1 /* 2 * Copyright (C) 2010 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 package android.animation; 18 19 import android.annotation.CallSuper; 20 import android.annotation.FloatRange; 21 import android.annotation.IntDef; 22 import android.annotation.MainThread; 23 import android.annotation.NonNull; 24 import android.annotation.Nullable; 25 import android.annotation.TestApi; 26 import android.compat.annotation.UnsupportedAppUsage; 27 import android.os.Build; 28 import android.os.Looper; 29 import android.os.SystemProperties; 30 import android.os.Trace; 31 import android.util.AndroidRuntimeException; 32 import android.util.Log; 33 import android.view.animation.AccelerateDecelerateInterpolator; 34 import android.view.animation.Animation; 35 import android.view.animation.AnimationUtils; 36 import android.view.animation.LinearInterpolator; 37 38 import java.lang.annotation.Retention; 39 import java.lang.annotation.RetentionPolicy; 40 import java.lang.ref.WeakReference; 41 import java.util.ArrayList; 42 import java.util.HashMap; 43 import java.util.List; 44 45 /** 46 * This class provides a simple timing engine for running animations 47 * which calculate animated values and set them on target objects. 48 * 49 * <p>There is a single timing pulse that all animations use. It runs in a 50 * custom handler to ensure that property changes happen on the UI thread.</p> 51 * 52 * <p>By default, ValueAnimator uses non-linear time interpolation, via the 53 * {@link AccelerateDecelerateInterpolator} class, which accelerates into and decelerates 54 * out of an animation. This behavior can be changed by calling 55 * {@link ValueAnimator#setInterpolator(TimeInterpolator)}.</p> 56 * 57 * <p>Animators can be created from either code or resource files. Here is an example 58 * of a ValueAnimator resource file:</p> 59 * 60 * {@sample development/samples/ApiDemos/res/anim/animator.xml ValueAnimatorResources} 61 * 62 * <p>Starting from API 23, it is also possible to use a combination of {@link PropertyValuesHolder} 63 * and {@link Keyframe} resource tags to create a multi-step animation. 64 * Note that you can specify explicit fractional values (from 0 to 1) for 65 * each keyframe to determine when, in the overall duration, the animation should arrive at that 66 * value. Alternatively, you can leave the fractions off and the keyframes will be equally 67 * distributed within the total duration:</p> 68 * 69 * {@sample development/samples/ApiDemos/res/anim/value_animator_pvh_kf.xml 70 * ValueAnimatorKeyframeResources} 71 * 72 * <div class="special reference"> 73 * <h3>Developer Guides</h3> 74 * <p>For more information about animating with {@code ValueAnimator}, read the 75 * <a href="{@docRoot}guide/topics/graphics/prop-animation.html#value-animator">Property 76 * Animation</a> developer guide.</p> 77 * </div> 78 */ 79 @SuppressWarnings("unchecked") 80 public class ValueAnimator extends Animator implements AnimationHandler.AnimationFrameCallback { 81 private static final String TAG = "ValueAnimator"; 82 private static final boolean DEBUG = false; 83 private static final boolean TRACE_ANIMATION_FRACTION = SystemProperties.getBoolean( 84 "persist.debug.animator.trace_fraction", false); 85 86 /** 87 * Internal constants 88 */ 89 90 /** 91 * System-wide animation scale. 92 * 93 * <p>To check whether animations are enabled system-wise use {@link #areAnimatorsEnabled()}. 94 */ 95 @UnsupportedAppUsage(maxTargetSdk = Build.VERSION_CODES.P) 96 private static float sDurationScale = 1.0f; 97 98 private static final ArrayList<WeakReference<DurationScaleChangeListener>> 99 sDurationScaleChangeListeners = new ArrayList<>(); 100 101 /** 102 * Internal variables 103 * NOTE: This object implements the clone() method, making a deep copy of any referenced 104 * objects. As other non-trivial fields are added to this class, make sure to add logic 105 * to clone() to make deep copies of them. 106 */ 107 108 /** 109 * The first time that the animation's animateFrame() method is called. This time is used to 110 * determine elapsed time (and therefore the elapsed fraction) in subsequent calls 111 * to animateFrame(). 112 * 113 * Whenever mStartTime is set, you must also update mStartTimeCommitted. 114 */ 115 long mStartTime = -1; 116 117 /** 118 * When true, the start time has been firmly committed as a chosen reference point in 119 * time by which the progress of the animation will be evaluated. When false, the 120 * start time may be updated when the first animation frame is committed so as 121 * to compensate for jank that may have occurred between when the start time was 122 * initialized and when the frame was actually drawn. 123 * 124 * This flag is generally set to false during the first frame of the animation 125 * when the animation playing state transitions from STOPPED to RUNNING or 126 * resumes after having been paused. This flag is set to true when the start time 127 * is firmly committed and should not be further compensated for jank. 128 */ 129 boolean mStartTimeCommitted; 130 131 /** 132 * Set when setCurrentPlayTime() is called. If negative, animation is not currently seeked 133 * to a value. 134 */ 135 float mSeekFraction = -1; 136 137 /** 138 * Set on the next frame after pause() is called, used to calculate a new startTime 139 * or delayStartTime which allows the animator to continue from the point at which 140 * it was paused. If negative, has not yet been set. 141 */ 142 private long mPauseTime; 143 144 /** 145 * Set when an animator is resumed. This triggers logic in the next frame which 146 * actually resumes the animator. 147 */ 148 private boolean mResumed = false; 149 150 // The time interpolator to be used if none is set on the animation 151 private static final TimeInterpolator sDefaultInterpolator = 152 new AccelerateDecelerateInterpolator(); 153 154 /** 155 * Flag to indicate whether this animator is playing in reverse mode, specifically 156 * by being started or interrupted by a call to reverse(). This flag is different than 157 * mPlayingBackwards, which indicates merely whether the current iteration of the 158 * animator is playing in reverse. It is used in corner cases to determine proper end 159 * behavior. 160 */ 161 private boolean mReversing; 162 163 /** 164 * Tracks the overall fraction of the animation, ranging from 0 to mRepeatCount + 1 165 */ 166 private float mOverallFraction = 0f; 167 168 /** 169 * Tracks current elapsed/eased fraction, for querying in getAnimatedFraction(). 170 * This is calculated by interpolating the fraction (range: [0, 1]) in the current iteration. 171 */ 172 private float mCurrentFraction = 0f; 173 174 /** 175 * Tracks the time (in milliseconds) when the last frame arrived. 176 */ 177 private long mLastFrameTime = -1; 178 179 /** 180 * Tracks the time (in milliseconds) when the first frame arrived. Note the frame may arrive 181 * during the start delay. 182 */ 183 private long mFirstFrameTime = -1; 184 185 /** 186 * Additional playing state to indicate whether an animator has been start()'d. There is 187 * some lag between a call to start() and the first animation frame. We should still note 188 * that the animation has been started, even if it's first animation frame has not yet 189 * happened, and reflect that state in isRunning(). 190 * Note that delayed animations are different: they are not started until their first 191 * animation frame, which occurs after their delay elapses. 192 */ 193 private boolean mRunning = false; 194 195 /** 196 * Additional playing state to indicate whether an animator has been start()'d, whether or 197 * not there is a nonzero startDelay. 198 */ 199 private boolean mStarted = false; 200 201 /** 202 * Tracks whether we've notified listeners of the onAnimationStart() event. This can be 203 * complex to keep track of since we notify listeners at different times depending on 204 * startDelay and whether start() was called before end(). 205 */ 206 private boolean mStartListenersCalled = false; 207 208 /** 209 * Flag that denotes whether the animation is set up and ready to go. Used to 210 * set up animation that has not yet been started. 211 */ 212 boolean mInitialized = false; 213 214 /** 215 * Flag that tracks whether animation has been requested to end. 216 */ 217 private boolean mAnimationEndRequested = false; 218 219 // 220 // Backing variables 221 // 222 223 // How long the animation should last in ms 224 @UnsupportedAppUsage 225 private long mDuration = 300; 226 227 // The amount of time in ms to delay starting the animation after start() is called. Note 228 // that this start delay is unscaled. When there is a duration scale set on the animator, the 229 // scaling factor will be applied to this delay. 230 private long mStartDelay = 0; 231 232 // The number of times the animation will repeat. The default is 0, which means the animation 233 // will play only once 234 private int mRepeatCount = 0; 235 236 /** 237 * The type of repetition that will occur when repeatMode is nonzero. RESTART means the 238 * animation will start from the beginning on every new cycle. REVERSE means the animation 239 * will reverse directions on each iteration. 240 */ 241 private int mRepeatMode = RESTART; 242 243 /** 244 * Whether or not the animator should register for its own animation callback to receive 245 * animation pulse. 246 */ 247 private boolean mSelfPulse = true; 248 249 /** 250 * Whether or not the animator has been requested to start without pulsing. This flag gets set 251 * in startWithoutPulsing(), and reset in start(). 252 */ 253 private boolean mSuppressSelfPulseRequested = false; 254 255 /** 256 * The time interpolator to be used. The elapsed fraction of the animation will be passed 257 * through this interpolator to calculate the interpolated fraction, which is then used to 258 * calculate the animated values. 259 */ 260 private TimeInterpolator mInterpolator = sDefaultInterpolator; 261 262 /** 263 * The set of listeners to be sent events through the life of an animation. 264 */ 265 ArrayList<AnimatorUpdateListener> mUpdateListeners = null; 266 267 /** 268 * The property/value sets being animated. 269 */ 270 PropertyValuesHolder[] mValues; 271 272 /** 273 * A hashmap of the PropertyValuesHolder objects. This map is used to lookup animated values 274 * by property name during calls to getAnimatedValue(String). 275 */ 276 HashMap<String, PropertyValuesHolder> mValuesMap; 277 278 /** 279 * If set to non-negative value, this will override {@link #sDurationScale}. 280 */ 281 private float mDurationScale = -1f; 282 283 /** 284 * Animation handler used to schedule updates for this animation. 285 */ 286 private AnimationHandler mAnimationHandler; 287 288 /** 289 * Public constants 290 */ 291 292 /** @hide */ 293 @IntDef({RESTART, REVERSE}) 294 @Retention(RetentionPolicy.SOURCE) 295 public @interface RepeatMode {} 296 297 /** 298 * When the animation reaches the end and <code>repeatCount</code> is INFINITE 299 * or a positive value, the animation restarts from the beginning. 300 */ 301 public static final int RESTART = 1; 302 /** 303 * When the animation reaches the end and <code>repeatCount</code> is INFINITE 304 * or a positive value, the animation reverses direction on every iteration. 305 */ 306 public static final int REVERSE = 2; 307 /** 308 * This value used used with the {@link #setRepeatCount(int)} property to repeat 309 * the animation indefinitely. 310 */ 311 public static final int INFINITE = -1; 312 313 /** 314 * @hide 315 */ 316 @UnsupportedAppUsage 317 @TestApi 318 @MainThread setDurationScale(@loatRangefrom = 0) float durationScale)319 public static void setDurationScale(@FloatRange(from = 0) float durationScale) { 320 sDurationScale = durationScale; 321 List<WeakReference<DurationScaleChangeListener>> listenerCopy; 322 323 synchronized (sDurationScaleChangeListeners) { 324 listenerCopy = new ArrayList<>(sDurationScaleChangeListeners); 325 } 326 327 for (WeakReference<DurationScaleChangeListener> listenerRef : listenerCopy) { 328 final DurationScaleChangeListener listener = listenerRef.get(); 329 if (listener != null) { 330 listener.onChanged(durationScale); 331 } 332 } 333 } 334 335 /** 336 * Returns the system-wide scaling factor for Animator-based animations. 337 * 338 * This affects both the start delay and duration of all such animations. Setting to 0 will 339 * cause animations to end immediately. The default value is 1.0f. 340 * 341 * @return the duration scale. 342 */ 343 @FloatRange(from = 0) getDurationScale()344 public static float getDurationScale() { 345 return sDurationScale; 346 } 347 348 /** 349 * Registers a {@link DurationScaleChangeListener} 350 * 351 * This listens for changes to the system-wide scaling factor for Animator-based animations. 352 * Listeners will be called on the main thread. 353 * 354 * @param listener the listener to register. 355 * @return true if the listener was registered. 356 */ registerDurationScaleChangeListener( @onNull DurationScaleChangeListener listener)357 public static boolean registerDurationScaleChangeListener( 358 @NonNull DurationScaleChangeListener listener) { 359 int posToReplace = -1; 360 synchronized (sDurationScaleChangeListeners) { 361 for (int i = 0; i < sDurationScaleChangeListeners.size(); i++) { 362 final WeakReference<DurationScaleChangeListener> ref = 363 sDurationScaleChangeListeners.get(i); 364 if (ref.get() == null) { 365 if (posToReplace == -1) { 366 posToReplace = i; 367 } 368 } else if (ref.get() == listener) { 369 return false; 370 } 371 } 372 if (posToReplace != -1) { 373 sDurationScaleChangeListeners.set(posToReplace, new WeakReference<>(listener)); 374 return true; 375 } else { 376 return sDurationScaleChangeListeners.add(new WeakReference<>(listener)); 377 } 378 } 379 } 380 381 /** 382 * Unregisters a DurationScaleChangeListener. 383 * 384 * @see #registerDurationScaleChangeListener(DurationScaleChangeListener) 385 * @param listener the listener to unregister. 386 * @return true if the listener was unregistered. 387 */ unregisterDurationScaleChangeListener( @onNull DurationScaleChangeListener listener)388 public static boolean unregisterDurationScaleChangeListener( 389 @NonNull DurationScaleChangeListener listener) { 390 synchronized (sDurationScaleChangeListeners) { 391 WeakReference<DurationScaleChangeListener> listenerRefToRemove = null; 392 for (WeakReference<DurationScaleChangeListener> listenerRef : 393 sDurationScaleChangeListeners) { 394 if (listenerRef.get() == listener) { 395 listenerRefToRemove = listenerRef; 396 break; 397 } 398 } 399 return sDurationScaleChangeListeners.remove(listenerRefToRemove); 400 } 401 } 402 403 /** 404 * Returns whether animators are currently enabled, system-wide. By default, all 405 * animators are enabled. This can change if either the user sets a Developer Option 406 * to set the animator duration scale to 0 or by Battery Savery mode being enabled 407 * (which disables all animations). 408 * 409 * <p>Developers should not typically need to call this method, but should an app wish 410 * to show a different experience when animators are disabled, this return value 411 * can be used as a decider of which experience to offer. 412 * 413 * @return boolean Whether animators are currently enabled. The default value is 414 * <code>true</code>. 415 */ areAnimatorsEnabled()416 public static boolean areAnimatorsEnabled() { 417 return !(sDurationScale == 0); 418 } 419 420 /** 421 * Creates a new ValueAnimator object. This default constructor is primarily for 422 * use internally; the factory methods which take parameters are more generally 423 * useful. 424 */ ValueAnimator()425 public ValueAnimator() { 426 } 427 428 /** 429 * Constructs and returns a ValueAnimator that animates between int values. A single 430 * value implies that that value is the one being animated to. However, this is not typically 431 * useful in a ValueAnimator object because there is no way for the object to determine the 432 * starting value for the animation (unlike ObjectAnimator, which can derive that value 433 * from the target object and property being animated). Therefore, there should typically 434 * be two or more values. 435 * 436 * @param values A set of values that the animation will animate between over time. 437 * @return A ValueAnimator object that is set up to animate between the given values. 438 */ ofInt(int... values)439 public static ValueAnimator ofInt(int... values) { 440 ValueAnimator anim = new ValueAnimator(); 441 anim.setIntValues(values); 442 return anim; 443 } 444 445 /** 446 * Constructs and returns a ValueAnimator that animates between color values. A single 447 * value implies that that value is the one being animated to. However, this is not typically 448 * useful in a ValueAnimator object because there is no way for the object to determine the 449 * starting value for the animation (unlike ObjectAnimator, which can derive that value 450 * from the target object and property being animated). Therefore, there should typically 451 * be two or more values. 452 * 453 * @param values A set of values that the animation will animate between over time. 454 * @return A ValueAnimator object that is set up to animate between the given values. 455 */ ofArgb(int... values)456 public static ValueAnimator ofArgb(int... values) { 457 ValueAnimator anim = new ValueAnimator(); 458 anim.setIntValues(values); 459 anim.setEvaluator(ArgbEvaluator.getInstance()); 460 return anim; 461 } 462 463 /** 464 * Constructs and returns a ValueAnimator that animates between float values. A single 465 * value implies that that value is the one being animated to. However, this is not typically 466 * useful in a ValueAnimator object because there is no way for the object to determine the 467 * starting value for the animation (unlike ObjectAnimator, which can derive that value 468 * from the target object and property being animated). Therefore, there should typically 469 * be two or more values. 470 * 471 * @param values A set of values that the animation will animate between over time. 472 * @return A ValueAnimator object that is set up to animate between the given values. 473 */ ofFloat(float... values)474 public static ValueAnimator ofFloat(float... values) { 475 ValueAnimator anim = new ValueAnimator(); 476 anim.setFloatValues(values); 477 return anim; 478 } 479 480 /** 481 * Constructs and returns a ValueAnimator that animates between the values 482 * specified in the PropertyValuesHolder objects. 483 * 484 * @param values A set of PropertyValuesHolder objects whose values will be animated 485 * between over time. 486 * @return A ValueAnimator object that is set up to animate between the given values. 487 */ ofPropertyValuesHolder(PropertyValuesHolder... values)488 public static ValueAnimator ofPropertyValuesHolder(PropertyValuesHolder... values) { 489 ValueAnimator anim = new ValueAnimator(); 490 anim.setValues(values); 491 return anim; 492 } 493 /** 494 * Constructs and returns a ValueAnimator that animates between Object values. A single 495 * value implies that that value is the one being animated to. However, this is not typically 496 * useful in a ValueAnimator object because there is no way for the object to determine the 497 * starting value for the animation (unlike ObjectAnimator, which can derive that value 498 * from the target object and property being animated). Therefore, there should typically 499 * be two or more values. 500 * 501 * <p><strong>Note:</strong> The Object values are stored as references to the original 502 * objects, which means that changes to those objects after this method is called will 503 * affect the values on the animator. If the objects will be mutated externally after 504 * this method is called, callers should pass a copy of those objects instead. 505 * 506 * <p>Since ValueAnimator does not know how to animate between arbitrary Objects, this 507 * factory method also takes a TypeEvaluator object that the ValueAnimator will use 508 * to perform that interpolation. 509 * 510 * @param evaluator A TypeEvaluator that will be called on each animation frame to 511 * provide the ncessry interpolation between the Object values to derive the animated 512 * value. 513 * @param values A set of values that the animation will animate between over time. 514 * @return A ValueAnimator object that is set up to animate between the given values. 515 */ ofObject(TypeEvaluator evaluator, Object... values)516 public static ValueAnimator ofObject(TypeEvaluator evaluator, Object... values) { 517 ValueAnimator anim = new ValueAnimator(); 518 anim.setObjectValues(values); 519 anim.setEvaluator(evaluator); 520 return anim; 521 } 522 523 /** 524 * Sets int values that will be animated between. A single 525 * value implies that that value is the one being animated to. However, this is not typically 526 * useful in a ValueAnimator object because there is no way for the object to determine the 527 * starting value for the animation (unlike ObjectAnimator, which can derive that value 528 * from the target object and property being animated). Therefore, there should typically 529 * be two or more values. 530 * 531 * <p>If there are already multiple sets of values defined for this ValueAnimator via more 532 * than one PropertyValuesHolder object, this method will set the values for the first 533 * of those objects.</p> 534 * 535 * @param values A set of values that the animation will animate between over time. 536 */ setIntValues(int... values)537 public void setIntValues(int... values) { 538 if (values == null || values.length == 0) { 539 return; 540 } 541 if (mValues == null || mValues.length == 0) { 542 setValues(PropertyValuesHolder.ofInt("", values)); 543 } else { 544 PropertyValuesHolder valuesHolder = mValues[0]; 545 valuesHolder.setIntValues(values); 546 } 547 // New property/values/target should cause re-initialization prior to starting 548 mInitialized = false; 549 } 550 551 /** 552 * Sets float values that will be animated between. A single 553 * value implies that that value is the one being animated to. However, this is not typically 554 * useful in a ValueAnimator object because there is no way for the object to determine the 555 * starting value for the animation (unlike ObjectAnimator, which can derive that value 556 * from the target object and property being animated). Therefore, there should typically 557 * be two or more values. 558 * 559 * <p>If there are already multiple sets of values defined for this ValueAnimator via more 560 * than one PropertyValuesHolder object, this method will set the values for the first 561 * of those objects.</p> 562 * 563 * @param values A set of values that the animation will animate between over time. 564 */ setFloatValues(float... values)565 public void setFloatValues(float... values) { 566 if (values == null || values.length == 0) { 567 return; 568 } 569 if (mValues == null || mValues.length == 0) { 570 setValues(PropertyValuesHolder.ofFloat("", values)); 571 } else { 572 PropertyValuesHolder valuesHolder = mValues[0]; 573 valuesHolder.setFloatValues(values); 574 } 575 // New property/values/target should cause re-initialization prior to starting 576 mInitialized = false; 577 } 578 579 /** 580 * Sets the values to animate between for this animation. A single 581 * value implies that that value is the one being animated to. However, this is not typically 582 * useful in a ValueAnimator object because there is no way for the object to determine the 583 * starting value for the animation (unlike ObjectAnimator, which can derive that value 584 * from the target object and property being animated). Therefore, there should typically 585 * be two or more values. 586 * 587 * <p><strong>Note:</strong> The Object values are stored as references to the original 588 * objects, which means that changes to those objects after this method is called will 589 * affect the values on the animator. If the objects will be mutated externally after 590 * this method is called, callers should pass a copy of those objects instead. 591 * 592 * <p>If there are already multiple sets of values defined for this ValueAnimator via more 593 * than one PropertyValuesHolder object, this method will set the values for the first 594 * of those objects.</p> 595 * 596 * <p>There should be a TypeEvaluator set on the ValueAnimator that knows how to interpolate 597 * between these value objects. ValueAnimator only knows how to interpolate between the 598 * primitive types specified in the other setValues() methods.</p> 599 * 600 * @param values The set of values to animate between. 601 */ setObjectValues(Object... values)602 public void setObjectValues(Object... values) { 603 if (values == null || values.length == 0) { 604 return; 605 } 606 if (mValues == null || mValues.length == 0) { 607 setValues(PropertyValuesHolder.ofObject("", null, values)); 608 } else { 609 PropertyValuesHolder valuesHolder = mValues[0]; 610 valuesHolder.setObjectValues(values); 611 } 612 // New property/values/target should cause re-initialization prior to starting 613 mInitialized = false; 614 } 615 616 /** 617 * Sets the values, per property, being animated between. This function is called internally 618 * by the constructors of ValueAnimator that take a list of values. But a ValueAnimator can 619 * be constructed without values and this method can be called to set the values manually 620 * instead. 621 * 622 * @param values The set of values, per property, being animated between. 623 */ setValues(PropertyValuesHolder... values)624 public void setValues(PropertyValuesHolder... values) { 625 int numValues = values.length; 626 mValues = values; 627 mValuesMap = new HashMap<String, PropertyValuesHolder>(numValues); 628 for (int i = 0; i < numValues; ++i) { 629 PropertyValuesHolder valuesHolder = values[i]; 630 mValuesMap.put(valuesHolder.getPropertyName(), valuesHolder); 631 } 632 // New property/values/target should cause re-initialization prior to starting 633 mInitialized = false; 634 } 635 636 /** 637 * Returns the values that this ValueAnimator animates between. These values are stored in 638 * PropertyValuesHolder objects, even if the ValueAnimator was created with a simple list 639 * of value objects instead. 640 * 641 * @return PropertyValuesHolder[] An array of PropertyValuesHolder objects which hold the 642 * values, per property, that define the animation. 643 */ getValues()644 public PropertyValuesHolder[] getValues() { 645 return mValues; 646 } 647 648 /** 649 * This function is called immediately before processing the first animation 650 * frame of an animation. If there is a nonzero <code>startDelay</code>, the 651 * function is called after that delay ends. 652 * It takes care of the final initialization steps for the 653 * animation. 654 * 655 * <p>Overrides of this method should call the superclass method to ensure 656 * that internal mechanisms for the animation are set up correctly.</p> 657 */ 658 @CallSuper initAnimation()659 void initAnimation() { 660 if (!mInitialized) { 661 int numValues = mValues.length; 662 for (int i = 0; i < numValues; ++i) { 663 mValues[i].init(); 664 } 665 mInitialized = true; 666 } 667 } 668 669 /** 670 * Sets the length of the animation. The default duration is 300 milliseconds. 671 * 672 * @param duration The length of the animation, in milliseconds. This value cannot 673 * be negative. 674 * @return ValueAnimator The object called with setDuration(). This return 675 * value makes it easier to compose statements together that construct and then set the 676 * duration, as in <code>ValueAnimator.ofInt(0, 10).setDuration(500).start()</code>. 677 */ 678 @Override setDuration(long duration)679 public ValueAnimator setDuration(long duration) { 680 if (duration < 0) { 681 throw new IllegalArgumentException("Animators cannot have negative duration: " + 682 duration); 683 } 684 mDuration = duration; 685 return this; 686 } 687 688 /** 689 * Overrides the global duration scale by a custom value. 690 * 691 * @param durationScale The duration scale to set; or {@code -1f} to use the global duration 692 * scale. 693 * @hide 694 */ overrideDurationScale(float durationScale)695 public void overrideDurationScale(float durationScale) { 696 mDurationScale = durationScale; 697 } 698 resolveDurationScale()699 private float resolveDurationScale() { 700 return mDurationScale >= 0f ? mDurationScale : sDurationScale; 701 } 702 getScaledDuration()703 private long getScaledDuration() { 704 return (long)(mDuration * resolveDurationScale()); 705 } 706 707 /** 708 * Gets the length of the animation. The default duration is 300 milliseconds. 709 * 710 * @return The length of the animation, in milliseconds. 711 */ 712 @Override getDuration()713 public long getDuration() { 714 return mDuration; 715 } 716 717 @Override getTotalDuration()718 public long getTotalDuration() { 719 if (mRepeatCount == INFINITE) { 720 return DURATION_INFINITE; 721 } else { 722 return mStartDelay + (mDuration * (mRepeatCount + 1)); 723 } 724 } 725 726 /** 727 * Sets the position of the animation to the specified point in time. This time should 728 * be between 0 and the total duration of the animation, including any repetition. If 729 * the animation has not yet been started, then it will not advance forward after it is 730 * set to this time; it will simply set the time to this value and perform any appropriate 731 * actions based on that time. If the animation is already running, then setCurrentPlayTime() 732 * will set the current playing time to this value and continue playing from that point. 733 * 734 * @param playTime The time, in milliseconds, to which the animation is advanced or rewound. 735 */ setCurrentPlayTime(long playTime)736 public void setCurrentPlayTime(long playTime) { 737 float fraction = mDuration > 0 ? (float) playTime / mDuration : 1; 738 setCurrentFraction(fraction); 739 } 740 741 /** 742 * Sets the position of the animation to the specified fraction. This fraction should 743 * be between 0 and the total fraction of the animation, including any repetition. That is, 744 * a fraction of 0 will position the animation at the beginning, a value of 1 at the end, 745 * and a value of 2 at the end of a reversing animator that repeats once. If 746 * the animation has not yet been started, then it will not advance forward after it is 747 * set to this fraction; it will simply set the fraction to this value and perform any 748 * appropriate actions based on that fraction. If the animation is already running, then 749 * setCurrentFraction() will set the current fraction to this value and continue 750 * playing from that point. {@link Animator.AnimatorListener} events are not called 751 * due to changing the fraction; those events are only processed while the animation 752 * is running. 753 * 754 * @param fraction The fraction to which the animation is advanced or rewound. Values 755 * outside the range of 0 to the maximum fraction for the animator will be clamped to 756 * the correct range. 757 */ setCurrentFraction(float fraction)758 public void setCurrentFraction(float fraction) { 759 initAnimation(); 760 fraction = clampFraction(fraction); 761 mStartTimeCommitted = true; // do not allow start time to be compensated for jank 762 if (isPulsingInternal()) { 763 long seekTime = (long) (getScaledDuration() * fraction); 764 long currentTime = AnimationUtils.currentAnimationTimeMillis(); 765 // Only modify the start time when the animation is running. Seek fraction will ensure 766 // non-running animations skip to the correct start time. 767 mStartTime = currentTime - seekTime; 768 } else { 769 // If the animation loop hasn't started, or during start delay, the startTime will be 770 // adjusted once the delay has passed based on seek fraction. 771 mSeekFraction = fraction; 772 } 773 mOverallFraction = fraction; 774 final float currentIterationFraction = getCurrentIterationFraction(fraction, mReversing); 775 animateValue(currentIterationFraction); 776 } 777 778 /** 779 * Calculates current iteration based on the overall fraction. The overall fraction will be 780 * in the range of [0, mRepeatCount + 1]. Both current iteration and fraction in the current 781 * iteration can be derived from it. 782 */ getCurrentIteration(float fraction)783 private int getCurrentIteration(float fraction) { 784 fraction = clampFraction(fraction); 785 // If the overall fraction is a positive integer, we consider the current iteration to be 786 // complete. In other words, the fraction for the current iteration would be 1, and the 787 // current iteration would be overall fraction - 1. 788 double iteration = Math.floor(fraction); 789 if (fraction == iteration && fraction > 0) { 790 iteration--; 791 } 792 return (int) iteration; 793 } 794 795 /** 796 * Calculates the fraction of the current iteration, taking into account whether the animation 797 * should be played backwards. E.g. When the animation is played backwards in an iteration, 798 * the fraction for that iteration will go from 1f to 0f. 799 */ getCurrentIterationFraction(float fraction, boolean inReverse)800 private float getCurrentIterationFraction(float fraction, boolean inReverse) { 801 fraction = clampFraction(fraction); 802 int iteration = getCurrentIteration(fraction); 803 float currentFraction = fraction - iteration; 804 return shouldPlayBackward(iteration, inReverse) ? 1f - currentFraction : currentFraction; 805 } 806 807 /** 808 * Clamps fraction into the correct range: [0, mRepeatCount + 1]. If repeat count is infinite, 809 * no upper bound will be set for the fraction. 810 * 811 * @param fraction fraction to be clamped 812 * @return fraction clamped into the range of [0, mRepeatCount + 1] 813 */ clampFraction(float fraction)814 private float clampFraction(float fraction) { 815 if (fraction < 0) { 816 fraction = 0; 817 } else if (mRepeatCount != INFINITE) { 818 fraction = Math.min(fraction, mRepeatCount + 1); 819 } 820 return fraction; 821 } 822 823 /** 824 * Calculates the direction of animation playing (i.e. forward or backward), based on 1) 825 * whether the entire animation is being reversed, 2) repeat mode applied to the current 826 * iteration. 827 */ shouldPlayBackward(int iteration, boolean inReverse)828 private boolean shouldPlayBackward(int iteration, boolean inReverse) { 829 if (iteration > 0 && mRepeatMode == REVERSE && 830 (iteration < (mRepeatCount + 1) || mRepeatCount == INFINITE)) { 831 // if we were seeked to some other iteration in a reversing animator, 832 // figure out the correct direction to start playing based on the iteration 833 if (inReverse) { 834 return (iteration % 2) == 0; 835 } else { 836 return (iteration % 2) != 0; 837 } 838 } else { 839 return inReverse; 840 } 841 } 842 843 /** 844 * Gets the current position of the animation in time, which is equal to the current 845 * time minus the time that the animation started. An animation that is not yet started will 846 * return a value of zero, unless the animation has has its play time set via 847 * {@link #setCurrentPlayTime(long)} or {@link #setCurrentFraction(float)}, in which case 848 * it will return the time that was set. 849 * 850 * @return The current position in time of the animation. 851 */ getCurrentPlayTime()852 public long getCurrentPlayTime() { 853 if (!mInitialized || (!mStarted && mSeekFraction < 0)) { 854 return 0; 855 } 856 if (mSeekFraction >= 0) { 857 return (long) (mDuration * mSeekFraction); 858 } 859 float durationScale = resolveDurationScale(); 860 if (durationScale == 0f) { 861 durationScale = 1f; 862 } 863 return (long) ((AnimationUtils.currentAnimationTimeMillis() - mStartTime) / durationScale); 864 } 865 866 /** 867 * The amount of time, in milliseconds, to delay starting the animation after 868 * {@link #start()} is called. 869 * 870 * @return the number of milliseconds to delay running the animation 871 */ 872 @Override getStartDelay()873 public long getStartDelay() { 874 return mStartDelay; 875 } 876 877 /** 878 * The amount of time, in milliseconds, to delay starting the animation after 879 * {@link #start()} is called. Note that the start delay should always be non-negative. Any 880 * negative start delay will be clamped to 0 on N and above. 881 * 882 * @param startDelay The amount of the delay, in milliseconds 883 */ 884 @Override setStartDelay(long startDelay)885 public void setStartDelay(long startDelay) { 886 // Clamp start delay to non-negative range. 887 if (startDelay < 0) { 888 Log.w(TAG, "Start delay should always be non-negative"); 889 startDelay = 0; 890 } 891 mStartDelay = startDelay; 892 } 893 894 /** 895 * The amount of time, in milliseconds, between each frame of the animation. This is a 896 * requested time that the animation will attempt to honor, but the actual delay between 897 * frames may be different, depending on system load and capabilities. This is a static 898 * function because the same delay will be applied to all animations, since they are all 899 * run off of a single timing loop. 900 * 901 * The frame delay may be ignored when the animation system uses an external timing 902 * source, such as the display refresh rate (vsync), to govern animations. 903 * 904 * Note that this method should be called from the same thread that {@link #start()} is 905 * called in order to check the frame delay for that animation. A runtime exception will be 906 * thrown if the calling thread does not have a Looper. 907 * 908 * @return the requested time between frames, in milliseconds 909 */ getFrameDelay()910 public static long getFrameDelay() { 911 return AnimationHandler.getInstance().getFrameDelay(); 912 } 913 914 /** 915 * The amount of time, in milliseconds, between each frame of the animation. This is a 916 * requested time that the animation will attempt to honor, but the actual delay between 917 * frames may be different, depending on system load and capabilities. This is a static 918 * function because the same delay will be applied to all animations, since they are all 919 * run off of a single timing loop. 920 * 921 * The frame delay may be ignored when the animation system uses an external timing 922 * source, such as the display refresh rate (vsync), to govern animations. 923 * 924 * Note that this method should be called from the same thread that {@link #start()} is 925 * called in order to have the new frame delay take effect on that animation. A runtime 926 * exception will be thrown if the calling thread does not have a Looper. 927 * 928 * @param frameDelay the requested time between frames, in milliseconds 929 */ setFrameDelay(long frameDelay)930 public static void setFrameDelay(long frameDelay) { 931 AnimationHandler.getInstance().setFrameDelay(frameDelay); 932 } 933 934 /** 935 * The most recent value calculated by this <code>ValueAnimator</code> when there is just one 936 * property being animated. This value is only sensible while the animation is running. The main 937 * purpose for this read-only property is to retrieve the value from the <code>ValueAnimator</code> 938 * during a call to {@link AnimatorUpdateListener#onAnimationUpdate(ValueAnimator)}, which 939 * is called during each animation frame, immediately after the value is calculated. 940 * 941 * @return animatedValue The value most recently calculated by this <code>ValueAnimator</code> for 942 * the single property being animated. If there are several properties being animated 943 * (specified by several PropertyValuesHolder objects in the constructor), this function 944 * returns the animated value for the first of those objects. 945 */ getAnimatedValue()946 public Object getAnimatedValue() { 947 if (mValues != null && mValues.length > 0) { 948 return mValues[0].getAnimatedValue(); 949 } 950 // Shouldn't get here; should always have values unless ValueAnimator was set up wrong 951 return null; 952 } 953 954 /** 955 * The most recent value calculated by this <code>ValueAnimator</code> for <code>propertyName</code>. 956 * The main purpose for this read-only property is to retrieve the value from the 957 * <code>ValueAnimator</code> during a call to 958 * {@link AnimatorUpdateListener#onAnimationUpdate(ValueAnimator)}, which 959 * is called during each animation frame, immediately after the value is calculated. 960 * 961 * @return animatedValue The value most recently calculated for the named property 962 * by this <code>ValueAnimator</code>. 963 */ getAnimatedValue(String propertyName)964 public Object getAnimatedValue(String propertyName) { 965 PropertyValuesHolder valuesHolder = mValuesMap.get(propertyName); 966 if (valuesHolder != null) { 967 return valuesHolder.getAnimatedValue(); 968 } else { 969 // At least avoid crashing if called with bogus propertyName 970 return null; 971 } 972 } 973 974 /** 975 * Sets how many times the animation should be repeated. If the repeat 976 * count is 0, the animation is never repeated. If the repeat count is 977 * greater than 0 or {@link #INFINITE}, the repeat mode will be taken 978 * into account. The repeat count is 0 by default. 979 * 980 * @param value the number of times the animation should be repeated 981 */ setRepeatCount(int value)982 public void setRepeatCount(int value) { 983 mRepeatCount = value; 984 } 985 /** 986 * Defines how many times the animation should repeat. The default value 987 * is 0. 988 * 989 * @return the number of times the animation should repeat, or {@link #INFINITE} 990 */ getRepeatCount()991 public int getRepeatCount() { 992 return mRepeatCount; 993 } 994 995 /** 996 * Defines what this animation should do when it reaches the end. This 997 * setting is applied only when the repeat count is either greater than 998 * 0 or {@link #INFINITE}. Defaults to {@link #RESTART}. 999 * 1000 * @param value {@link #RESTART} or {@link #REVERSE} 1001 */ setRepeatMode(@epeatMode int value)1002 public void setRepeatMode(@RepeatMode int value) { 1003 mRepeatMode = value; 1004 } 1005 1006 /** 1007 * Defines what this animation should do when it reaches the end. 1008 * 1009 * @return either one of {@link #REVERSE} or {@link #RESTART} 1010 */ 1011 @RepeatMode getRepeatMode()1012 public int getRepeatMode() { 1013 return mRepeatMode; 1014 } 1015 1016 /** 1017 * Adds a listener to the set of listeners that are sent update events through the life of 1018 * an animation. This method is called on all listeners for every frame of the animation, 1019 * after the values for the animation have been calculated. 1020 * 1021 * @param listener the listener to be added to the current set of listeners for this animation. 1022 */ addUpdateListener(AnimatorUpdateListener listener)1023 public void addUpdateListener(AnimatorUpdateListener listener) { 1024 if (mUpdateListeners == null) { 1025 mUpdateListeners = new ArrayList<AnimatorUpdateListener>(); 1026 } 1027 mUpdateListeners.add(listener); 1028 } 1029 1030 /** 1031 * Removes all listeners from the set listening to frame updates for this animation. 1032 */ removeAllUpdateListeners()1033 public void removeAllUpdateListeners() { 1034 if (mUpdateListeners == null) { 1035 return; 1036 } 1037 mUpdateListeners.clear(); 1038 mUpdateListeners = null; 1039 } 1040 1041 /** 1042 * Removes a listener from the set listening to frame updates for this animation. 1043 * 1044 * @param listener the listener to be removed from the current set of update listeners 1045 * for this animation. 1046 */ removeUpdateListener(AnimatorUpdateListener listener)1047 public void removeUpdateListener(AnimatorUpdateListener listener) { 1048 if (mUpdateListeners == null) { 1049 return; 1050 } 1051 mUpdateListeners.remove(listener); 1052 if (mUpdateListeners.size() == 0) { 1053 mUpdateListeners = null; 1054 } 1055 } 1056 1057 1058 /** 1059 * The time interpolator used in calculating the elapsed fraction of this animation. The 1060 * interpolator determines whether the animation runs with linear or non-linear motion, 1061 * such as acceleration and deceleration. The default value is 1062 * {@link android.view.animation.AccelerateDecelerateInterpolator} 1063 * 1064 * @param value the interpolator to be used by this animation. A value of <code>null</code> 1065 * will result in linear interpolation. 1066 */ 1067 @Override setInterpolator(TimeInterpolator value)1068 public void setInterpolator(TimeInterpolator value) { 1069 if (value != null) { 1070 mInterpolator = value; 1071 } else { 1072 mInterpolator = new LinearInterpolator(); 1073 } 1074 } 1075 1076 /** 1077 * Returns the timing interpolator that this ValueAnimator uses. 1078 * 1079 * @return The timing interpolator for this ValueAnimator. 1080 */ 1081 @Override getInterpolator()1082 public TimeInterpolator getInterpolator() { 1083 return mInterpolator; 1084 } 1085 1086 /** 1087 * The type evaluator to be used when calculating the animated values of this animation. 1088 * The system will automatically assign a float or int evaluator based on the type 1089 * of <code>startValue</code> and <code>endValue</code> in the constructor. But if these values 1090 * are not one of these primitive types, or if different evaluation is desired (such as is 1091 * necessary with int values that represent colors), a custom evaluator needs to be assigned. 1092 * For example, when running an animation on color values, the {@link ArgbEvaluator} 1093 * should be used to get correct RGB color interpolation. 1094 * 1095 * <p>If this ValueAnimator has only one set of values being animated between, this evaluator 1096 * will be used for that set. If there are several sets of values being animated, which is 1097 * the case if PropertyValuesHolder objects were set on the ValueAnimator, then the evaluator 1098 * is assigned just to the first PropertyValuesHolder object.</p> 1099 * 1100 * @param value the evaluator to be used this animation 1101 */ setEvaluator(TypeEvaluator value)1102 public void setEvaluator(TypeEvaluator value) { 1103 if (value != null && mValues != null && mValues.length > 0) { 1104 mValues[0].setEvaluator(value); 1105 } 1106 } 1107 notifyStartListeners()1108 private void notifyStartListeners() { 1109 if (mListeners != null && !mStartListenersCalled) { 1110 ArrayList<AnimatorListener> tmpListeners = 1111 (ArrayList<AnimatorListener>) mListeners.clone(); 1112 int numListeners = tmpListeners.size(); 1113 for (int i = 0; i < numListeners; ++i) { 1114 tmpListeners.get(i).onAnimationStart(this, mReversing); 1115 } 1116 } 1117 mStartListenersCalled = true; 1118 } 1119 1120 /** 1121 * Start the animation playing. This version of start() takes a boolean flag that indicates 1122 * whether the animation should play in reverse. The flag is usually false, but may be set 1123 * to true if called from the reverse() method. 1124 * 1125 * <p>The animation started by calling this method will be run on the thread that called 1126 * this method. This thread should have a Looper on it (a runtime exception will be thrown if 1127 * this is not the case). Also, if the animation will animate 1128 * properties of objects in the view hierarchy, then the calling thread should be the UI 1129 * thread for that view hierarchy.</p> 1130 * 1131 * @param playBackwards Whether the ValueAnimator should start playing in reverse. 1132 */ start(boolean playBackwards)1133 private void start(boolean playBackwards) { 1134 if (Looper.myLooper() == null) { 1135 throw new AndroidRuntimeException("Animators may only be run on Looper threads"); 1136 } 1137 mReversing = playBackwards; 1138 mSelfPulse = !mSuppressSelfPulseRequested; 1139 // Special case: reversing from seek-to-0 should act as if not seeked at all. 1140 if (playBackwards && mSeekFraction != -1 && mSeekFraction != 0) { 1141 if (mRepeatCount == INFINITE) { 1142 // Calculate the fraction of the current iteration. 1143 float fraction = (float) (mSeekFraction - Math.floor(mSeekFraction)); 1144 mSeekFraction = 1 - fraction; 1145 } else { 1146 mSeekFraction = 1 + mRepeatCount - mSeekFraction; 1147 } 1148 } 1149 mStarted = true; 1150 mPaused = false; 1151 mRunning = false; 1152 mAnimationEndRequested = false; 1153 // Resets mLastFrameTime when start() is called, so that if the animation was running, 1154 // calling start() would put the animation in the 1155 // started-but-not-yet-reached-the-first-frame phase. 1156 mLastFrameTime = -1; 1157 mFirstFrameTime = -1; 1158 mStartTime = -1; 1159 addAnimationCallback(0); 1160 1161 if (mStartDelay == 0 || mSeekFraction >= 0 || mReversing) { 1162 // If there's no start delay, init the animation and notify start listeners right away 1163 // to be consistent with the previous behavior. Otherwise, postpone this until the first 1164 // frame after the start delay. 1165 startAnimation(); 1166 if (mSeekFraction == -1) { 1167 // No seek, start at play time 0. Note that the reason we are not using fraction 0 1168 // is because for animations with 0 duration, we want to be consistent with pre-N 1169 // behavior: skip to the final value immediately. 1170 setCurrentPlayTime(0); 1171 } else { 1172 setCurrentFraction(mSeekFraction); 1173 } 1174 } 1175 } 1176 startWithoutPulsing(boolean inReverse)1177 void startWithoutPulsing(boolean inReverse) { 1178 mSuppressSelfPulseRequested = true; 1179 if (inReverse) { 1180 reverse(); 1181 } else { 1182 start(); 1183 } 1184 mSuppressSelfPulseRequested = false; 1185 } 1186 1187 @Override start()1188 public void start() { 1189 start(false); 1190 } 1191 1192 @Override cancel()1193 public void cancel() { 1194 if (Looper.myLooper() == null) { 1195 throw new AndroidRuntimeException("Animators may only be run on Looper threads"); 1196 } 1197 1198 // If end has already been requested, through a previous end() or cancel() call, no-op 1199 // until animation starts again. 1200 if (mAnimationEndRequested) { 1201 return; 1202 } 1203 1204 // Only cancel if the animation is actually running or has been started and is about 1205 // to run 1206 // Only notify listeners if the animator has actually started 1207 if ((mStarted || mRunning) && mListeners != null) { 1208 if (!mRunning) { 1209 // If it's not yet running, then start listeners weren't called. Call them now. 1210 notifyStartListeners(); 1211 } 1212 ArrayList<AnimatorListener> tmpListeners = 1213 (ArrayList<AnimatorListener>) mListeners.clone(); 1214 for (AnimatorListener listener : tmpListeners) { 1215 listener.onAnimationCancel(this); 1216 } 1217 } 1218 endAnimation(); 1219 1220 } 1221 1222 @Override end()1223 public void end() { 1224 if (Looper.myLooper() == null) { 1225 throw new AndroidRuntimeException("Animators may only be run on Looper threads"); 1226 } 1227 if (!mRunning) { 1228 // Special case if the animation has not yet started; get it ready for ending 1229 startAnimation(); 1230 mStarted = true; 1231 } else if (!mInitialized) { 1232 initAnimation(); 1233 } 1234 animateValue(shouldPlayBackward(mRepeatCount, mReversing) ? 0f : 1f); 1235 endAnimation(); 1236 } 1237 1238 @Override resume()1239 public void resume() { 1240 if (Looper.myLooper() == null) { 1241 throw new AndroidRuntimeException("Animators may only be resumed from the same " + 1242 "thread that the animator was started on"); 1243 } 1244 if (mPaused && !mResumed) { 1245 mResumed = true; 1246 if (mPauseTime > 0) { 1247 addAnimationCallback(0); 1248 } 1249 } 1250 super.resume(); 1251 } 1252 1253 @Override pause()1254 public void pause() { 1255 boolean previouslyPaused = mPaused; 1256 super.pause(); 1257 if (!previouslyPaused && mPaused) { 1258 mPauseTime = -1; 1259 mResumed = false; 1260 } 1261 } 1262 1263 @Override isRunning()1264 public boolean isRunning() { 1265 return mRunning; 1266 } 1267 1268 @Override isStarted()1269 public boolean isStarted() { 1270 return mStarted; 1271 } 1272 1273 /** 1274 * Plays the ValueAnimator in reverse. If the animation is already running, 1275 * it will stop itself and play backwards from the point reached when reverse was called. 1276 * If the animation is not currently running, then it will start from the end and 1277 * play backwards. This behavior is only set for the current animation; future playing 1278 * of the animation will use the default behavior of playing forward. 1279 */ 1280 @Override reverse()1281 public void reverse() { 1282 if (isPulsingInternal()) { 1283 long currentTime = AnimationUtils.currentAnimationTimeMillis(); 1284 long currentPlayTime = currentTime - mStartTime; 1285 long timeLeft = getScaledDuration() - currentPlayTime; 1286 mStartTime = currentTime - timeLeft; 1287 mStartTimeCommitted = true; // do not allow start time to be compensated for jank 1288 mReversing = !mReversing; 1289 } else if (mStarted) { 1290 mReversing = !mReversing; 1291 end(); 1292 } else { 1293 start(true); 1294 } 1295 } 1296 1297 /** 1298 * @hide 1299 */ 1300 @Override canReverse()1301 public boolean canReverse() { 1302 return true; 1303 } 1304 1305 /** 1306 * Called internally to end an animation by removing it from the animations list. Must be 1307 * called on the UI thread. 1308 */ endAnimation()1309 private void endAnimation() { 1310 if (mAnimationEndRequested) { 1311 return; 1312 } 1313 removeAnimationCallback(); 1314 1315 mAnimationEndRequested = true; 1316 mPaused = false; 1317 boolean notify = (mStarted || mRunning) && mListeners != null; 1318 if (notify && !mRunning) { 1319 // If it's not yet running, then start listeners weren't called. Call them now. 1320 notifyStartListeners(); 1321 } 1322 mRunning = false; 1323 mStarted = false; 1324 mStartListenersCalled = false; 1325 mLastFrameTime = -1; 1326 mFirstFrameTime = -1; 1327 mStartTime = -1; 1328 if (notify && mListeners != null) { 1329 ArrayList<AnimatorListener> tmpListeners = 1330 (ArrayList<AnimatorListener>) mListeners.clone(); 1331 int numListeners = tmpListeners.size(); 1332 for (int i = 0; i < numListeners; ++i) { 1333 tmpListeners.get(i).onAnimationEnd(this, mReversing); 1334 } 1335 } 1336 // mReversing needs to be reset *after* notifying the listeners for the end callbacks. 1337 mReversing = false; 1338 if (Trace.isTagEnabled(Trace.TRACE_TAG_VIEW)) { 1339 Trace.asyncTraceEnd(Trace.TRACE_TAG_VIEW, getNameForTrace(), 1340 System.identityHashCode(this)); 1341 } 1342 } 1343 1344 /** 1345 * Called internally to start an animation by adding it to the active animations list. Must be 1346 * called on the UI thread. 1347 */ startAnimation()1348 private void startAnimation() { 1349 if (Trace.isTagEnabled(Trace.TRACE_TAG_VIEW)) { 1350 Trace.asyncTraceBegin(Trace.TRACE_TAG_VIEW, getNameForTrace(), 1351 System.identityHashCode(this)); 1352 } 1353 1354 mAnimationEndRequested = false; 1355 initAnimation(); 1356 mRunning = true; 1357 if (mSeekFraction >= 0) { 1358 mOverallFraction = mSeekFraction; 1359 } else { 1360 mOverallFraction = 0f; 1361 } 1362 if (mListeners != null) { 1363 notifyStartListeners(); 1364 } 1365 } 1366 1367 /** 1368 * Internal only: This tracks whether the animation has gotten on the animation loop. Note 1369 * this is different than {@link #isRunning()} in that the latter tracks the time after start() 1370 * is called (or after start delay if any), which may be before the animation loop starts. 1371 */ isPulsingInternal()1372 private boolean isPulsingInternal() { 1373 return mLastFrameTime >= 0; 1374 } 1375 1376 /** 1377 * Returns the name of this animator for debugging purposes. 1378 */ getNameForTrace()1379 String getNameForTrace() { 1380 return "animator"; 1381 } 1382 1383 /** 1384 * Applies an adjustment to the animation to compensate for jank between when 1385 * the animation first ran and when the frame was drawn. 1386 * @hide 1387 */ commitAnimationFrame(long frameTime)1388 public void commitAnimationFrame(long frameTime) { 1389 if (!mStartTimeCommitted) { 1390 mStartTimeCommitted = true; 1391 long adjustment = frameTime - mLastFrameTime; 1392 if (adjustment > 0) { 1393 mStartTime += adjustment; 1394 if (DEBUG) { 1395 Log.d(TAG, "Adjusted start time by " + adjustment + " ms: " + toString()); 1396 } 1397 } 1398 } 1399 } 1400 1401 /** 1402 * This internal function processes a single animation frame for a given animation. The 1403 * currentTime parameter is the timing pulse sent by the handler, used to calculate the 1404 * elapsed duration, and therefore 1405 * the elapsed fraction, of the animation. The return value indicates whether the animation 1406 * should be ended (which happens when the elapsed time of the animation exceeds the 1407 * animation's duration, including the repeatCount). 1408 * 1409 * @param currentTime The current time, as tracked by the static timing handler 1410 * @return true if the animation's duration, including any repetitions due to 1411 * <code>repeatCount</code> has been exceeded and the animation should be ended. 1412 */ animateBasedOnTime(long currentTime)1413 boolean animateBasedOnTime(long currentTime) { 1414 boolean done = false; 1415 if (mRunning) { 1416 final long scaledDuration = getScaledDuration(); 1417 final float fraction = scaledDuration > 0 ? 1418 (float)(currentTime - mStartTime) / scaledDuration : 1f; 1419 final float lastFraction = mOverallFraction; 1420 final boolean newIteration = (int) fraction > (int) lastFraction; 1421 final boolean lastIterationFinished = (fraction >= mRepeatCount + 1) && 1422 (mRepeatCount != INFINITE); 1423 if (scaledDuration == 0) { 1424 // 0 duration animator, ignore the repeat count and skip to the end 1425 done = true; 1426 } else if (newIteration && !lastIterationFinished) { 1427 // Time to repeat 1428 if (mListeners != null) { 1429 int numListeners = mListeners.size(); 1430 for (int i = 0; i < numListeners; ++i) { 1431 mListeners.get(i).onAnimationRepeat(this); 1432 } 1433 } 1434 } else if (lastIterationFinished) { 1435 done = true; 1436 } 1437 mOverallFraction = clampFraction(fraction); 1438 float currentIterationFraction = getCurrentIterationFraction( 1439 mOverallFraction, mReversing); 1440 animateValue(currentIterationFraction); 1441 } 1442 return done; 1443 } 1444 1445 /** 1446 * Internal use only. 1447 * 1448 * This method does not modify any fields of the animation. It should be called when seeking 1449 * in an AnimatorSet. When the last play time and current play time are of different repeat 1450 * iterations, 1451 * {@link android.view.animation.Animation.AnimationListener#onAnimationRepeat(Animation)} 1452 * will be called. 1453 */ 1454 @Override animateBasedOnPlayTime(long currentPlayTime, long lastPlayTime, boolean inReverse)1455 void animateBasedOnPlayTime(long currentPlayTime, long lastPlayTime, boolean inReverse) { 1456 if (currentPlayTime < 0 || lastPlayTime < 0) { 1457 throw new UnsupportedOperationException("Error: Play time should never be negative."); 1458 } 1459 1460 initAnimation(); 1461 // Check whether repeat callback is needed only when repeat count is non-zero 1462 if (mRepeatCount > 0) { 1463 int iteration = (int) (currentPlayTime / mDuration); 1464 int lastIteration = (int) (lastPlayTime / mDuration); 1465 1466 // Clamp iteration to [0, mRepeatCount] 1467 iteration = Math.min(iteration, mRepeatCount); 1468 lastIteration = Math.min(lastIteration, mRepeatCount); 1469 1470 if (iteration != lastIteration) { 1471 if (mListeners != null) { 1472 int numListeners = mListeners.size(); 1473 for (int i = 0; i < numListeners; ++i) { 1474 mListeners.get(i).onAnimationRepeat(this); 1475 } 1476 } 1477 } 1478 } 1479 1480 if (mRepeatCount != INFINITE && currentPlayTime >= (mRepeatCount + 1) * mDuration) { 1481 skipToEndValue(inReverse); 1482 } else { 1483 // Find the current fraction: 1484 float fraction = currentPlayTime / (float) mDuration; 1485 fraction = getCurrentIterationFraction(fraction, inReverse); 1486 animateValue(fraction); 1487 } 1488 } 1489 1490 /** 1491 * Internal use only. 1492 * Skips the animation value to end/start, depending on whether the play direction is forward 1493 * or backward. 1494 * 1495 * @param inReverse whether the end value is based on a reverse direction. If yes, this is 1496 * equivalent to skip to start value in a forward playing direction. 1497 */ skipToEndValue(boolean inReverse)1498 void skipToEndValue(boolean inReverse) { 1499 initAnimation(); 1500 float endFraction = inReverse ? 0f : 1f; 1501 if (mRepeatCount % 2 == 1 && mRepeatMode == REVERSE) { 1502 // This would end on fraction = 0 1503 endFraction = 0f; 1504 } 1505 animateValue(endFraction); 1506 } 1507 1508 @Override isInitialized()1509 boolean isInitialized() { 1510 return mInitialized; 1511 } 1512 1513 /** 1514 * Processes a frame of the animation, adjusting the start time if needed. 1515 * 1516 * @param frameTime The frame time. 1517 * @return true if the animation has ended. 1518 * @hide 1519 */ doAnimationFrame(long frameTime)1520 public final boolean doAnimationFrame(long frameTime) { 1521 if (mStartTime < 0) { 1522 // First frame. If there is start delay, start delay count down will happen *after* this 1523 // frame. 1524 mStartTime = mReversing 1525 ? frameTime 1526 : frameTime + (long) (mStartDelay * resolveDurationScale()); 1527 } 1528 1529 // Handle pause/resume 1530 if (mPaused) { 1531 mPauseTime = frameTime; 1532 removeAnimationCallback(); 1533 return false; 1534 } else if (mResumed) { 1535 mResumed = false; 1536 if (mPauseTime > 0) { 1537 // Offset by the duration that the animation was paused 1538 mStartTime += (frameTime - mPauseTime); 1539 } 1540 } 1541 1542 if (!mRunning) { 1543 // If not running, that means the animation is in the start delay phase of a forward 1544 // running animation. In the case of reversing, we want to run start delay in the end. 1545 if (mStartTime > frameTime && mSeekFraction == -1) { 1546 // This is when no seek fraction is set during start delay. If developers change the 1547 // seek fraction during the delay, animation will start from the seeked position 1548 // right away. 1549 return false; 1550 } else { 1551 // If mRunning is not set by now, that means non-zero start delay, 1552 // no seeking, not reversing. At this point, start delay has passed. 1553 mRunning = true; 1554 startAnimation(); 1555 } 1556 } 1557 1558 if (mLastFrameTime < 0) { 1559 if (mSeekFraction >= 0) { 1560 long seekTime = (long) (getScaledDuration() * mSeekFraction); 1561 mStartTime = frameTime - seekTime; 1562 mSeekFraction = -1; 1563 } 1564 mStartTimeCommitted = false; // allow start time to be compensated for jank 1565 } 1566 mLastFrameTime = frameTime; 1567 // The frame time might be before the start time during the first frame of 1568 // an animation. The "current time" must always be on or after the start 1569 // time to avoid animating frames at negative time intervals. In practice, this 1570 // is very rare and only happens when seeking backwards. 1571 final long currentTime = Math.max(frameTime, mStartTime); 1572 boolean finished = animateBasedOnTime(currentTime); 1573 1574 if (finished) { 1575 endAnimation(); 1576 } 1577 return finished; 1578 } 1579 1580 @Override pulseAnimationFrame(long frameTime)1581 boolean pulseAnimationFrame(long frameTime) { 1582 if (mSelfPulse) { 1583 // Pulse animation frame will *always* be after calling start(). If mSelfPulse isn't 1584 // set to false at this point, that means child animators did not call super's start(). 1585 // This can happen when the Animator is just a non-animating wrapper around a real 1586 // functional animation. In this case, we can't really pulse a frame into the animation, 1587 // because the animation cannot necessarily be properly initialized (i.e. no start/end 1588 // values set). 1589 return false; 1590 } 1591 return doAnimationFrame(frameTime); 1592 } 1593 addOneShotCommitCallback()1594 private void addOneShotCommitCallback() { 1595 if (!mSelfPulse) { 1596 return; 1597 } 1598 getAnimationHandler().addOneShotCommitCallback(this); 1599 } 1600 removeAnimationCallback()1601 private void removeAnimationCallback() { 1602 if (!mSelfPulse) { 1603 return; 1604 } 1605 getAnimationHandler().removeCallback(this); 1606 } 1607 addAnimationCallback(long delay)1608 private void addAnimationCallback(long delay) { 1609 if (!mSelfPulse) { 1610 return; 1611 } 1612 getAnimationHandler().addAnimationFrameCallback(this, delay); 1613 } 1614 1615 /** 1616 * Returns the current animation fraction, which is the elapsed/interpolated fraction used in 1617 * the most recent frame update on the animation. 1618 * 1619 * @return Elapsed/interpolated fraction of the animation. 1620 */ getAnimatedFraction()1621 public float getAnimatedFraction() { 1622 return mCurrentFraction; 1623 } 1624 1625 /** 1626 * This method is called with the elapsed fraction of the animation during every 1627 * animation frame. This function turns the elapsed fraction into an interpolated fraction 1628 * and then into an animated value (from the evaluator. The function is called mostly during 1629 * animation updates, but it is also called when the <code>end()</code> 1630 * function is called, to set the final value on the property. 1631 * 1632 * <p>Overrides of this method must call the superclass to perform the calculation 1633 * of the animated value.</p> 1634 * 1635 * @param fraction The elapsed fraction of the animation. 1636 */ 1637 @CallSuper 1638 @UnsupportedAppUsage animateValue(float fraction)1639 void animateValue(float fraction) { 1640 if (TRACE_ANIMATION_FRACTION) { 1641 Trace.traceCounter(Trace.TRACE_TAG_VIEW, getNameForTrace() + hashCode(), 1642 (int) (fraction * 1000)); 1643 } 1644 fraction = mInterpolator.getInterpolation(fraction); 1645 mCurrentFraction = fraction; 1646 int numValues = mValues.length; 1647 for (int i = 0; i < numValues; ++i) { 1648 mValues[i].calculateValue(fraction); 1649 } 1650 if (mUpdateListeners != null) { 1651 int numListeners = mUpdateListeners.size(); 1652 for (int i = 0; i < numListeners; ++i) { 1653 mUpdateListeners.get(i).onAnimationUpdate(this); 1654 } 1655 } 1656 } 1657 1658 @Override clone()1659 public ValueAnimator clone() { 1660 final ValueAnimator anim = (ValueAnimator) super.clone(); 1661 if (mUpdateListeners != null) { 1662 anim.mUpdateListeners = new ArrayList<AnimatorUpdateListener>(mUpdateListeners); 1663 } 1664 anim.mSeekFraction = -1; 1665 anim.mReversing = false; 1666 anim.mInitialized = false; 1667 anim.mStarted = false; 1668 anim.mRunning = false; 1669 anim.mPaused = false; 1670 anim.mResumed = false; 1671 anim.mStartListenersCalled = false; 1672 anim.mStartTime = -1; 1673 anim.mStartTimeCommitted = false; 1674 anim.mAnimationEndRequested = false; 1675 anim.mPauseTime = -1; 1676 anim.mLastFrameTime = -1; 1677 anim.mFirstFrameTime = -1; 1678 anim.mOverallFraction = 0; 1679 anim.mCurrentFraction = 0; 1680 anim.mSelfPulse = true; 1681 anim.mSuppressSelfPulseRequested = false; 1682 1683 PropertyValuesHolder[] oldValues = mValues; 1684 if (oldValues != null) { 1685 int numValues = oldValues.length; 1686 anim.mValues = new PropertyValuesHolder[numValues]; 1687 anim.mValuesMap = new HashMap<String, PropertyValuesHolder>(numValues); 1688 for (int i = 0; i < numValues; ++i) { 1689 PropertyValuesHolder newValuesHolder = oldValues[i].clone(); 1690 anim.mValues[i] = newValuesHolder; 1691 anim.mValuesMap.put(newValuesHolder.getPropertyName(), newValuesHolder); 1692 } 1693 } 1694 return anim; 1695 } 1696 1697 /** 1698 * Implementors of this interface can add themselves as update listeners 1699 * to an <code>ValueAnimator</code> instance to receive callbacks on every animation 1700 * frame, after the current frame's values have been calculated for that 1701 * <code>ValueAnimator</code>. 1702 */ 1703 public static interface AnimatorUpdateListener { 1704 /** 1705 * <p>Notifies the occurrence of another frame of the animation.</p> 1706 * 1707 * @param animation The animation which was repeated. 1708 */ onAnimationUpdate(@onNull ValueAnimator animation)1709 void onAnimationUpdate(@NonNull ValueAnimator animation); 1710 1711 } 1712 1713 /** 1714 * Return the number of animations currently running. 1715 * 1716 * Used by StrictMode internally to annotate violations. 1717 * May be called on arbitrary threads! 1718 * 1719 * @hide 1720 */ getCurrentAnimationsCount()1721 public static int getCurrentAnimationsCount() { 1722 return AnimationHandler.getAnimationCount(); 1723 } 1724 1725 @Override toString()1726 public String toString() { 1727 String returnVal = "ValueAnimator@" + Integer.toHexString(hashCode()); 1728 if (mValues != null) { 1729 for (int i = 0; i < mValues.length; ++i) { 1730 returnVal += "\n " + mValues[i].toString(); 1731 } 1732 } 1733 return returnVal; 1734 } 1735 1736 /** 1737 * <p>Whether or not the ValueAnimator is allowed to run asynchronously off of 1738 * the UI thread. This is a hint that informs the ValueAnimator that it is 1739 * OK to run the animation off-thread, however ValueAnimator may decide 1740 * that it must run the animation on the UI thread anyway. For example if there 1741 * is an {@link AnimatorUpdateListener} the animation will run on the UI thread, 1742 * regardless of the value of this hint.</p> 1743 * 1744 * <p>Regardless of whether or not the animation runs asynchronously, all 1745 * listener callbacks will be called on the UI thread.</p> 1746 * 1747 * <p>To be able to use this hint the following must be true:</p> 1748 * <ol> 1749 * <li>{@link #getAnimatedFraction()} is not needed (it will return undefined values).</li> 1750 * <li>The animator is immutable while {@link #isStarted()} is true. Requests 1751 * to change values, duration, delay, etc... may be ignored.</li> 1752 * <li>Lifecycle callback events may be asynchronous. Events such as 1753 * {@link Animator.AnimatorListener#onAnimationEnd(Animator)} or 1754 * {@link Animator.AnimatorListener#onAnimationRepeat(Animator)} may end up delayed 1755 * as they must be posted back to the UI thread, and any actions performed 1756 * by those callbacks (such as starting new animations) will not happen 1757 * in the same frame.</li> 1758 * <li>State change requests ({@link #cancel()}, {@link #end()}, {@link #reverse()}, etc...) 1759 * may be asynchronous. It is guaranteed that all state changes that are 1760 * performed on the UI thread in the same frame will be applied as a single 1761 * atomic update, however that frame may be the current frame, 1762 * the next frame, or some future frame. This will also impact the observed 1763 * state of the Animator. For example, {@link #isStarted()} may still return true 1764 * after a call to {@link #end()}. Using the lifecycle callbacks is preferred over 1765 * queries to {@link #isStarted()}, {@link #isRunning()}, and {@link #isPaused()} 1766 * for this reason.</li> 1767 * </ol> 1768 * @hide 1769 */ 1770 @Override setAllowRunningAsynchronously(boolean mayRunAsync)1771 public void setAllowRunningAsynchronously(boolean mayRunAsync) { 1772 // It is up to subclasses to support this, if they can. 1773 } 1774 1775 /** 1776 * @return The {@link AnimationHandler} that will be used to schedule updates for this animator. 1777 * @hide 1778 */ getAnimationHandler()1779 public AnimationHandler getAnimationHandler() { 1780 return mAnimationHandler != null ? mAnimationHandler : AnimationHandler.getInstance(); 1781 } 1782 1783 /** 1784 * Sets the animation handler used to schedule updates for this animator or {@code null} to use 1785 * the default handler. 1786 * @hide 1787 */ setAnimationHandler(@ullable AnimationHandler animationHandler)1788 public void setAnimationHandler(@Nullable AnimationHandler animationHandler) { 1789 mAnimationHandler = animationHandler; 1790 } 1791 1792 /** 1793 * Listener interface for the system-wide scaling factor for Animator-based animations. 1794 * 1795 * @see #registerDurationScaleChangeListener(DurationScaleChangeListener) 1796 * @see #unregisterDurationScaleChangeListener(DurationScaleChangeListener) 1797 */ 1798 public interface DurationScaleChangeListener { 1799 /** 1800 * Called when the duration scale changes. 1801 * @param scale the duration scale 1802 */ onChanged(@loatRangefrom = 0) float scale)1803 void onChanged(@FloatRange(from = 0) float scale); 1804 } 1805 } 1806