
254 
255     /**
256      * The time interpolator to be used. The elapsed fraction of the animation will be passed
257      * through this interpolator to calculate the interpolated fraction, which is then used to
258      * calculate the animated values.
259      */
260     private TimeInterpolator mInterpolator = sDefaultInterpolator;
261 
262     /**
263      * The set of listeners to be sent events through the life of an animation.
264      */
265     ArrayList<AnimatorUpdateListener> mUpdateListeners = null;
266 
267     /**
268      * The property/value sets being animated.
269      */
270     PropertyValuesHolder[] mValues;
271 
272     /**
273      * A hashmap of the PropertyValuesHolder objects. This map is used to lookup animated values
274      * by property name during calls to getAnimatedValue(String).
275      */
276     HashMap<String, PropertyValuesHolder> mValuesMap;
277 
278     /**
279      * If set to non-negative value, this will override {@link #sDurationScale}.
280      */
281     private float mDurationScale = -1f;
282 
283     /**
284      * Animation handler used to schedule updates for this animation.
285      */
286     private AnimationHandler mAnimationHandler;
287 
288     /**
289      * Public constants
290      */
291 
292     /** @hide */
293     @IntDef({RESTART, REVERSE})
294     @Retention(RetentionPolicy.SOURCE)
295     public @interface RepeatMode {}
296 
297     /**
298      * When the animation reaches the end and <code>repeatCount</code> is INFINITE
299      * or a positive value, the animation restarts from the beginning.
300      */
301     public static final int RESTART = 1;
302     /**
303      * When the animation reaches the end and <code>repeatCount</code> is INFINITE
304      * or a positive value, the animation reverses direction on every iteration.
305      */
306     public static final int REVERSE = 2;
307     /**
308      * This value used used with the {@link #setRepeatCount(int)} property to repeat
309      * the animation indefinitely.
310      */
311     public static final int INFINITE = -1;
312 
313     /**
314      * @hide
315      */
316     @UnsupportedAppUsage
317     @TestApi
318     @MainThread
setDurationScale(@loatRangefrom = 0) float durationScale)319     public static void setDurationScale(@FloatRange(from = 0) float durationScale) {
320         sDurationScale = durationScale;
321         List<WeakReference<DurationScaleChangeListener>> listenerCopy;
322 
323         synchronized (sDurationScaleChangeListeners) {
324             listenerCopy = new ArrayList<>(sDurationScaleChangeListeners);
325         }
326 
327         for (WeakReference<DurationScaleChangeListener> listenerRef : listenerCopy) {
328             final DurationScaleChangeListener listener = listenerRef.get();
329             if (listener != null) {
330                 listener.onChanged(durationScale);
331             }
332         }
333     }
334 
335     /**
336      * Returns the system-wide scaling factor for Animator-based animations.
337      *
338      * This affects both the start delay and duration of all such animations. Setting to 0 will
339      * cause animations to end immediately. The default value is 1.0f.
340      *
341      * @return the duration scale.
342      */
343     @FloatRange(from = 0)
getDurationScale()344     public static float getDurationScale() {
345         return sDurationScale;
346     }
347 
348     /**
349      * Registers a {@link DurationScaleChangeListener}
350      *
351      * This listens for changes to the system-wide scaling factor for Animator-based animations.
352      * Listeners will be called on the main thread.
353      *
354      * @param listener the listener to register.
355      * @return true if the listener was registered.
356      */
registerDurationScaleChangeListener( @onNull DurationScaleChangeListener listener)357     public static boolean registerDurationScaleChangeListener(
358             @NonNull DurationScaleChangeListener listener) {
359         int posToReplace = -1;
360         synchronized (sDurationScaleChangeListeners) {
361             for (int i = 0; i < sDurationScaleChangeListeners.size(); i++) {
362                 final WeakReference<DurationScaleChangeListener> ref =
363                         sDurationScaleChangeListeners.get(i);
364                 if (ref.get() == null) {
365                     if (posToReplace == -1) {
366                         posToReplace = i;
367                     }
368                 } else if (ref.get() == listener) {
369                     return false;
370                 }
371             }
372             if (posToReplace != -1) {
373                 sDurationScaleChangeListeners.set(posToReplace, new WeakReference<>(listener));
374                 return true;
375             } else {
376                 return sDurationScaleChangeListeners.add(new WeakReference<>(listener));
377             }
378         }
379     }
380 
381     /**
382      * Unregisters a DurationScaleChangeListener.
383      *
384      * @see #registerDurationScaleChangeListener(DurationScaleChangeListener)
385      * @param listener the listener to unregister.
386      * @return true if the listener was unregistered.
387      */
unregisterDurationScaleChangeListener( @onNull DurationScaleChangeListener listener)388     public static boolean unregisterDurationScaleChangeListener(
389             @NonNull DurationScaleChangeListener listener) {
390         synchronized (sDurationScaleChangeListeners) {
391             WeakReference<DurationScaleChangeListener> listenerRefToRemove = null;
392             for (WeakReference<DurationScaleChangeListener> listenerRef :
393                     sDurationScaleChangeListeners) {
394                 if (listenerRef.get() == listener) {
395                     listenerRefToRemove = listenerRef;
396                     break;
397                 }
398             }
399             return sDurationScaleChangeListeners.remove(listenerRefToRemove);
400         }
401     }
402 
403     /**
404      * Returns whether animators are currently enabled, system-wide. By default, all
405      * animators are enabled. This can change if either the user sets a Developer Option
406      * to set the animator duration scale to 0 or by Battery Savery mode being enabled
407      * (which disables all animations).
408      *
409      * <p>Developers should not typically need to call this method, but should an app wish
410      * to show a different experience when animators are disabled, this return value
411      * can be used as a decider of which experience to offer.
412      *
413      * @return boolean Whether animators are currently enabled. The default value is
414      * <code>true</code>.
415      */
areAnimatorsEnabled()416     public static boolean areAnimatorsEnabled() {
417         return !(sDurationScale == 0);
418     }
419 
420     /**
421      * Creates a new ValueAnimator object. This default constructor is primarily for
422      * use internally; the factory methods which take parameters are more generally
423      * useful.
424      */
ValueAnimator()425     public ValueAnimator() {
426     }
427 
428     /**
429      * Constructs and returns a ValueAnimator that animates between int values. A single
430      * value implies that that value is the one being animated to. However, this is not typically
431      * useful in a ValueAnimator object because there is no way for the object to determine the
432      * starting value for the animation (unlike ObjectAnimator, which can derive that value
433      * from the target object and property being animated). Therefore, there should typically
434      * be two or more values.
435      *
436      * @param values A set of values that the animation will animate between over time.
437      * @return A ValueAnimator object that is set up to animate between the given values.
438      */
ofInt(int... values)439     public static ValueAnimator ofInt(int... values) {
440         ValueAnimator anim = new ValueAnimator();
441         anim.setIntValues(values);
442         return anim;
443     }
444 
445     /**
446      * Constructs and returns a ValueAnimator that animates between color values. A single
447      * value implies that that value is the one being animated to. However, this is not typically
448      * useful in a ValueAnimator object because there is no way for the object to determine the
449      * starting value for the animation (unlike ObjectAnimator, which can derive that value
450      * from the target object and property being animated). Therefore, there should typically
451      * be two or more values.
452      *
453      * @param values A set of values that the animation will animate between over time.
454      * @return A ValueAnimator object that is set up to animate between the given values.
455      */
ofArgb(int... values)456     public static ValueAnimator ofArgb(int... values) {
457         ValueAnimator anim = new ValueAnimator();
458         anim.setIntValues(values);
459         anim.setEvaluator(ArgbEvaluator.getInstance());
460         return anim;
461     }
462 
463     /**
464      * Constructs and returns a ValueAnimator that animates between float values. A single
465      * value implies that that value is the one being animated to. However, this is not typically
466      * useful in a ValueAnimator object because there is no way for the object to determine the
467      * starting value for the animation (unlike ObjectAnimator, which can derive that value
468      * from the target object and property being animated). Therefore, there should typically
469      * be two or more values.
470      *
471      * @param values A set of values that the animation will animate between over time.
472      * @return A ValueAnimator object that is set up to animate between the given values.
473      */
ofFloat(float... values)474     public static ValueAnimator ofFloat(float... values) {
475         ValueAnimator anim = new ValueAnimator();
476         anim.setFloatValues(values);
477         return anim;
478     }
479 
480     /**
481      * Constructs and returns a ValueAnimator that animates between the values
482      * specified in the PropertyValuesHolder objects.
483      *
484      * @param values A set of PropertyValuesHolder objects whose values will be animated
485      * between over time.
486      * @return A ValueAnimator object that is set up to animate between the given values.
487      */
ofPropertyValuesHolder(PropertyValuesHolder... values)488     public static ValueAnimator ofPropertyValuesHolder(PropertyValuesHolder... values) {
489         ValueAnimator anim = new ValueAnimator();
490         anim.setValues(values);
491         return anim;
492     }
493     /**
494      * Constructs and returns a ValueAnimator that animates between Object values. A single
495      * value implies that that value is the one being animated to. However, this is not typically
496      * useful in a ValueAnimator object because there is no way for the object to determine the
497      * starting value for the animation (unlike ObjectAnimator, which can derive that value
498      * from the target object and property being animated). Therefore, there should typically
499      * be two or more values.
500      *
501      * <p><strong>Note:</strong> The Object values are stored as references to the original
502      * objects, which means that changes to those objects after this method is called will
503      * affect the values on the animator. If the objects will be mutated externally after
504      * this method is called, callers should pass a copy of those objects instead.
505      *
506      * <p>Since ValueAnimator does not know how to animate between arbitrary Objects, this
507      * factory method also takes a TypeEvaluator object that the ValueAnimator will use
508      * to perform that interpolation.
509      *
510      * @param evaluator A TypeEvaluator that will be called on each animation frame to
511      * provide the ncessry interpolation between the Object values to derive the animated
512      * value.
513      * @param values A set of values that the animation will animate between over time.
514      * @return A ValueAnimator object that is set up to animate between the given values.
515      */
ofObject(TypeEvaluator evaluator, Object... values)516     public static ValueAnimator ofObject(TypeEvaluator evaluator, Object... values) {
517         ValueAnimator anim = new ValueAnimator();
518         anim.setObjectValues(values);
519         anim.setEvaluator(evaluator);
520         return anim;
521     }
522 
523     /**
524      * Sets int values that will be animated between. A single
525      * value implies that that value is the one being animated to. However, this is not typically
526      * useful in a ValueAnimator object because there is no way for the object to determine the
527      * starting value for the animation (unlike ObjectAnimator, which can derive that value
528      * from the target object and property being animated). Therefore, there should typically
529      * be two or more values.
530      *
531      * <p>If there are already multiple sets of values defined for this ValueAnimator via more
532      * than one PropertyValuesHolder object, this method will set the values for the first
533      * of those objects.</p>
534      *
535      * @param values A set of values that the animation will animate between over time.
536      */
setIntValues(int... values)537     public void setIntValues(int... values) {
538         if (values == null || values.length == 0) {
539             return;
540         }
541         if (mValues == null || mValues.length == 0) {
542             setValues(PropertyValuesHolder.ofInt("", values));
543         } else {
544             PropertyValuesHolder valuesHolder = mValues[0];
545             valuesHolder.setIntValues(values);
546         }
547         // New property/values/target should cause re-initialization prior to starting
548         mInitialized = false;
549     }
550 
551     /**
552      * Sets float values that will be animated between. A single
553      * value implies that that value is the one being animated to. However, this is not typically
554      * useful in a ValueAnimator object because there is no way for the object to determine the
555      * starting value for the animation (unlike ObjectAnimator, which can derive that value
556      * from the target object and property being animated). Therefore, there should typically
557      * be two or more values.
558      *
559      * <p>If there are already multiple sets of values defined for this ValueAnimator via more
560      * than one PropertyValuesHolder object, this method will set the values for the first
561      * of those objects.</p>
562      *
563      * @param values A set of values that the animation will animate between over time.
564      */
setFloatValues(float... values)565     public void setFloatValues(float... values) {
566         if (values == null || values.length == 0) {
567             return;
568         }
569         if (mValues == null || mValues.length == 0) {
570             setValues(PropertyValuesHolder.ofFloat("", values));
571         } else {
572             PropertyValuesHolder valuesHolder = mValues[0];
573             valuesHolder.setFloatValues(values);
574         }
575         // New property/values/target should cause re-initialization prior to starting
576         mInitialized = false;
577     }
578 
579     /**
580      * Sets the values to animate between for this animation. A single
581      * value implies that that value is the one being animated to. However, this is not typically
582      * useful in a ValueAnimator object because there is no way for the object to determine the
583      * starting value for the animation (unlike ObjectAnimator, which can derive that value
584      * from the target object and property being animated). Therefore, there should typically
585      * be two or more values.
586      *
587      * <p><strong>Note:</strong> The Object values are stored as references to the original
588      * objects, which means that changes to those objects after this method is called will
589      * affect the values on the animator. If the objects will be mutated externally after
590      * this method is called, callers should pass a copy of those objects instead.
591      *
592      * <p>If there are already multiple sets of values defined for this ValueAnimator via more
593      * than one PropertyValuesHolder object, this method will set the values for the first
594      * of those objects.</p>
595      *
596      * <p>There should be a TypeEvaluator set on the ValueAnimator that knows how to interpolate
597      * between these value objects. ValueAnimator only knows how to interpolate between the
598      * primitive types specified in the other setValues() methods.</p>
599      *
600      * @param values The set of values to animate between.
601      */
setObjectValues(Object... values)602     public void setObjectValues(Object... values) {
603         if (values == null || values.length == 0) {
604             return;
605         }
606         if (mValues == null || mValues.length == 0) {
607             setValues(PropertyValuesHolder.ofObject("", null, values));
608         } else {
609             PropertyValuesHolder valuesHolder = mValues[0];
610             valuesHolder.setObjectValues(values);
611         }
612         // New property/values/target should cause re-initialization prior to starting
613         mInitialized = false;
614     }
615 
616     /**
617      * Sets the values, per property, being animated between. This function is called internally
618      * by the constructors of ValueAnimator that take a list of values. But a ValueAnimator can
619      * be constructed without values and this method can be called to set the values manually
620      * instead.
621      *
622      * @param values The set of values, per property, being animated between.
623      */
setValues(PropertyValuesHolder... values)624     public void setValues(PropertyValuesHolder... values) {
625         int numValues = values.length;
626         mValues = values;
627         mValuesMap = new HashMap<String, PropertyValuesHolder>(numValues);
628         for (int i = 0; i < numValues; ++i) {
629             PropertyValuesHolder valuesHolder = values[i];
630             mValuesMap.put(valuesHolder.getPropertyName(), valuesHolder);
631         }
632         // New property/values/target should cause re-initialization prior to starting
633         mInitialized = false;
634     }
635 
636     /**
637      * Returns the values that this ValueAnimator animates between. These values are stored in
638      * PropertyValuesHolder objects, even if the ValueAnimator was created with a simple list
639      * of value objects instead.
640      *
641      * @return PropertyValuesHolder[] An array of PropertyValuesHolder objects which hold the
642      * values, per property, that define the animation.
643      */
getValues()644     public PropertyValuesHolder[] getValues() {
645         return mValues;
646     }
647 
648     /**
649      * This function is called immediately before processing the first animation
650      * frame of an animation. If there is a nonzero <code>startDelay</code>, the
651      * function is called after that delay ends.
652      * It takes care of the final initialization steps for the
653      * animation.
654      *
655      *  <p>Overrides of this method should call the superclass method to ensure
656      *  that internal mechanisms for the animation are set up correctly.</p>
657      */
658     @CallSuper
initAnimation()659     void initAnimation() {
660         if (!mInitialized) {
661             int numValues = mValues.length;
662             for (int i = 0; i < numValues; ++i) {
663                 mValues[i].init();
664             }
665             mInitialized = true;
666         }
667     }
668 
669     /**
670      * Sets the length of the animation. The default duration is 300 milliseconds.
671      *
672      * @param duration The length of the animation, in milliseconds. This value cannot
673      * be negative.
674      * @return ValueAnimator The object called with setDuration(). This return
675      * value makes it easier to compose statements together that construct and then set the
676      * duration, as in <code>ValueAnimator.ofInt(0, 10).setDuration(500).start()</code>.
677      */
678     @Override
setDuration(long duration)679     public ValueAnimator setDuration(long duration) {
680         if (duration < 0) {
681             throw new IllegalArgumentException("Animators cannot have negative duration: " +
682                     duration);
683         }
684         mDuration = duration;
685         return this;
686     }
687 
688     /**
689      * Overrides the global duration scale by a custom value.
690      *
691      * @param durationScale The duration scale to set; or {@code -1f} to use the global duration
692      *                      scale.
693      * @hide
694      */
overrideDurationScale(float durationScale)695     public void overrideDurationScale(float durationScale) {
696         mDurationScale = durationScale;
697     }
698 
resolveDurationScale()699     private float resolveDurationScale() {
700         return mDurationScale >= 0f ? mDurationScale : sDurationScale;
701     }
702 
getScaledDuration()703     private long getScaledDuration() {
704         return (long)(mDuration * resolveDurationScale());
705     }
706 
707     /**
708      * Gets the length of the animation. The default duration is 300 milliseconds.
709      *
710      * @return The length of the animation, in milliseconds.
711      */
712     @Override
getDuration()713     public long getDuration() {
714         return mDuration;
715     }
716 
717     @Override
getTotalDuration()718     public long getTotalDuration() {
719         if (mRepeatCount == INFINITE) {
720             return DURATION_INFINITE;
721         } else {
722             return mStartDelay + (mDuration * (mRepeatCount + 1));
723         }
724     }
725 
726     /**
727      * Sets the position of the animation to the specified point in time. This time should
728      * be between 0 and the total duration of the animation, including any repetition. If
729      * the animation has not yet been started, then it will not advance forward after it is
730      * set to this time; it will simply set the time to this value and perform any appropriate
731      * actions based on that time. If the animation is already running, then setCurrentPlayTime()
732      * will set the current playing time to this value and continue playing from that point.
733      *
734      * @param playTime The time, in milliseconds, to which the animation is advanced or rewound.
735      */
setCurrentPlayTime(long playTime)736     public void setCurrentPlayTime(long playTime) {
737         float fraction = mDuration > 0 ? (float) playTime / mDuration : 1;
738         setCurrentFraction(fraction);
739     }
740 
741     /**
742      * Sets the position of the animation to the specified fraction. This fraction should
743      * be between 0 and the total fraction of the animation, including any repetition. That is,
744      * a fraction of 0 will position the animation at the beginning, a value of 1 at the end,
745      * and a value of 2 at the end of a reversing animator that repeats once. If
746      * the animation has not yet been started, then it will not advance forward after it is
747      * set to this fraction; it will simply set the fraction to this value and perform any
748      * appropriate actions based on that fraction. If the animation is already running, then
749      * setCurrentFraction() will set the current fraction to this value and continue
750      * playing from that point. {@link Animator.AnimatorListener} events are not called
751      * due to changing the fraction; those events are only processed while the animation
752      * is running.
753      *
754      * @param fraction The fraction to which the animation is advanced or rewound. Values
755      * outside the range of 0 to the maximum fraction for the animator will be clamped to
756      * the correct range.
757      */
setCurrentFraction(float fraction)758     public void setCurrentFraction(float fraction) {
759         initAnimation();
760         fraction = clampFraction(fraction);
761         mStartTimeCommitted = true; // do not allow start time to be compensated for jank
762         if (isPulsingInternal()) {
763             long seekTime = (long) (getScaledDuration() * fraction);
764             long currentTime = AnimationUtils.currentAnimationTimeMillis();
765             // Only modify the start time when the animation is running. Seek fraction will ensure
766             // non-running animations skip to the correct start time.
767             mStartTime = currentTime - seekTime;
768         } else {
769             // If the animation loop hasn't started, or during start delay, the startTime will be
770             // adjusted once the delay has passed based on seek fraction.
771             mSeekFraction = fraction;
772         }
773         mOverallFraction = fraction;
774         final float currentIterationFraction = getCurrentIterationFraction(fraction, mReversing);
775         animateValue(currentIterationFraction);
776     }
777 
778     /**
779      * Calculates current iteration based on the overall fraction. The overall fraction will be
780      * in the range of [0, mRepeatCount + 1]. Both current iteration and fraction in the current
781      * iteration can be derived from it.
782      */
getCurrentIteration(float fraction)783     private int getCurrentIteration(float fraction) {
784         fraction = clampFraction(fraction);
785         // If the overall fraction is a positive integer, we consider the current iteration to be
786         // complete. In other words, the fraction for the current iteration would be 1, and the
787         // current iteration would be overall fraction - 1.
788         double iteration = Math.floor(fraction);
789         if (fraction == iteration && fraction > 0) {
790             iteration--;
791         }
792         return (int) iteration;
793     }
794 
795     /**
796      * Calculates the fraction of the current iteration, taking into account whether the animation
797      * should be played backwards. E.g. When the animation is played backwards in an iteration,
798      * the fraction for that iteration will go from 1f to 0f.
799      */
getCurrentIterationFraction(float fraction, boolean inReverse)800     private float getCurrentIterationFraction(float fraction, boolean inReverse) {
801         fraction = clampFraction(fraction);
802         int iteration = getCurrentIteration(fraction);
803         float currentFraction = fraction - iteration;
804         return shouldPlayBackward(iteration, inReverse) ? 1f - currentFraction : currentFraction;
805     }
806 
807     /**
808      * Clamps fraction into the correct range: [0, mRepeatCount + 1]. If repeat count is infinite,
809      * no upper bound will be set for the fraction.
810      *
811      * @param fraction fraction to be clamped
812      * @return fraction clamped into the range of [0, mRepeatCount + 1]
813      */
clampFraction(float fraction)814     private float clampFraction(float fraction) {
815         if (fraction < 0) {
816             fraction = 0;
817         } else if (mRepeatCount != INFINITE) {
818             fraction = Math.min(fraction, mRepeatCount + 1);
819         }
820         return fraction;
821     }
822 
823     /**
824      * Calculates the direction of animation playing (i.e. forward or backward), based on 1)
825      * whether the entire animation is being reversed, 2) repeat mode applied to the current
826      * iteration.
827      */
shouldPlayBackward(int iteration, boolean inReverse)828     private boolean shouldPlayBackward(int iteration, boolean inReverse) {
829         if (iteration > 0 && mRepeatMode == REVERSE &&
830                 (iteration < (mRepeatCount + 1) || mRepeatCount == INFINITE)) {
831             // if we were seeked to some other iteration in a reversing animator,
832             // figure out the correct direction to start playing based on the iteration
833             if (inReverse) {
834                 return (iteration % 2) == 0;
835             } else {
836                 return (iteration % 2) != 0;
837             }
838         } else {
839             return inReverse;
840         }
841     }
842 
843     /**
844      * Gets the current position of the animation in time, which is equal to the current
845      * time minus the time that the animation started. An animation that is not yet started will
846      * return a value of zero, unless the animation has has its play time set via
847      * {@link #setCurrentPlayTime(long)} or {@link #setCurrentFraction(float)}, in which case
848      * it will return the time that was set.
849      *
850      * @return The current position in time of the animation.
851      */
getCurrentPlayTime()852     public long getCurrentPlayTime() {
853         if (!mInitialized || (!mStarted && mSeekFraction < 0)) {
854             return 0;
855         }
856         if (mSeekFraction >= 0) {
857             return (long) (mDuration * mSeekFraction);
858         }
859         float durationScale = resolveDurationScale();
860         if (durationScale == 0f) {
861             durationScale = 1f;
862         }
863         return (long) ((AnimationUtils.currentAnimationTimeMillis() - mStartTime) / durationScale);
864     }
865 
866     /**
867      * The amount of time, in milliseconds, to delay starting the animation after
868      * {@link #start()} is called.
869      *
870      * @return the number of milliseconds to delay running the animation
871      */
872     @Override
getStartDelay()873     public long getStartDelay() {
874         return mStartDelay;
875     }
876 
877     /**
878      * The amount of time, in milliseconds, to delay starting the animation after
879      * {@link #start()} is called. Note that the start delay should always be non-negative. Any
880      * negative start delay will be clamped to 0 on N and above.
881      *
882      * @param startDelay The amount of the delay, in milliseconds
883      */
884     @Override
setStartDelay(long startDelay)885     public void setStartDelay(long startDelay) {
886         // Clamp start delay to non-negative range.
887         if (startDelay < 0) {
888             Log.w(TAG, "Start delay should always be non-negative");
889             startDelay = 0;
890         }
891         mStartDelay = startDelay;
892     }
893 
894     /**
895      * The amount of time, in milliseconds, between each frame of the animation. This is a
896      * requested time that the animation will attempt to honor, but the actual delay between
897      * frames may be different, depending on system load and capabilities. This is a static
898      * function because the same delay will be applied to all animations, since they are all
899      * run off of a single timing loop.
900      *
901      * The frame delay may be ignored when the animation system uses an external timing
902      * source, such as the display refresh rate (vsync), to govern animations.
903      *
904      * Note that this method should be called from the same thread that {@link #start()} is
905      * called in order to check the frame delay for that animation. A runtime exception will be
906      * thrown if the calling thread does not have a Looper.
907      *
908      * @return the requested time between frames, in milliseconds
909      */
getFrameDelay()910     public static long getFrameDelay() {
911         return AnimationHandler.getInstance().getFrameDelay();
912     }
913 
914     /**
915      * The amount of time, in milliseconds, between each frame of the animation. This is a
916      * requested time that the animation will attempt to honor, but the actual delay between
917      * frames may be different, depending on system load and capabilities. This is a static
918      * function because the same delay will be applied to all animations, since they are all
919      * run off of a single timing loop.
920      *
921      * The frame delay may be ignored when the animation system uses an external timing
922      * source, such as the display refresh rate (vsync), to govern animations.
923      *
924      * Note that this method should be called from the same thread that {@link #start()} is
925      * called in order to have the new frame delay take effect on that animation. A runtime
926      * exception will be thrown if the calling thread does not have a Looper.
927      *
928      * @param frameDelay the requested time between frames, in milliseconds
929      */
setFrameDelay(long frameDelay)930     public static void setFrameDelay(long frameDelay) {
931         AnimationHandler.getInstance().setFrameDelay(frameDelay);
932     }
933 
934     /**
935      * The most recent value calculated by this <code>ValueAnimator</code> when there is just one
936      * property being animated. This value is only sensible while the animation is running. The main
937      * purpose for this read-only property is to retrieve the value from the <code>ValueAnimator</code>
938      * during a call to {@link AnimatorUpdateListener#onAnimationUpdate(ValueAnimator)}, which
939      * is called during each animation frame, immediately after the value is calculated.
940      *
941      * @return animatedValue The value most recently calculated by this <code>ValueAnimator</code> for
942      * the single property being animated. If there are several properties being animated
943      * (specified by several PropertyValuesHolder objects in the constructor), this function
944      * returns the animated value for the first of those objects.
945      */
getAnimatedValue()946     public Object getAnimatedValue() {
947         if (mValues != null && mValues.length > 0) {
948             return mValues[0].getAnimatedValue();
949         }
950         // Shouldn't get here; should always have values unless ValueAnimator was set up wrong
951         return null;
952     }
953 
954     /**
955      * The most recent value calculated by this <code>ValueAnimator</code> for <code>propertyName</code>.
956      * The main purpose for this read-only property is to retrieve the value from the
957      * <code>ValueAnimator</code> during a call to
958      * {@link AnimatorUpdateListener#onAnimationUpdate(ValueAnimator)}, which
959      * is called during each animation frame, immediately after the value is calculated.
960      *
961      * @return animatedValue The value most recently calculated for the named property
962      * by this <code>ValueAnimator</code>.
963      */
getAnimatedValue(String propertyName)964     public Object getAnimatedValue(String propertyName) {
965         PropertyValuesHolder valuesHolder = mValuesMap.get(propertyName);
966         if (valuesHolder != null) {
967             return valuesHolder.getAnimatedValue();
968         } else {
969             // At least avoid crashing if called with bogus propertyName
970             return null;
971         }
972     }
973 
974     /**
975      * Sets how many times the animation should be repeated. If the repeat
976      * count is 0, the animation is never repeated. If the repeat count is
977      * greater than 0 or {@link #INFINITE}, the repeat mode will be taken
978      * into account. The repeat count is 0 by default.
979      *
980      * @param value the number of times the animation should be repeated
981      */
setRepeatCount(int value)982     public void setRepeatCount(int value) {
983         mRepeatCount = value;
984     }
985     /**
986      * Defines how many times the animation should repeat. The default value
987      * is 0.
988      *
989      * @return the number of times the animation should repeat, or {@link #INFINITE}
990      */
getRepeatCount()991     public int getRepeatCount() {
992         return mRepeatCount;
993     }
994 
995     /**
996      * Defines what this animation should do when it reaches the end. This
997      * setting is applied only when the repeat count is either greater than
998      * 0 or {@link #INFINITE}. Defaults to {@link #RESTART}.
999      *
1000      * @param value {@link #RESTART} or {@link #REVERSE}
1001      */
setRepeatMode(@epeatMode int value)1002     public void setRepeatMode(@RepeatMode int value) {
1003         mRepeatMode = value;
1004     }
1005 
1006     /**
1007      * Defines what this animation should do when it reaches the end.
1008      *
1009      * @return either one of {@link #REVERSE} or {@link #RESTART}
1010      */
1011     @RepeatMode
getRepeatMode()1012     public int getRepeatMode() {
1013         return mRepeatMode;
1014     }
1015 
1016     /**
1017      * Adds a listener to the set of listeners that are sent update events through the life of
1018      * an animation. This method is called on all listeners for every frame of the animation,
1019      * after the values for the animation have been calculated.
1020      *
1021      * @param listener the listener to be added to the current set of listeners for this animation.
1022      */
addUpdateListener(AnimatorUpdateListener listener)1023     public void addUpdateListener(AnimatorUpdateListener listener) {
1024         if (mUpdateListeners == null) {
1025             mUpdateListeners = new ArrayList<AnimatorUpdateListener>();
1026         }
1027         mUpdateListeners.add(listener);
1028     }
1029 
1030     /**
1031      * Removes all listeners from the set listening to frame updates for this animation.
1032      */
removeAllUpdateListeners()1033     public void removeAllUpdateListeners() {
1034         if (mUpdateListeners == null) {
1035             return;
1036         }
1037         mUpdateListeners.clear();
1038         mUpdateListeners = null;
1039     }
1040 
1041     /**
1042      * Removes a listener from the set listening to frame updates for this animation.
1043      *
1044      * @param listener the listener to be removed from the current set of update listeners
1045      * for this animation.
1046      */
removeUpdateListener(AnimatorUpdateListener listener)1047     public void removeUpdateListener(AnimatorUpdateListener listener) {
1048         if (mUpdateListeners == null) {
1049             return;
1050         }
1051         mUpdateListeners.remove(listener);
1052         if (mUpdateListeners.size() == 0) {
1053             mUpdateListeners = null;
1054         }
1055     }
1056 
1057 
1058     /**
1059      * The time interpolator used in calculating the elapsed fraction of this animation. The
1060      * interpolator determines whether the animation runs with linear or non-linear motion,
1061      * such as acceleration and deceleration. The default value is
1062      * {@link android.view.animation.AccelerateDecelerateInterpolator}
1063      *
1064      * @param value the interpolator to be used by this animation. A value of <code>null</code>
1065      * will result in linear interpolation.
1066      */
1067     @Override
setInterpolator(TimeInterpolator value)1068     public void setInterpolator(TimeInterpolator value) {
1069         if (value != null) {
1070             mInterpolator = value;
1071         } else {
1072             mInterpolator = new LinearInterpolator();
1073         }
1074     }
1075 
1076     /**
1077      * Returns the timing interpolator that this ValueAnimator uses.
1078      *
1079      * @return The timing interpolator for this ValueAnimator.
1080      */
1081     @Override
getInterpolator()1082     public TimeInterpolator getInterpolator() {
1083         return mInterpolator;
1084     }
1085 
1086     /**
1087      * The type evaluator to be used when calculating the animated values of this animation.
1088      * The system will automatically assign a float or int evaluator based on the type
1089      * of <code>startValue</code> and <code>endValue</code> in the constructor. But if these values
1090      * are not one of these primitive types, or if different evaluation is desired (such as is
1091      * necessary with int values that represent colors), a custom evaluator needs to be assigned.
1092      * For example, when running an animation on color values, the {@link ArgbEvaluator}
1093      * should be used to get correct RGB color interpolation.
1094      *
1095      * <p>If this ValueAnimator has only one set of values being animated between, this evaluator
1096      * will be used for that set. If there are several sets of values being animated, which is
1097      * the case if PropertyValuesHolder objects were set on the ValueAnimator, then the evaluator
1098      * is assigned just to the first PropertyValuesHolder object.</p>
1099      *
1100      * @param value the evaluator to be used this animation
1101      */
setEvaluator(TypeEvaluator value)1102     public void setEvaluator(TypeEvaluator value) {
1103         if (value != null && mValues != null && mValues.length > 0) {
1104             mValues[0].setEvaluator(value);
1105         }
1106     }
1107 
notifyStartListeners()1108     private void notifyStartListeners() {
1109         if (mListeners != null && !mStartListenersCalled) {
1110             ArrayList<AnimatorListener> tmpListeners =
1111                     (ArrayList<AnimatorListener>) mListeners.clone();
1112             int numListeners = tmpListeners.size();
1113             for (int i = 0; i < numListeners; ++i) {
1114                 tmpListeners.get(i).onAnimationStart(this, mReversing);
1115             }
1116         }
1117         mStartListenersCalled = true;
1118     }
1119 
1120     /**
1121      * Start the animation playing. This version of start() takes a boolean flag that indicates
1122      * whether the animation should play in reverse. The flag is usually false, but may be set
1123      * to true if called from the reverse() method.
1124      *
1125      * <p>The animation started by calling this method will be run on the thread that called
1126      * this method. This thread should have a Looper on it (a runtime exception will be thrown if
1127      * this is not the case). Also, if the animation will animate
1128      * properties of objects in the view hierarchy, then the calling thread should be the UI
1129      * thread for that view hierarchy.</p>
1130      *
1131      * @param playBackwards Whether the ValueAnimator should start playing in reverse.
1132      */
start(boolean playBackwards)1133     private void start(boolean playBackwards) {
1134         if (Looper.myLooper() == null) {
1135             throw new AndroidRuntimeException("Animators may only be run on Looper threads");
1136         }
1137         mReversing = playBackwards;
1138         mSelfPulse = !mSuppressSelfPulseRequested;
1139         // Special case: reversing from seek-to-0 should act as if not seeked at all.
1140         if (playBackwards && mSeekFraction != -1 && mSeekFraction != 0) {
1141             if (mRepeatCount == INFINITE) {
1142                 // Calculate the fraction of the current iteration.
1143                 float fraction = (float) (mSeekFraction - Math.floor(mSeekFraction));
1144                 mSeekFraction = 1 - fraction;
1145             } else {
1146                 mSeekFraction = 1 + mRepeatCount - mSeekFraction;
1147             }
1148         }
1149         mStarted = true;
1150         mPaused = false;
1151         mRunning = false;
1152         mAnimationEndRequested = false;
1153         // Resets mLastFrameTime when start() is called, so that if the animation was running,
1154         // calling start() would put the animation in the
1155         // started-but-not-yet-reached-the-first-frame phase.
1156         mLastFrameTime = -1;
1157         mFirstFrameTime = -1;
1158         mStartTime = -1;
1159         addAnimationCallback(0);
1160 
1161         if (mStartDelay == 0 || mSeekFraction >= 0 || mReversing) {
1162             // If there's no start delay, init the animation and notify start listeners right away
1163             // to be consistent with the previous behavior. Otherwise, postpone this until the first
1164             // frame after the start delay.
1165             startAnimation();
1166             if (mSeekFraction == -1) {
1167                 // No seek, start at play time 0. Note that the reason we are not using fraction 0
1168                 // is because for animations with 0 duration, we want to be consistent with pre-N
1169                 // behavior: skip to the final value immediately.
1170                 setCurrentPlayTime(0);
1171             } else {
1172                 setCurrentFraction(mSeekFraction);
1173             }
1174         }
1175     }
1176 
startWithoutPulsing(boolean inReverse)1177     void startWithoutPulsing(boolean inReverse) {
1178         mSuppressSelfPulseRequested = true;
1179         if (inReverse) {
1180             reverse();
1181         } else {
1182             start();
1183         }
1184         mSuppressSelfPulseRequested = false;
1185     }
1186 
1187     @Override
start()1188     public void start() {
1189         start(false);
1190     }
1191 
1192     @Override
cancel()1193     public void cancel() {
1194         if (Looper.myLooper() == null) {
1195             throw new AndroidRuntimeException("Animators may only be run on Looper threads");
1196         }
1197 
1198         // If end has already been requested, through a previous end() or cancel() call, no-op
1199         // until animation starts again.
1200         if (mAnimationEndRequested) {
1201             return;
1202         }
1203 
1204         // Only cancel if the animation is actually running or has been started and is about
1205         // to run
1206         // Only notify listeners if the animator has actually started
1207         if ((mStarted || mRunning) && mListeners != null) {
1208             if (!mRunning) {
1209                 // If it's not yet running, then start listeners weren't called. Call them now.
1210                 notifyStartListeners();
1211             }
1212             ArrayList<AnimatorListener> tmpListeners =
1213                     (ArrayList<AnimatorListener>) mListeners.clone();
1214             for (AnimatorListener listener : tmpListeners) {
1215                 listener.onAnimationCancel(this);
1216             }
1217         }
1218         endAnimation();
1219 
1220     }
1221 
1222     @Override
end()1223     public void end() {
1224         if (Looper.myLooper() == null) {
1225             throw new AndroidRuntimeException("Animators may only be run on Looper threads");
1226         }
1227         if (!mRunning) {
1228             // Special case if the animation has not yet started; get it ready for ending
1229             startAnimation();
1230             mStarted = true;
1231         } else if (!mInitialized) {
1232             initAnimation();
1233         }
1234         animateValue(shouldPlayBackward(mRepeatCount, mReversing) ? 0f : 1f);
1235         endAnimation();
1236     }
1237 
1238     @Override
resume()1239     public void resume() {
1240         if (Looper.myLooper() == null) {
1241             throw new AndroidRuntimeException("Animators may only be resumed from the same " +
1242                     "thread that the animator was started on");
1243         }
1244         if (mPaused && !mResumed) {
1245             mResumed = true;
1246             if (mPauseTime > 0) {
1247                 addAnimationCallback(0);
1248             }
1249         }
1250         super.resume();
1251     }
1252 
1253     @Override
pause()1254     public void pause() {
1255         boolean previouslyPaused = mPaused;
1256         super.pause();
1257         if (!previouslyPaused && mPaused) {
1258             mPauseTime = -1;
1259             mResumed = false;
1260         }
1261     }
1262 
1263     @Override
isRunning()1264     public boolean isRunning() {
1265         return mRunning;
1266     }
1267 
1268     @Override
isStarted()1269     public boolean isStarted() {
1270         return mStarted;
1271     }
1272 
1273     /**
1274      * Plays the ValueAnimator in reverse. If the animation is already running,
1275      * it will stop itself and play backwards from the point reached when reverse was called.
1276      * If the animation is not currently running, then it will start from the end and
1277      * play backwards. This behavior is only set for the current animation; future playing
1278      * of the animation will use the default behavior of playing forward.
1279      */
1280     @Override
reverse()1281     public void reverse() {
1282         if (isPulsingInternal()) {
1283             long currentTime = AnimationUtils.currentAnimationTimeMillis();
1284             long currentPlayTime = currentTime - mStartTime;
1285             long timeLeft = getScaledDuration() - currentPlayTime;
1286             mStartTime = currentTime - timeLeft;
1287             mStartTimeCommitted = true; // do not allow start time to be compensated for jank
1288             mReversing = !mReversing;
1289         } else if (mStarted) {
1290             mReversing = !mReversing;
1291             end();
1292         } else {
1293             start(true);
1294         }
1295     }
1296 
1297     /**
1298      * @hide
1299      */
1300     @Override
canReverse()1301     public boolean canReverse() {
1302         return true;
1303     }
1304 
1305     /**
1306      * Called internally to end an animation by removing it from the animations list. Must be
1307      * called on the UI thread.
1308      */
endAnimation()1309     private void endAnimation() {
1310         if (mAnimationEndRequested) {
1311             return;
1312         }
1313         removeAnimationCallback();
1314 
1315         mAnimationEndRequested = true;
1316         mPaused = false;
1317         boolean notify = (mStarted || mRunning) && mListeners != null;
1318         if (notify && !mRunning) {
1319             // If it's not yet running, then start listeners weren't called. Call them now.
1320             notifyStartListeners();
1321         }
1322         mRunning = false;
1323         mStarted = false;
1324         mStartListenersCalled = false;
1325         mLastFrameTime = -1;
1326         mFirstFrameTime = -1;
1327         mStartTime = -1;
1328         if (notify && mListeners != null) {
1329             ArrayList<AnimatorListener> tmpListeners =
1330                     (ArrayList<AnimatorListener>) mListeners.clone();
1331             int numListeners = tmpListeners.size();
1332             for (int i = 0; i < numListeners; ++i) {
1333                 tmpListeners.get(i).onAnimationEnd(this, mReversing);
1334             }
1335         }
1336         // mReversing needs to be reset *after* notifying the listeners for the end callbacks.
1337         mReversing = false;
1338         if (Trace.isTagEnabled(Trace.TRACE_TAG_VIEW)) {
1339             Trace.asyncTraceEnd(Trace.TRACE_TAG_VIEW, getNameForTrace(),
1340                     System.identityHashCode(this));
1341         }
1342     }
1343 
1344     /**
1345      * Called internally to start an animation by adding it to the active animations list. Must be
1346      * called on the UI thread.
1347      */
startAnimation()1348     private void startAnimation() {
1349         if (Trace.isTagEnabled(Trace.TRACE_TAG_VIEW)) {
1350             Trace.asyncTraceBegin(Trace.TRACE_TAG_VIEW, getNameForTrace(),
1351                     System.identityHashCode(this));
1352         }
1353 
1354         mAnimationEndRequested = false;
1355         initAnimation();
1356         mRunning = true;
1357         if (mSeekFraction >= 0) {
1358             mOverallFraction = mSeekFraction;
1359         } else {
1360             mOverallFraction = 0f;
1361         }
1362         if (mListeners != null) {
1363             notifyStartListeners();
1364         }
1365     }
1366 
1367     /**
1368      * Internal only: This tracks whether the animation has gotten on the animation loop. Note
1369      * this is different than {@link #isRunning()} in that the latter tracks the time after start()
1370      * is called (or after start delay if any), which may be before the animation loop starts.
1371      */
isPulsingInternal()1372     private boolean isPulsingInternal() {
1373         return mLastFrameTime >= 0;
1374     }
1375 
1376     /**
1377      * Returns the name of this animator for debugging purposes.
1378      */
getNameForTrace()1379     String getNameForTrace() {
1380         return "animator";
1381     }
1382 
1383     /**
1384      * Applies an adjustment to the animation to compensate for jank between when
1385      * the animation first ran and when the frame was drawn.
1386      * @hide
1387      */
commitAnimationFrame(long frameTime)1388     public void commitAnimationFrame(long frameTime) {
1389         if (!mStartTimeCommitted) {
1390             mStartTimeCommitted = true;
1391             long adjustment = frameTime - mLastFrameTime;
1392             if (adjustment > 0) {
1393                 mStartTime += adjustment;
1394                 if (DEBUG) {
1395                     Log.d(TAG, "Adjusted start time by " + adjustment + " ms: " + toString());
1396                 }
1397             }
1398         }
1399     }
1400 
1401     /**
1402      * This internal function processes a single animation frame for a given animation. The
1403      * currentTime parameter is the timing pulse sent by the handler, used to calculate the
1404      * elapsed duration, and therefore
1405      * the elapsed fraction, of the animation. The return value indicates whether the animation
1406      * should be ended (which happens when the elapsed time of the animation exceeds the
1407      * animation's duration, including the repeatCount).
1408      *
1409      * @param currentTime The current time, as tracked by the static timing handler
1410      * @return true if the animation's duration, including any repetitions due to
1411      * <code>repeatCount</code> has been exceeded and the animation should be ended.
1412      */
animateBasedOnTime(long currentTime)1413     boolean animateBasedOnTime(long currentTime) {
1414         boolean done = false;
1415         if (mRunning) {
1416             final long scaledDuration = getScaledDuration();
1417             final float fraction = scaledDuration > 0 ?
1418                     (float)(currentTime - mStartTime) / scaledDuration : 1f;
1419             final float lastFraction = mOverallFraction;
1420             final boolean newIteration = (int) fraction > (int) lastFraction;
1421             final boolean lastIterationFinished = (fraction >= mRepeatCount + 1) &&
1422                     (mRepeatCount != INFINITE);
1423             if (scaledDuration == 0) {
1424                 // 0 duration animator, ignore the repeat count and skip to the end
1425                 done = true;
1426             } else if (newIteration && !lastIterationFinished) {
1427                 // Time to repeat
1428                 if (mListeners != null) {
1429                     int numListeners = mListeners.size();
1430                     for (int i = 0; i < numListeners; ++i) {
1431                         mListeners.get(i).onAnimationRepeat(this);
1432                     }
1433                 }
1434             } else if (lastIterationFinished) {
1435                 done = true;
1436             }
1437             mOverallFraction = clampFraction(fraction);
1438             float currentIterationFraction = getCurrentIterationFraction(
1439                     mOverallFraction, mReversing);
1440             animateValue(currentIterationFraction);
1441         }
1442         return done;
1443     }
1444 
1445     /**
1446      * Internal use only.
1447      *
1448      * This method does not modify any fields of the animation. It should be called when seeking
1449      * in an AnimatorSet. When the last play time and current play time are of different repeat
1450      * iterations,
1451      * {@link android.view.animation.Animation.AnimationListener#onAnimationRepeat(Animation)}
1452      * will be called.
1453      */
1454     @Override
animateBasedOnPlayTime(long currentPlayTime, long lastPlayTime, boolean inReverse)1455     void animateBasedOnPlayTime(long currentPlayTime, long lastPlayTime, boolean inReverse) {
1456         if (currentPlayTime < 0 || lastPlayTime < 0) {
1457             throw new UnsupportedOperationException("Error: Play time should never be negative.");
1458         }
1459 
1460         initAnimation();
1461         // Check whether repeat callback is needed only when repeat count is non-zero
1462         if (mRepeatCount > 0) {
1463             int iteration = (int) (currentPlayTime / mDuration);
1464             int lastIteration = (int) (lastPlayTime / mDuration);
1465 
1466             // Clamp iteration to [0, mRepeatCount]
1467             iteration = Math.min(iteration, mRepeatCount);
1468             lastIteration = Math.min(lastIteration, mRepeatCount);
1469 
1470             if (iteration != lastIteration) {
1471                 if (mListeners != null) {
1472                     int numListeners = mListeners.size();
1473                     for (int i = 0; i < numListeners; ++i) {
1474                         mListeners.get(i).onAnimationRepeat(this);
1475                     }
1476                 }
1477             }
1478         }
1479 
1480         if (mRepeatCount != INFINITE && currentPlayTime >= (mRepeatCount + 1) * mDuration) {
1481             skipToEndValue(inReverse);
1482         } else {
1483             // Find the current fraction:
1484             float fraction = currentPlayTime / (float) mDuration;
1485             fraction = getCurrentIterationFraction(fraction, inReverse);
1486             animateValue(fraction);
1487         }
1488     }
1489 
1490     /**
1491      * Internal use only.
1492      * Skips the animation value to end/start, depending on whether the play direction is forward
1493      * or backward.
1494      *
1495      * @param inReverse whether the end value is based on a reverse direction. If yes, this is
1496      *                  equivalent to skip to start value in a forward playing direction.
1497      */
skipToEndValue(boolean inReverse)1498     void skipToEndValue(boolean inReverse) {
1499         initAnimation();
1500         float endFraction = inReverse ? 0f : 1f;
1501         if (mRepeatCount % 2 == 1 && mRepeatMode == REVERSE) {
1502             // This would end on fraction = 0
1503             endFraction = 0f;
1504         }
1505         animateValue(endFraction);
1506     }
1507 
1508     @Override
isInitialized()1509     boolean isInitialized() {
1510         return mInitialized;
1511     }
1512 
1513     /**
1514      * Processes a frame of the animation, adjusting the start time if needed.
1515      *
1516      * @param frameTime The frame time.
1517      * @return true if the animation has ended.
1518      * @hide
1519      */
doAnimationFrame(long frameTime)1520     public final boolean doAnimationFrame(long frameTime) {
1521         if (mStartTime < 0) {
1522             // First frame. If there is start delay, start delay count down will happen *after* this
1523             // frame.
1524             mStartTime = mReversing
1525                     ? frameTime
1526                     : frameTime + (long) (mStartDelay * resolveDurationScale());
1527         }
1528 
1529         // Handle pause/resume
1530         if (mPaused) {
1531             mPauseTime = frameTime;
1532             removeAnimationCallback();
1533             return false;
1534         } else if (mResumed) {
1535             mResumed = false;
1536             if (mPauseTime > 0) {
1537                 // Offset by the duration that the animation was paused
1538                 mStartTime += (frameTime - mPauseTime);
1539             }
1540         }
1541 
1542         if (!mRunning) {
1543             // If not running, that means the animation is in the start delay phase of a forward
1544             // running animation. In the case of reversing, we want to run start delay in the end.
1545             if (mStartTime > frameTime && mSeekFraction == -1) {
1546                 // This is when no seek fraction is set during start delay. If developers change the
1547                 // seek fraction during the delay, animation will start from the seeked position
1548                 // right away.
1549                 return false;
1550             } else {
1551                 // If mRunning is not set by now, that means non-zero start delay,
1552                 // no seeking, not reversing. At this point, start delay has passed.
1553                 mRunning = true;
1554                 startAnimation();
1555             }
1556         }
1557 
1558         if (mLastFrameTime < 0) {
1559             if (mSeekFraction >= 0) {
1560                 long seekTime = (long) (getScaledDuration() * mSeekFraction);
1561                 mStartTime = frameTime - seekTime;
1562                 mSeekFraction = -1;
1563             }
1564             mStartTimeCommitted = false; // allow start time to be compensated for jank
1565         }
1566         mLastFrameTime = frameTime;
1567         // The frame time might be before the start time during the first frame of
1568         // an animation.  The "current time" must always be on or after the start
1569         // time to avoid animating frames at negative time intervals.  In practice, this
1570         // is very rare and only happens when seeking backwards.
1571         final long currentTime = Math.max(frameTime, mStartTime);
1572         boolean finished = animateBasedOnTime(currentTime);
1573 
1574         if (finished) {
1575             endAnimation();
1576         }
1577         return finished;
1578     }
1579 
1580     @Override
pulseAnimationFrame(long frameTime)1581     boolean pulseAnimationFrame(long frameTime) {
1582         if (mSelfPulse) {
1583             // Pulse animation frame will *always* be after calling start(). If mSelfPulse isn't
1584             // set to false at this point, that means child animators did not call super's start().
1585             // This can happen when the Animator is just a non-animating wrapper around a real
1586             // functional animation. In this case, we can't really pulse a frame into the animation,
1587             // because the animation cannot necessarily be properly initialized (i.e. no start/end
1588             // values set).
1589             return false;
1590         }
1591         return doAnimationFrame(frameTime);
1592     }
1593 
addOneShotCommitCallback()1594     private void addOneShotCommitCallback() {
1595         if (!mSelfPulse) {
1596             return;
1597         }
1598         getAnimationHandler().addOneShotCommitCallback(this);
1599     }
1600 
removeAnimationCallback()1601     private void removeAnimationCallback() {
1602         if (!mSelfPulse) {
1603             return;
1604         }
1605         getAnimationHandler().removeCallback(this);
1606     }
1607 
addAnimationCallback(long delay)1608     private void addAnimationCallback(long delay) {
1609         if (!mSelfPulse) {
1610             return;
1611         }
1612         getAnimationHandler().addAnimationFrameCallback(this, delay);
1613     }
1614 
1615     /**
1616      * Returns the current animation fraction, which is the elapsed/interpolated fraction used in
1617      * the most recent frame update on the animation.
1618      *
1619      * @return Elapsed/interpolated fraction of the animation.
1620      */
getAnimatedFraction()1621     public float getAnimatedFraction() {
1622         return mCurrentFraction;
1623     }
1624 
1625     /**
1626      * This method is called with the elapsed fraction of the animation during every
1627      * animation frame. This function turns the elapsed fraction into an interpolated fraction
1628      * and then into an animated value (from the evaluator. The function is called mostly during
1629      * animation updates, but it is also called when the <code>end()</code>
1630      * function is called, to set the final value on the property.
1631      *
1632      * <p>Overrides of this method must call the superclass to perform the calculation
1633      * of the animated value.</p>
1634      *
1635      * @param fraction The elapsed fraction of the animation.
1636      */
1637     @CallSuper
1638     @UnsupportedAppUsage
animateValue(float fraction)1639     void animateValue(float fraction) {
1640         if (TRACE_ANIMATION_FRACTION) {
1641             Trace.traceCounter(Trace.TRACE_TAG_VIEW, getNameForTrace() + hashCode(),
1642                     (int) (fraction * 1000));
1643         }
1644         fraction = mInterpolator.getInterpolation(fraction);
1645         mCurrentFraction = fraction;
1646         int numValues = mValues.length;
1647         for (int i = 0; i < numValues; ++i) {
1648             mValues[i].calculateValue(fraction);
1649         }
1650         if (mUpdateListeners != null) {
1651             int numListeners = mUpdateListeners.size();
1652             for (int i = 0; i < numListeners; ++i) {
1653                 mUpdateListeners.get(i).onAnimationUpdate(this);
1654             }
1655         }
1656     }
1657 
1658     @Override
clone()1659     public ValueAnimator clone() {
1660         final ValueAnimator anim = (ValueAnimator) super.clone();
1661         if (mUpdateListeners != null) {
1662             anim.mUpdateListeners = new ArrayList<AnimatorUpdateListener>(mUpdateListeners);
1663         }
1664         anim.mSeekFraction = -1;
1665         anim.mReversing = false;
1666         anim.mInitialized = false;
1667         anim.mStarted = false;
1668         anim.mRunning = false;
1669         anim.mPaused = false;
1670         anim.mResumed = false;
1671         anim.mStartListenersCalled = false;
1672         anim.mStartTime = -1;
1673         anim.mStartTimeCommitted = false;
1674         anim.mAnimationEndRequested = false;
1675         anim.mPauseTime = -1;
1676         anim.mLastFrameTime = -1;
1677         anim.mFirstFrameTime = -1;
1678         anim.mOverallFraction = 0;
1679         anim.mCurrentFraction = 0;
1680         anim.mSelfPulse = true;
1681         anim.mSuppressSelfPulseRequested = false;
1682 
1683         PropertyValuesHolder[] oldValues = mValues;
1684         if (oldValues != null) {
1685             int numValues = oldValues.length;
1686             anim.mValues = new PropertyValuesHolder[numValues];
1687             anim.mValuesMap = new HashMap<String, PropertyValuesHolder>(numValues);
1688             for (int i = 0; i < numValues; ++i) {
1689                 PropertyValuesHolder newValuesHolder = oldValues[i].clone();
1690                 anim.mValues[i] = newValuesHolder;
1691                 anim.mValuesMap.put(newValuesHolder.getPropertyName(), newValuesHolder);
1692             }
1693         }
1694         return anim;
1695     }
1696 
1697     /**
1698      * Implementors of this interface can add themselves as update listeners
1699      * to an <code>ValueAnimator</code> instance to receive callbacks on every animation
1700      * frame, after the current frame's values have been calculated for that
1701      * <code>ValueAnimator</code>.
1702      */
1703     public static interface AnimatorUpdateListener {
1704         /**
1705          * <p>Notifies the occurrence of another frame of the animation.</p>
1706          *
1707          * @param animation The animation which was repeated.
1708          */
onAnimationUpdate(@onNull ValueAnimator animation)1709         void onAnimationUpdate(@NonNull ValueAnimator animation);
1710 
1711     }
1712 
1713     /**
1714      * Return the number of animations currently running.
1715      *
1716      * Used by StrictMode internally to annotate violations.
1717      * May be called on arbitrary threads!
1718      *
1719      * @hide
1720      */
getCurrentAnimationsCount()1721     public static int getCurrentAnimationsCount() {
1722         return AnimationHandler.getAnimationCount();
1723     }
1724 
1725     @Override
toString()1726     public String toString() {
1727         String returnVal = "ValueAnimator@" + Integer.toHexString(hashCode());
1728         if (mValues != null) {
1729             for (int i = 0; i < mValues.length; ++i) {
1730                 returnVal += "\n    " + mValues[i].toString();
1731             }
1732         }
1733         return returnVal;
1734     }
1735 
1736     /**
1737      * <p>Whether or not the ValueAnimator is allowed to run asynchronously off of
1738      * the UI thread. This is a hint that informs the ValueAnimator that it is
1739      * OK to run the animation off-thread, however ValueAnimator may decide
1740      * that it must run the animation on the UI thread anyway. For example if there
1741      * is an {@link AnimatorUpdateListener} the animation will run on the UI thread,
1742      * regardless of the value of this hint.</p>
1743      *
1744      * <p>Regardless of whether or not the animation runs asynchronously, all
1745      * listener callbacks will be called on the UI thread.</p>
1746      *
1747      * <p>To be able to use this hint the following must be true:</p>
1748      * <ol>
1749      * <li>{@link #getAnimatedFraction()} is not needed (it will return undefined values).</li>
1750      * <li>The animator is immutable while {@link #isStarted()} is true. Requests
1751      *    to change values, duration, delay, etc... may be ignored.</li>
1752      * <li>Lifecycle callback events may be asynchronous. Events such as
1753      *    {@link Animator.AnimatorListener#onAnimationEnd(Animator)} or
1754      *    {@link Animator.AnimatorListener#onAnimationRepeat(Animator)} may end up delayed
1755      *    as they must be posted back to the UI thread, and any actions performed
1756      *    by those callbacks (such as starting new animations) will not happen
1757      *    in the same frame.</li>
1758      * <li>State change requests ({@link #cancel()}, {@link #end()}, {@link #reverse()}, etc...)
1759      *    may be asynchronous. It is guaranteed that all state changes that are
1760      *    performed on the UI thread in the same frame will be applied as a single
1761      *    atomic update, however that frame may be the current frame,
1762      *    the next frame, or some future frame. This will also impact the observed
1763      *    state of the Animator. For example, {@link #isStarted()} may still return true
1764      *    after a call to {@link #end()}. Using the lifecycle callbacks is preferred over
1765      *    queries to {@link #isStarted()}, {@link #isRunning()}, and {@link #isPaused()}
1766      *    for this reason.</li>
1767      * </ol>
1768      * @hide
1769      */
1770     @Override
setAllowRunningAsynchronously(boolean mayRunAsync)1771     public void setAllowRunningAsynchronously(boolean mayRunAsync) {
1772         // It is up to subclasses to support this, if they can.
1773     }
1774 
1775     /**
1776      * @return The {@link AnimationHandler} that will be used to schedule updates for this animator.
1777      * @hide
1778      */
getAnimationHandler()1779     public AnimationHandler getAnimationHandler() {
1780         return mAnimationHandler != null ? mAnimationHandler : AnimationHandler.getInstance();
1781     }
1782 
1783     /**
1784      * Sets the animation handler used to schedule updates for this animator or {@code null} to use
1785      * the default handler.
1786      * @hide
1787      */
setAnimationHandler(@ullable AnimationHandler animationHandler)1788     public void setAnimationHandler(@Nullable AnimationHandler animationHandler) {
1789         mAnimationHandler = animationHandler;
1790     }
1791 
1792     /**
1793      * Listener interface for the system-wide scaling factor for Animator-based animations.
1794      *
1795      * @see #registerDurationScaleChangeListener(DurationScaleChangeListener)
1796      * @see #unregisterDurationScaleChangeListener(DurationScaleChangeListener)
1797      */
1798     public interface DurationScaleChangeListener {
1799         /**
1800          * Called when the duration scale changes.
1801          * @param scale the duration scale
1802          */
onChanged(@loatRangefrom = 0) float scale)1803         void onChanged(@FloatRange(from = 0) float scale);
1804     }
1805 }
1806