• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2021 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 #include <aidl/Gtest.h>
17 #include <aidl/Vintf.h>
18 
19 #include <aidl/android/hardware/sensors/BnSensors.h>
20 #include <aidl/android/hardware/sensors/ISensors.h>
21 #include <android/binder_manager.h>
22 #include <binder/IServiceManager.h>
23 #include <binder/ProcessState.h>
24 #include <hardware/sensors.h>
25 #include <log/log.h>
26 #include <utils/SystemClock.h>
27 
28 #include "SensorsAidlEnvironment.h"
29 #include "SensorsAidlTestSharedMemory.h"
30 #include "sensors-vts-utils/SensorsVtsEnvironmentBase.h"
31 
32 #include <cinttypes>
33 #include <condition_variable>
34 #include <map>
35 #include <unordered_map>
36 #include <unordered_set>
37 #include <vector>
38 
39 using aidl::android::hardware::sensors::Event;
40 using aidl::android::hardware::sensors::ISensors;
41 using aidl::android::hardware::sensors::SensorInfo;
42 using aidl::android::hardware::sensors::SensorStatus;
43 using aidl::android::hardware::sensors::SensorType;
44 using android::ProcessState;
45 using std::chrono::duration_cast;
46 
47 constexpr size_t kEventSize =
48         static_cast<size_t>(ISensors::DIRECT_REPORT_SENSOR_EVENT_TOTAL_LENGTH);
49 
50 namespace {
51 
assertTypeMatchStringType(SensorType type,const std::string & stringType)52 static void assertTypeMatchStringType(SensorType type, const std::string& stringType) {
53     if (type >= SensorType::DEVICE_PRIVATE_BASE) {
54         return;
55     }
56 
57     switch (type) {
58 #define CHECK_TYPE_STRING_FOR_SENSOR_TYPE(type)                      \
59     case SensorType::type:                                           \
60         ASSERT_STREQ(SENSOR_STRING_TYPE_##type, stringType.c_str()); \
61         break;
62         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ACCELEROMETER);
63         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ACCELEROMETER_LIMITED_AXES);
64         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ACCELEROMETER_LIMITED_AXES_UNCALIBRATED);
65         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ACCELEROMETER_UNCALIBRATED);
66         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ADDITIONAL_INFO);
67         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(AMBIENT_TEMPERATURE);
68         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(DEVICE_ORIENTATION);
69         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(DYNAMIC_SENSOR_META);
70         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GAME_ROTATION_VECTOR);
71         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GEOMAGNETIC_ROTATION_VECTOR);
72         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GLANCE_GESTURE);
73         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GRAVITY);
74         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GYROSCOPE);
75         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GYROSCOPE_LIMITED_AXES);
76         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GYROSCOPE_LIMITED_AXES_UNCALIBRATED);
77         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GYROSCOPE_UNCALIBRATED);
78         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(HEADING);
79         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(HEART_BEAT);
80         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(HEART_RATE);
81         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(LIGHT);
82         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(LINEAR_ACCELERATION);
83         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(LOW_LATENCY_OFFBODY_DETECT);
84         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(MAGNETIC_FIELD);
85         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(MAGNETIC_FIELD_UNCALIBRATED);
86         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(MOTION_DETECT);
87         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ORIENTATION);
88         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(PICK_UP_GESTURE);
89         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(POSE_6DOF);
90         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(PRESSURE);
91         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(PROXIMITY);
92         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(RELATIVE_HUMIDITY);
93         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ROTATION_VECTOR);
94         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(SIGNIFICANT_MOTION);
95         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(STATIONARY_DETECT);
96         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(STEP_COUNTER);
97         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(STEP_DETECTOR);
98         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(TILT_DETECTOR);
99         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(WAKE_GESTURE);
100         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(WRIST_TILT_GESTURE);
101         CHECK_TYPE_STRING_FOR_SENSOR_TYPE(HINGE_ANGLE);
102         default:
103             FAIL() << "Type " << static_cast<int>(type)
104                    << " in android defined range is not checked, "
105                    << "stringType = " << stringType;
106 #undef CHECK_TYPE_STRING_FOR_SENSOR_TYPE
107     }
108 }
109 
isDirectChannelTypeSupported(SensorInfo sensor,ISensors::SharedMemInfo::SharedMemType type)110 bool isDirectChannelTypeSupported(SensorInfo sensor, ISensors::SharedMemInfo::SharedMemType type) {
111     switch (type) {
112         case ISensors::SharedMemInfo::SharedMemType::ASHMEM:
113             return (sensor.flags & SensorInfo::SENSOR_FLAG_BITS_DIRECT_CHANNEL_ASHMEM) != 0;
114         case ISensors::SharedMemInfo::SharedMemType::GRALLOC:
115             return (sensor.flags & SensorInfo::SENSOR_FLAG_BITS_DIRECT_CHANNEL_GRALLOC) != 0;
116         default:
117             return false;
118     }
119 }
120 
isDirectReportRateSupported(SensorInfo sensor,ISensors::RateLevel rate)121 bool isDirectReportRateSupported(SensorInfo sensor, ISensors::RateLevel rate) {
122     unsigned int r = static_cast<unsigned int>(sensor.flags &
123                                                SensorInfo::SENSOR_FLAG_BITS_MASK_DIRECT_REPORT) >>
124                      static_cast<unsigned int>(SensorInfo::SENSOR_FLAG_SHIFT_DIRECT_REPORT);
125     return r >= static_cast<unsigned int>(rate);
126 }
127 
expectedReportModeForType(SensorType type)128 int expectedReportModeForType(SensorType type) {
129     switch (type) {
130         case SensorType::ACCELEROMETER:
131         case SensorType::ACCELEROMETER_LIMITED_AXES:
132         case SensorType::ACCELEROMETER_UNCALIBRATED:
133         case SensorType::ACCELEROMETER_LIMITED_AXES_UNCALIBRATED:
134         case SensorType::GYROSCOPE:
135         case SensorType::GYROSCOPE_LIMITED_AXES:
136         case SensorType::MAGNETIC_FIELD:
137         case SensorType::ORIENTATION:
138         case SensorType::PRESSURE:
139         case SensorType::GRAVITY:
140         case SensorType::LINEAR_ACCELERATION:
141         case SensorType::ROTATION_VECTOR:
142         case SensorType::MAGNETIC_FIELD_UNCALIBRATED:
143         case SensorType::GAME_ROTATION_VECTOR:
144         case SensorType::GYROSCOPE_UNCALIBRATED:
145         case SensorType::GYROSCOPE_LIMITED_AXES_UNCALIBRATED:
146         case SensorType::GEOMAGNETIC_ROTATION_VECTOR:
147         case SensorType::POSE_6DOF:
148         case SensorType::HEART_BEAT:
149         case SensorType::HEADING:
150             return SensorInfo::SENSOR_FLAG_BITS_CONTINUOUS_MODE;
151 
152         case SensorType::LIGHT:
153         case SensorType::PROXIMITY:
154         case SensorType::RELATIVE_HUMIDITY:
155         case SensorType::AMBIENT_TEMPERATURE:
156         case SensorType::HEART_RATE:
157         case SensorType::DEVICE_ORIENTATION:
158         case SensorType::STEP_COUNTER:
159         case SensorType::LOW_LATENCY_OFFBODY_DETECT:
160             return SensorInfo::SENSOR_FLAG_BITS_ON_CHANGE_MODE;
161 
162         case SensorType::SIGNIFICANT_MOTION:
163         case SensorType::WAKE_GESTURE:
164         case SensorType::GLANCE_GESTURE:
165         case SensorType::PICK_UP_GESTURE:
166         case SensorType::MOTION_DETECT:
167         case SensorType::STATIONARY_DETECT:
168             return SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE;
169 
170         case SensorType::STEP_DETECTOR:
171         case SensorType::TILT_DETECTOR:
172         case SensorType::WRIST_TILT_GESTURE:
173         case SensorType::DYNAMIC_SENSOR_META:
174             return SensorInfo::SENSOR_FLAG_BITS_SPECIAL_REPORTING_MODE;
175 
176         default:
177             ALOGW("Type %d is not implemented in expectedReportModeForType", (int)type);
178             return INT32_MAX;
179     }
180 }
181 
assertTypeMatchReportMode(SensorType type,int reportMode)182 void assertTypeMatchReportMode(SensorType type, int reportMode) {
183     if (type >= SensorType::DEVICE_PRIVATE_BASE) {
184         return;
185     }
186 
187     int expected = expectedReportModeForType(type);
188 
189     ASSERT_TRUE(expected == INT32_MAX || expected == reportMode)
190             << "reportMode=" << static_cast<int>(reportMode)
191             << "expected=" << static_cast<int>(expected);
192 }
193 
assertDelayMatchReportMode(int32_t minDelayUs,int32_t maxDelayUs,int reportMode)194 void assertDelayMatchReportMode(int32_t minDelayUs, int32_t maxDelayUs, int reportMode) {
195     switch (reportMode) {
196         case SensorInfo::SENSOR_FLAG_BITS_CONTINUOUS_MODE:
197             ASSERT_LT(0, minDelayUs);
198             ASSERT_LE(0, maxDelayUs);
199             break;
200         case SensorInfo::SENSOR_FLAG_BITS_ON_CHANGE_MODE:
201             ASSERT_LE(0, minDelayUs);
202             ASSERT_LE(0, maxDelayUs);
203             break;
204         case SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE:
205             ASSERT_EQ(-1, minDelayUs);
206             ASSERT_EQ(0, maxDelayUs);
207             break;
208         case SensorInfo::SENSOR_FLAG_BITS_SPECIAL_REPORTING_MODE:
209             // do not enforce anything for special reporting mode
210             break;
211         default:
212             FAIL() << "Report mode " << static_cast<int>(reportMode) << " not checked";
213     }
214 }
215 
checkIsOk(ndk::ScopedAStatus status)216 void checkIsOk(ndk::ScopedAStatus status) {
217     ASSERT_TRUE(status.isOk());
218 }
219 
220 }  // namespace
221 
222 class EventCallback : public IEventCallback<Event> {
223   public:
reset()224     void reset() {
225         mFlushMap.clear();
226         mEventMap.clear();
227     }
228 
onEvent(const Event & event)229     void onEvent(const Event& event) override {
230         if (event.sensorType == SensorType::META_DATA &&
231             event.payload.get<Event::EventPayload::Tag::meta>().what ==
232                     Event::EventPayload::MetaData::MetaDataEventType::META_DATA_FLUSH_COMPLETE) {
233             std::unique_lock<std::recursive_mutex> lock(mFlushMutex);
234             mFlushMap[event.sensorHandle]++;
235             mFlushCV.notify_all();
236         } else if (event.sensorType != SensorType::ADDITIONAL_INFO) {
237             std::unique_lock<std::recursive_mutex> lock(mEventMutex);
238             mEventMap[event.sensorHandle].push_back(event);
239             mEventCV.notify_all();
240         }
241     }
242 
getFlushCount(int32_t sensorHandle)243     int32_t getFlushCount(int32_t sensorHandle) {
244         std::unique_lock<std::recursive_mutex> lock(mFlushMutex);
245         return mFlushMap[sensorHandle];
246     }
247 
waitForFlushEvents(const std::vector<SensorInfo> & sensorsToWaitFor,int32_t numCallsToFlush,std::chrono::milliseconds timeout)248     void waitForFlushEvents(const std::vector<SensorInfo>& sensorsToWaitFor,
249                             int32_t numCallsToFlush, std::chrono::milliseconds timeout) {
250         std::unique_lock<std::recursive_mutex> lock(mFlushMutex);
251         mFlushCV.wait_for(lock, timeout,
252                           [&] { return flushesReceived(sensorsToWaitFor, numCallsToFlush); });
253     }
254 
getEvents(int32_t sensorHandle)255     const std::vector<Event> getEvents(int32_t sensorHandle) {
256         std::unique_lock<std::recursive_mutex> lock(mEventMutex);
257         return mEventMap[sensorHandle];
258     }
259 
waitForEvents(const std::vector<SensorInfo> & sensorsToWaitFor,std::chrono::milliseconds timeout)260     void waitForEvents(const std::vector<SensorInfo>& sensorsToWaitFor,
261                        std::chrono::milliseconds timeout) {
262         std::unique_lock<std::recursive_mutex> lock(mEventMutex);
263         mEventCV.wait_for(lock, timeout, [&] { return eventsReceived(sensorsToWaitFor); });
264     }
265 
266   protected:
flushesReceived(const std::vector<SensorInfo> & sensorsToWaitFor,int32_t numCallsToFlush)267     bool flushesReceived(const std::vector<SensorInfo>& sensorsToWaitFor, int32_t numCallsToFlush) {
268         for (const SensorInfo& sensor : sensorsToWaitFor) {
269             if (getFlushCount(sensor.sensorHandle) < numCallsToFlush) {
270                 return false;
271             }
272         }
273         return true;
274     }
275 
eventsReceived(const std::vector<SensorInfo> & sensorsToWaitFor)276     bool eventsReceived(const std::vector<SensorInfo>& sensorsToWaitFor) {
277         for (const SensorInfo& sensor : sensorsToWaitFor) {
278             if (getEvents(sensor.sensorHandle).size() == 0) {
279                 return false;
280             }
281         }
282         return true;
283     }
284 
285     std::map<int32_t, int32_t> mFlushMap;
286     std::recursive_mutex mFlushMutex;
287     std::condition_variable_any mFlushCV;
288 
289     std::map<int32_t, std::vector<Event>> mEventMap;
290     std::recursive_mutex mEventMutex;
291     std::condition_variable_any mEventCV;
292 };
293 
294 class SensorsAidlTest : public testing::TestWithParam<std::string> {
295   public:
SetUp()296     virtual void SetUp() override {
297         mEnvironment = new SensorsAidlEnvironment(GetParam());
298         mEnvironment->SetUp();
299 
300         // Ensure that we have a valid environment before performing tests
301         ASSERT_NE(getSensors(), nullptr);
302     }
303 
TearDown()304     virtual void TearDown() override {
305         for (int32_t handle : mSensorHandles) {
306             activate(handle, false);
307         }
308         mSensorHandles.clear();
309 
310         mEnvironment->TearDown();
311         delete mEnvironment;
312         mEnvironment = nullptr;
313     }
314 
315   protected:
316     std::vector<SensorInfo> getNonOneShotSensors();
317     std::vector<SensorInfo> getNonOneShotAndNonSpecialSensors();
318     std::vector<SensorInfo> getNonOneShotAndNonOnChangeAndNonSpecialSensors();
319     std::vector<SensorInfo> getOneShotSensors();
320     std::vector<SensorInfo> getInjectEventSensors();
321 
322     void verifyDirectChannel(ISensors::SharedMemInfo::SharedMemType memType);
323 
324     void verifyRegisterDirectChannel(
325             std::shared_ptr<SensorsAidlTestSharedMemory<SensorType, Event>> mem,
326             int32_t* directChannelHandle, bool supportsSharedMemType,
327             bool supportsAnyDirectChannel);
328 
329     void verifyConfigure(const SensorInfo& sensor, ISensors::SharedMemInfo::SharedMemType memType,
330                          int32_t directChannelHandle, bool directChannelSupported);
331 
332     void queryDirectChannelSupport(ISensors::SharedMemInfo::SharedMemType memType,
333                                    bool* supportsSharedMemType, bool* supportsAnyDirectChannel);
334 
335     void verifyUnregisterDirectChannel(int32_t* directChannelHandle, bool supportsAnyDirectChannel);
336 
337     void checkRateLevel(const SensorInfo& sensor, int32_t directChannelHandle,
338                         ISensors::RateLevel rateLevel, int32_t* reportToken);
339 
getSensors()340     inline std::shared_ptr<ISensors>& getSensors() { return mEnvironment->mSensors; }
341 
getEnvironment()342     inline SensorsAidlEnvironment* getEnvironment() { return mEnvironment; }
343 
isValidType(SensorType sensorType)344     inline bool isValidType(SensorType sensorType) { return (int)sensorType > 0; }
345 
346     std::vector<SensorInfo> getSensorsList();
347 
getInvalidSensorHandle()348     int32_t getInvalidSensorHandle() {
349         // Find a sensor handle that does not exist in the sensor list
350         int32_t maxHandle = 0;
351         for (const SensorInfo& sensor : getSensorsList()) {
352             maxHandle = std::max(maxHandle, sensor.sensorHandle);
353         }
354         return maxHandle + 1;
355     }
356 
357     ndk::ScopedAStatus activate(int32_t sensorHandle, bool enable);
358     void activateAllSensors(bool enable);
359 
batch(int32_t sensorHandle,int64_t samplingPeriodNs,int64_t maxReportLatencyNs)360     ndk::ScopedAStatus batch(int32_t sensorHandle, int64_t samplingPeriodNs,
361                              int64_t maxReportLatencyNs) {
362         return getSensors()->batch(sensorHandle, samplingPeriodNs, maxReportLatencyNs);
363     }
364 
flush(int32_t sensorHandle)365     ndk::ScopedAStatus flush(int32_t sensorHandle) { return getSensors()->flush(sensorHandle); }
366 
367     ndk::ScopedAStatus registerDirectChannel(const ISensors::SharedMemInfo& mem,
368                                              int32_t* aidlReturn);
369 
unregisterDirectChannel(int32_t * channelHandle)370     ndk::ScopedAStatus unregisterDirectChannel(int32_t* channelHandle) {
371         return getSensors()->unregisterDirectChannel(*channelHandle);
372     }
373 
configDirectReport(int32_t sensorHandle,int32_t channelHandle,ISensors::RateLevel rate,int32_t * reportToken)374     ndk::ScopedAStatus configDirectReport(int32_t sensorHandle, int32_t channelHandle,
375                                           ISensors::RateLevel rate, int32_t* reportToken) {
376         return getSensors()->configDirectReport(sensorHandle, channelHandle, rate, reportToken);
377     }
378 
379     void runSingleFlushTest(const std::vector<SensorInfo>& sensors, bool activateSensor,
380                             int32_t expectedFlushCount, bool expectedResult);
381 
382     void runFlushTest(const std::vector<SensorInfo>& sensors, bool activateSensor,
383                       int32_t flushCalls, int32_t expectedFlushCount, bool expectedResult);
384 
extractReportMode(int32_t flag)385     inline static int32_t extractReportMode(int32_t flag) {
386         return (flag & (SensorInfo::SENSOR_FLAG_BITS_CONTINUOUS_MODE |
387                         SensorInfo::SENSOR_FLAG_BITS_ON_CHANGE_MODE |
388                         SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE |
389                         SensorInfo::SENSOR_FLAG_BITS_SPECIAL_REPORTING_MODE));
390     }
391 
392     // All sensors and direct channnels used
393     std::unordered_set<int32_t> mSensorHandles;
394     std::unordered_set<int32_t> mDirectChannelHandles;
395 
396   private:
397     SensorsAidlEnvironment* mEnvironment;
398 };
399 
registerDirectChannel(const ISensors::SharedMemInfo & mem,int32_t * aidlReturn)400 ndk::ScopedAStatus SensorsAidlTest::registerDirectChannel(const ISensors::SharedMemInfo& mem,
401                                                           int32_t* aidlReturn) {
402     // If registeration of a channel succeeds, add the handle of channel to a set so that it can be
403     // unregistered when test fails. Unregister a channel does not remove the handle on purpose.
404     // Unregistering a channel more than once should not have negative effect.
405 
406     ndk::ScopedAStatus status = getSensors()->registerDirectChannel(mem, aidlReturn);
407     if (status.isOk()) {
408         mDirectChannelHandles.insert(*aidlReturn);
409     }
410     return status;
411 }
412 
getSensorsList()413 std::vector<SensorInfo> SensorsAidlTest::getSensorsList() {
414     std::vector<SensorInfo> sensorInfoList;
415     checkIsOk(getSensors()->getSensorsList(&sensorInfoList));
416     return sensorInfoList;
417 }
418 
activate(int32_t sensorHandle,bool enable)419 ndk::ScopedAStatus SensorsAidlTest::activate(int32_t sensorHandle, bool enable) {
420     // If activating a sensor, add the handle in a set so that when test fails it can be turned off.
421     // The handle is not removed when it is deactivating on purpose so that it is not necessary to
422     // check the return value of deactivation. Deactivating a sensor more than once does not have
423     // negative effect.
424     if (enable) {
425         mSensorHandles.insert(sensorHandle);
426     }
427     return getSensors()->activate(sensorHandle, enable);
428 }
429 
activateAllSensors(bool enable)430 void SensorsAidlTest::activateAllSensors(bool enable) {
431     for (const SensorInfo& sensorInfo : getSensorsList()) {
432         if (isValidType(sensorInfo.type)) {
433             checkIsOk(batch(sensorInfo.sensorHandle, sensorInfo.minDelayUs,
434                             0 /* maxReportLatencyNs */));
435             checkIsOk(activate(sensorInfo.sensorHandle, enable));
436         }
437     }
438 }
439 
getNonOneShotSensors()440 std::vector<SensorInfo> SensorsAidlTest::getNonOneShotSensors() {
441     std::vector<SensorInfo> sensors;
442     for (const SensorInfo& info : getSensorsList()) {
443         if (extractReportMode(info.flags) != SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE) {
444             sensors.push_back(info);
445         }
446     }
447     return sensors;
448 }
449 
getNonOneShotAndNonSpecialSensors()450 std::vector<SensorInfo> SensorsAidlTest::getNonOneShotAndNonSpecialSensors() {
451     std::vector<SensorInfo> sensors;
452     for (const SensorInfo& info : getSensorsList()) {
453         int reportMode = extractReportMode(info.flags);
454         if (reportMode != SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE &&
455             reportMode != SensorInfo::SENSOR_FLAG_BITS_SPECIAL_REPORTING_MODE) {
456             sensors.push_back(info);
457         }
458     }
459     return sensors;
460 }
461 
getNonOneShotAndNonOnChangeAndNonSpecialSensors()462 std::vector<SensorInfo> SensorsAidlTest::getNonOneShotAndNonOnChangeAndNonSpecialSensors() {
463     std::vector<SensorInfo> sensors;
464     for (const SensorInfo& info : getSensorsList()) {
465         int reportMode = extractReportMode(info.flags);
466         if (reportMode != SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE &&
467             reportMode != SensorInfo::SENSOR_FLAG_BITS_ON_CHANGE_MODE &&
468             reportMode != SensorInfo::SENSOR_FLAG_BITS_SPECIAL_REPORTING_MODE) {
469             sensors.push_back(info);
470         }
471     }
472     return sensors;
473 }
474 
getOneShotSensors()475 std::vector<SensorInfo> SensorsAidlTest::getOneShotSensors() {
476     std::vector<SensorInfo> sensors;
477     for (const SensorInfo& info : getSensorsList()) {
478         if (extractReportMode(info.flags) == SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE) {
479             sensors.push_back(info);
480         }
481     }
482     return sensors;
483 }
484 
getInjectEventSensors()485 std::vector<SensorInfo> SensorsAidlTest::getInjectEventSensors() {
486     std::vector<SensorInfo> out;
487     std::vector<SensorInfo> sensorInfoList = getSensorsList();
488     for (const SensorInfo& info : sensorInfoList) {
489         if (info.flags & SensorInfo::SENSOR_FLAG_BITS_DATA_INJECTION) {
490             out.push_back(info);
491         }
492     }
493     return out;
494 }
495 
runSingleFlushTest(const std::vector<SensorInfo> & sensors,bool activateSensor,int32_t expectedFlushCount,bool expectedResult)496 void SensorsAidlTest::runSingleFlushTest(const std::vector<SensorInfo>& sensors,
497                                          bool activateSensor, int32_t expectedFlushCount,
498                                          bool expectedResult) {
499     runFlushTest(sensors, activateSensor, 1 /* flushCalls */, expectedFlushCount, expectedResult);
500 }
501 
runFlushTest(const std::vector<SensorInfo> & sensors,bool activateSensor,int32_t flushCalls,int32_t expectedFlushCount,bool expectedResult)502 void SensorsAidlTest::runFlushTest(const std::vector<SensorInfo>& sensors, bool activateSensor,
503                                    int32_t flushCalls, int32_t expectedFlushCount,
504                                    bool expectedResult) {
505     EventCallback callback;
506     getEnvironment()->registerCallback(&callback);
507 
508     for (const SensorInfo& sensor : sensors) {
509         // Configure and activate the sensor
510         batch(sensor.sensorHandle, sensor.maxDelayUs, 0 /* maxReportLatencyNs */);
511         activate(sensor.sensorHandle, activateSensor);
512 
513         // Flush the sensor
514         for (int32_t i = 0; i < flushCalls; i++) {
515             SCOPED_TRACE(::testing::Message()
516                          << "Flush " << i << "/" << flushCalls << ": "
517                          << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
518                          << sensor.sensorHandle << std::dec
519                          << " type=" << static_cast<int>(sensor.type) << " name=" << sensor.name);
520 
521             EXPECT_EQ(flush(sensor.sensorHandle).isOk(), expectedResult);
522         }
523     }
524 
525     // Wait up to one second for the flush events
526     callback.waitForFlushEvents(sensors, flushCalls, std::chrono::milliseconds(1000) /* timeout */);
527 
528     // Deactivate all sensors after waiting for flush events so pending flush events are not
529     // abandoned by the HAL.
530     for (const SensorInfo& sensor : sensors) {
531         activate(sensor.sensorHandle, false);
532     }
533     getEnvironment()->unregisterCallback();
534 
535     // Check that the correct number of flushes are present for each sensor
536     for (const SensorInfo& sensor : sensors) {
537         SCOPED_TRACE(::testing::Message()
538                      << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
539                      << sensor.sensorHandle << std::dec << " type=" << static_cast<int>(sensor.type)
540                      << " name=" << sensor.name);
541         ASSERT_EQ(callback.getFlushCount(sensor.sensorHandle), expectedFlushCount);
542     }
543 }
544 
TEST_P(SensorsAidlTest,SensorListValid)545 TEST_P(SensorsAidlTest, SensorListValid) {
546     std::vector<SensorInfo> sensorInfoList = getSensorsList();
547     std::unordered_map<int32_t, std::vector<std::string>> sensorTypeNameMap;
548     for (size_t i = 0; i < sensorInfoList.size(); ++i) {
549         const SensorInfo& info = sensorInfoList[i];
550         SCOPED_TRACE(::testing::Message()
551                      << i << "/" << sensorInfoList.size() << ": "
552                      << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
553                      << info.sensorHandle << std::dec << " type=" << static_cast<int>(info.type)
554                      << " name=" << info.name);
555 
556         // Test type string non-empty only for private sensor typeinfo.
557         if (info.type >= SensorType::DEVICE_PRIVATE_BASE) {
558             EXPECT_FALSE(info.typeAsString.empty());
559         } else if (!info.typeAsString.empty()) {
560             // Test type string matches framework string if specified for non-private typeinfo.
561             EXPECT_NO_FATAL_FAILURE(assertTypeMatchStringType(info.type, info.typeAsString));
562         }
563 
564         // Test if all sensor has name and vendor
565         EXPECT_FALSE(info.name.empty());
566         EXPECT_FALSE(info.vendor.empty());
567 
568         // Make sure that sensors of the same type have a unique name.
569         std::vector<std::string>& v = sensorTypeNameMap[static_cast<int32_t>(info.type)];
570         bool isUniqueName = std::find(v.begin(), v.end(), info.name) == v.end();
571         EXPECT_TRUE(isUniqueName) << "Duplicate sensor Name: " << info.name;
572         if (isUniqueName) {
573             v.push_back(info.name);
574         }
575 
576         EXPECT_LE(0, info.power);
577         EXPECT_LT(0, info.maxRange);
578 
579         // Info type, should have no sensor
580         EXPECT_FALSE(info.type == SensorType::ADDITIONAL_INFO ||
581                      info.type == SensorType::META_DATA);
582 
583         EXPECT_GE(info.fifoMaxEventCount, info.fifoReservedEventCount);
584 
585         // Test Reporting mode valid
586         EXPECT_NO_FATAL_FAILURE(
587                 assertTypeMatchReportMode(info.type, extractReportMode(info.flags)));
588 
589         // Test min max are in the right order
590         EXPECT_LE(info.minDelayUs, info.maxDelayUs);
591         // Test min/max delay matches reporting mode
592         EXPECT_NO_FATAL_FAILURE(assertDelayMatchReportMode(info.minDelayUs, info.maxDelayUs,
593                                                            extractReportMode(info.flags)));
594     }
595 }
596 
TEST_P(SensorsAidlTest,SetOperationMode)597 TEST_P(SensorsAidlTest, SetOperationMode) {
598     if (getInjectEventSensors().size() > 0) {
599         ASSERT_TRUE(getSensors()->setOperationMode(ISensors::OperationMode::NORMAL).isOk());
600         ASSERT_TRUE(getSensors()->setOperationMode(ISensors::OperationMode::DATA_INJECTION).isOk());
601         ASSERT_TRUE(getSensors()->setOperationMode(ISensors::OperationMode::NORMAL).isOk());
602     } else {
603       int errorCode =
604           getSensors()
605               ->setOperationMode(ISensors::OperationMode::DATA_INJECTION)
606               .getExceptionCode();
607       ASSERT_TRUE((errorCode == EX_UNSUPPORTED_OPERATION) ||
608                   (errorCode == EX_ILLEGAL_ARGUMENT));
609     }
610 }
611 
TEST_P(SensorsAidlTest,InjectSensorEventData)612 TEST_P(SensorsAidlTest, InjectSensorEventData) {
613     std::vector<SensorInfo> sensors = getInjectEventSensors();
614     if (sensors.size() == 0) {
615         return;
616     }
617 
618     ASSERT_TRUE(getSensors()->setOperationMode(ISensors::OperationMode::DATA_INJECTION).isOk());
619 
620     EventCallback callback;
621     getEnvironment()->registerCallback(&callback);
622 
623     // AdditionalInfo event should not be sent to Event FMQ
624     Event additionalInfoEvent;
625     additionalInfoEvent.sensorType = SensorType::ADDITIONAL_INFO;
626     additionalInfoEvent.timestamp = android::elapsedRealtimeNano();
627 
628     Event injectedEvent;
629     injectedEvent.timestamp = android::elapsedRealtimeNano();
630     Event::EventPayload::Vec3 data = {1, 2, 3, SensorStatus::ACCURACY_HIGH};
631     injectedEvent.payload.set<Event::EventPayload::Tag::vec3>(data);
632 
633     for (const auto& s : sensors) {
634         additionalInfoEvent.sensorHandle = s.sensorHandle;
635         ASSERT_TRUE(getSensors()->injectSensorData(additionalInfoEvent).isOk());
636 
637         injectedEvent.sensorType = s.type;
638         injectedEvent.sensorHandle = s.sensorHandle;
639         ASSERT_TRUE(getSensors()->injectSensorData(injectedEvent).isOk());
640     }
641 
642     // Wait for events to be written back to the Event FMQ
643     callback.waitForEvents(sensors, std::chrono::milliseconds(1000) /* timeout */);
644     getEnvironment()->unregisterCallback();
645 
646     for (const auto& s : sensors) {
647         auto events = callback.getEvents(s.sensorHandle);
648         if (events.empty()) {
649             FAIL() << "Received no events";
650         } else {
651             auto lastEvent = events.back();
652             SCOPED_TRACE(::testing::Message()
653                          << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
654                          << s.sensorHandle << std::dec << " type=" << static_cast<int>(s.type)
655                          << " name=" << s.name);
656 
657             // Verify that only a single event has been received
658             ASSERT_EQ(events.size(), 1);
659 
660             // Verify that the event received matches the event injected and is not the additional
661             // info event
662             ASSERT_EQ(lastEvent.sensorType, s.type);
663             ASSERT_EQ(lastEvent.timestamp, injectedEvent.timestamp);
664             ASSERT_EQ(lastEvent.payload.get<Event::EventPayload::Tag::vec3>().x,
665                       injectedEvent.payload.get<Event::EventPayload::Tag::vec3>().x);
666             ASSERT_EQ(lastEvent.payload.get<Event::EventPayload::Tag::vec3>().y,
667                       injectedEvent.payload.get<Event::EventPayload::Tag::vec3>().y);
668             ASSERT_EQ(lastEvent.payload.get<Event::EventPayload::Tag::vec3>().z,
669                       injectedEvent.payload.get<Event::EventPayload::Tag::vec3>().z);
670             ASSERT_EQ(lastEvent.payload.get<Event::EventPayload::Tag::vec3>().status,
671                       injectedEvent.payload.get<Event::EventPayload::Tag::vec3>().status);
672         }
673     }
674 
675     ASSERT_TRUE(getSensors()->setOperationMode(ISensors::OperationMode::NORMAL).isOk());
676 }
677 
TEST_P(SensorsAidlTest,CallInitializeTwice)678 TEST_P(SensorsAidlTest, CallInitializeTwice) {
679     // Create a helper class so that a second environment is able to be instantiated
680     class SensorsAidlEnvironmentTest : public SensorsAidlEnvironment {
681       public:
682         SensorsAidlEnvironmentTest(const std::string& service_name)
683             : SensorsAidlEnvironment(service_name) {}
684     };
685 
686     if (getSensorsList().size() == 0) {
687         // No sensors
688         return;
689     }
690 
691     constexpr useconds_t kCollectionTimeoutUs = 1000 * 1000;  // 1s
692     constexpr int32_t kNumEvents = 1;
693 
694     // Create a new environment that calls initialize()
695     std::unique_ptr<SensorsAidlEnvironmentTest> newEnv =
696             std::make_unique<SensorsAidlEnvironmentTest>(GetParam());
697     newEnv->SetUp();
698     if (HasFatalFailure()) {
699         return;  // Exit early if setting up the new environment failed
700     }
701 
702     activateAllSensors(true);
703     // Verify that the old environment does not receive any events
704     EXPECT_EQ(getEnvironment()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), 0);
705     // Verify that the new event queue receives sensor events
706     EXPECT_GE(newEnv.get()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), kNumEvents);
707     activateAllSensors(false);
708 
709     // Cleanup the test environment
710     newEnv->TearDown();
711 
712     // Restore the test environment for future tests
713     getEnvironment()->TearDown();
714     getEnvironment()->SetUp();
715     if (HasFatalFailure()) {
716         return;  // Exit early if resetting the environment failed
717     }
718 
719     // Ensure that the original environment is receiving events
720     activateAllSensors(true);
721     EXPECT_GE(getEnvironment()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), kNumEvents);
722     activateAllSensors(false);
723 }
724 
TEST_P(SensorsAidlTest,CleanupConnectionsOnInitialize)725 TEST_P(SensorsAidlTest, CleanupConnectionsOnInitialize) {
726     activateAllSensors(true);
727 
728     // Verify that events are received
729     constexpr useconds_t kCollectionTimeoutUs = 1000 * 1000;  // 1s
730     constexpr int32_t kNumEvents = 1;
731     ASSERT_GE(getEnvironment()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), kNumEvents);
732 
733     // Clear the active sensor handles so they are not disabled during TearDown
734     auto handles = mSensorHandles;
735     mSensorHandles.clear();
736     getEnvironment()->TearDown();
737     getEnvironment()->SetUp();
738     if (HasFatalFailure()) {
739         return;  // Exit early if resetting the environment failed
740     }
741 
742     // Verify no events are received until sensors are re-activated
743     ASSERT_EQ(getEnvironment()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), 0);
744     activateAllSensors(true);
745     ASSERT_GE(getEnvironment()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), kNumEvents);
746 
747     // Disable sensors
748     activateAllSensors(false);
749 
750     // Restore active sensors prior to clearing the environment
751     mSensorHandles = handles;
752 }
753 
TEST_P(SensorsAidlTest,FlushSensor)754 TEST_P(SensorsAidlTest, FlushSensor) {
755     std::vector<SensorInfo> sensors = getNonOneShotSensors();
756     if (sensors.size() == 0) {
757         return;
758     }
759 
760     constexpr int32_t kFlushes = 5;
761     runSingleFlushTest(sensors, true /* activateSensor */, 1 /* expectedFlushCount */,
762                        true /* expectedResult */);
763     runFlushTest(sensors, true /* activateSensor */, kFlushes, kFlushes, true /* expectedResult */);
764 }
765 
TEST_P(SensorsAidlTest,FlushOneShotSensor)766 TEST_P(SensorsAidlTest, FlushOneShotSensor) {
767     // Find a sensor that is a one-shot sensor
768     std::vector<SensorInfo> sensors = getOneShotSensors();
769     if (sensors.size() == 0) {
770         return;
771     }
772 
773     runSingleFlushTest(sensors, true /* activateSensor */, 0 /* expectedFlushCount */,
774                        false /* expectedResult */);
775 }
776 
TEST_P(SensorsAidlTest,FlushInactiveSensor)777 TEST_P(SensorsAidlTest, FlushInactiveSensor) {
778     // Attempt to find a non-one shot sensor, then a one-shot sensor if necessary
779     std::vector<SensorInfo> sensors = getNonOneShotSensors();
780     if (sensors.size() == 0) {
781         sensors = getOneShotSensors();
782         if (sensors.size() == 0) {
783             return;
784         }
785     }
786 
787     runSingleFlushTest(sensors, false /* activateSensor */, 0 /* expectedFlushCount */,
788                        false /* expectedResult */);
789 }
790 
TEST_P(SensorsAidlTest,Batch)791 TEST_P(SensorsAidlTest, Batch) {
792     if (getSensorsList().size() == 0) {
793         return;
794     }
795 
796     activateAllSensors(false /* enable */);
797     for (const SensorInfo& sensor : getSensorsList()) {
798         SCOPED_TRACE(::testing::Message()
799                      << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
800                      << sensor.sensorHandle << std::dec << " type=" << static_cast<int>(sensor.type)
801                      << " name=" << sensor.name);
802 
803         // Call batch on inactive sensor
804         // One shot sensors have minDelay set to -1 which is an invalid
805         // parameter. Use 0 instead to avoid errors.
806         int64_t samplingPeriodNs =
807                 extractReportMode(sensor.flags) == SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE
808                         ? 0
809                         : sensor.minDelayUs;
810         checkIsOk(batch(sensor.sensorHandle, samplingPeriodNs, 0 /* maxReportLatencyNs */));
811 
812         // Activate the sensor
813         activate(sensor.sensorHandle, true /* enabled */);
814 
815         // Call batch on an active sensor
816         checkIsOk(batch(sensor.sensorHandle, sensor.maxDelayUs, 0 /* maxReportLatencyNs */));
817     }
818     activateAllSensors(false /* enable */);
819 
820     // Call batch on an invalid sensor
821     SensorInfo sensor = getSensorsList().front();
822     sensor.sensorHandle = getInvalidSensorHandle();
823     ASSERT_EQ(batch(sensor.sensorHandle, sensor.minDelayUs, 0 /* maxReportLatencyNs */)
824                       .getExceptionCode(),
825               EX_ILLEGAL_ARGUMENT);
826 }
827 
TEST_P(SensorsAidlTest,Activate)828 TEST_P(SensorsAidlTest, Activate) {
829     if (getSensorsList().size() == 0) {
830         return;
831     }
832 
833     // Verify that sensor events are generated when activate is called
834     for (const SensorInfo& sensor : getSensorsList()) {
835         SCOPED_TRACE(::testing::Message()
836                      << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
837                      << sensor.sensorHandle << std::dec << " type=" << static_cast<int>(sensor.type)
838                      << " name=" << sensor.name);
839 
840         checkIsOk(batch(sensor.sensorHandle, sensor.minDelayUs, 0 /* maxReportLatencyNs */));
841         checkIsOk(activate(sensor.sensorHandle, true));
842 
843         // Call activate on a sensor that is already activated
844         checkIsOk(activate(sensor.sensorHandle, true));
845 
846         // Deactivate the sensor
847         checkIsOk(activate(sensor.sensorHandle, false));
848 
849         // Call deactivate on a sensor that is already deactivated
850         checkIsOk(activate(sensor.sensorHandle, false));
851     }
852 
853     // Attempt to activate an invalid sensor
854     int32_t invalidHandle = getInvalidSensorHandle();
855     ASSERT_EQ(activate(invalidHandle, true).getExceptionCode(), EX_ILLEGAL_ARGUMENT);
856     ASSERT_EQ(activate(invalidHandle, false).getExceptionCode(), EX_ILLEGAL_ARGUMENT);
857 }
858 
TEST_P(SensorsAidlTest,NoStaleEvents)859 TEST_P(SensorsAidlTest, NoStaleEvents) {
860     constexpr std::chrono::milliseconds kFiveHundredMs(500);
861     constexpr std::chrono::milliseconds kOneSecond(1000);
862 
863     // Register the callback to receive sensor events
864     EventCallback callback;
865     getEnvironment()->registerCallback(&callback);
866 
867     // This test is not valid for one-shot, on-change or special-report-mode sensors
868     const std::vector<SensorInfo> sensors = getNonOneShotAndNonOnChangeAndNonSpecialSensors();
869     std::chrono::milliseconds maxMinDelay(0);
870     for (const SensorInfo& sensor : sensors) {
871         std::chrono::milliseconds minDelay = duration_cast<std::chrono::milliseconds>(
872                 std::chrono::microseconds(sensor.minDelayUs));
873         maxMinDelay = std::chrono::milliseconds(std::max(maxMinDelay.count(), minDelay.count()));
874     }
875 
876     // Activate the sensors so that they start generating events
877     activateAllSensors(true);
878 
879     // According to the CDD, the first sample must be generated within 400ms + 2 * sample_time
880     // and the maximum reporting latency is 100ms + 2 * sample_time. Wait a sufficient amount
881     // of time to guarantee that a sample has arrived.
882     callback.waitForEvents(sensors, kFiveHundredMs + (5 * maxMinDelay));
883     activateAllSensors(false);
884 
885     // Save the last received event for each sensor
886     std::map<int32_t, int64_t> lastEventTimestampMap;
887     for (const SensorInfo& sensor : sensors) {
888         SCOPED_TRACE(::testing::Message()
889                      << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
890                      << sensor.sensorHandle << std::dec << " type=" << static_cast<int>(sensor.type)
891                      << " name=" << sensor.name);
892 
893         if (callback.getEvents(sensor.sensorHandle).size() >= 1) {
894             lastEventTimestampMap[sensor.sensorHandle] =
895                     callback.getEvents(sensor.sensorHandle).back().timestamp;
896         }
897     }
898 
899     // Allow some time to pass, reset the callback, then reactivate the sensors
900     usleep(duration_cast<std::chrono::microseconds>(kOneSecond + (5 * maxMinDelay)).count());
901     callback.reset();
902     activateAllSensors(true);
903     callback.waitForEvents(sensors, kFiveHundredMs + (5 * maxMinDelay));
904     activateAllSensors(false);
905 
906     getEnvironment()->unregisterCallback();
907 
908     for (const SensorInfo& sensor : sensors) {
909         SCOPED_TRACE(::testing::Message()
910                      << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
911                      << sensor.sensorHandle << std::dec << " type=" << static_cast<int>(sensor.type)
912                      << " name=" << sensor.name);
913 
914         // Skip sensors that did not previously report an event
915         if (lastEventTimestampMap.find(sensor.sensorHandle) == lastEventTimestampMap.end()) {
916             continue;
917         }
918 
919         // Ensure that the first event received is not stale by ensuring that its timestamp is
920         // sufficiently different from the previous event
921         const Event newEvent = callback.getEvents(sensor.sensorHandle).front();
922         std::chrono::milliseconds delta =
923                 duration_cast<std::chrono::milliseconds>(std::chrono::nanoseconds(
924                         newEvent.timestamp - lastEventTimestampMap[sensor.sensorHandle]));
925         std::chrono::milliseconds sensorMinDelay = duration_cast<std::chrono::milliseconds>(
926                 std::chrono::microseconds(sensor.minDelayUs));
927         ASSERT_GE(delta, kFiveHundredMs + (3 * sensorMinDelay));
928     }
929 }
930 
checkRateLevel(const SensorInfo & sensor,int32_t directChannelHandle,ISensors::RateLevel rateLevel,int32_t * reportToken)931 void SensorsAidlTest::checkRateLevel(const SensorInfo& sensor, int32_t directChannelHandle,
932                                      ISensors::RateLevel rateLevel, int32_t* reportToken) {
933     ndk::ScopedAStatus status =
934             configDirectReport(sensor.sensorHandle, directChannelHandle, rateLevel, reportToken);
935 
936     SCOPED_TRACE(::testing::Message()
937                  << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
938                  << sensor.sensorHandle << std::dec << " type=" << static_cast<int>(sensor.type)
939                  << " name=" << sensor.name);
940 
941     if (isDirectReportRateSupported(sensor, rateLevel)) {
942         ASSERT_TRUE(status.isOk());
943         if (rateLevel != ISensors::RateLevel::STOP) {
944           ASSERT_GT(*reportToken, 0);
945         }
946     } else {
947       ASSERT_EQ(status.getExceptionCode(), EX_ILLEGAL_ARGUMENT);
948     }
949 }
950 
queryDirectChannelSupport(ISensors::SharedMemInfo::SharedMemType memType,bool * supportsSharedMemType,bool * supportsAnyDirectChannel)951 void SensorsAidlTest::queryDirectChannelSupport(ISensors::SharedMemInfo::SharedMemType memType,
952                                                 bool* supportsSharedMemType,
953                                                 bool* supportsAnyDirectChannel) {
954     *supportsSharedMemType = false;
955     *supportsAnyDirectChannel = false;
956     for (const SensorInfo& curSensor : getSensorsList()) {
957         if (isDirectChannelTypeSupported(curSensor, memType)) {
958             *supportsSharedMemType = true;
959         }
960         if (isDirectChannelTypeSupported(curSensor,
961                                          ISensors::SharedMemInfo::SharedMemType::ASHMEM) ||
962             isDirectChannelTypeSupported(curSensor,
963                                          ISensors::SharedMemInfo::SharedMemType::GRALLOC)) {
964             *supportsAnyDirectChannel = true;
965         }
966 
967         if (*supportsSharedMemType && *supportsAnyDirectChannel) {
968             break;
969         }
970     }
971 }
972 
verifyRegisterDirectChannel(std::shared_ptr<SensorsAidlTestSharedMemory<SensorType,Event>> mem,int32_t * directChannelHandle,bool supportsSharedMemType,bool supportsAnyDirectChannel)973 void SensorsAidlTest::verifyRegisterDirectChannel(
974         std::shared_ptr<SensorsAidlTestSharedMemory<SensorType, Event>> mem,
975         int32_t* directChannelHandle, bool supportsSharedMemType, bool supportsAnyDirectChannel) {
976     char* buffer = mem->getBuffer();
977     size_t size = mem->getSize();
978 
979     if (supportsSharedMemType) {
980         memset(buffer, 0xff, size);
981     }
982 
983     int32_t channelHandle;
984 
985     ::ndk::ScopedAStatus status = registerDirectChannel(mem->getSharedMemInfo(), &channelHandle);
986     if (supportsSharedMemType) {
987         ASSERT_TRUE(status.isOk());
988         ASSERT_GT(channelHandle, 0);
989 
990         // Verify that the memory has been zeroed
991         for (size_t i = 0; i < mem->getSize(); i++) {
992           ASSERT_EQ(buffer[i], 0x00);
993         }
994     } else {
995         int32_t error = supportsAnyDirectChannel ? EX_ILLEGAL_ARGUMENT : EX_UNSUPPORTED_OPERATION;
996         ASSERT_EQ(status.getExceptionCode(), error);
997     }
998     *directChannelHandle = channelHandle;
999 }
1000 
verifyUnregisterDirectChannel(int32_t * channelHandle,bool supportsAnyDirectChannel)1001 void SensorsAidlTest::verifyUnregisterDirectChannel(int32_t* channelHandle,
1002                                                     bool supportsAnyDirectChannel) {
1003     int result = supportsAnyDirectChannel ? EX_NONE : EX_UNSUPPORTED_OPERATION;
1004     ndk::ScopedAStatus status = unregisterDirectChannel(channelHandle);
1005     ASSERT_EQ(status.getExceptionCode(), result);
1006 }
1007 
verifyDirectChannel(ISensors::SharedMemInfo::SharedMemType memType)1008 void SensorsAidlTest::verifyDirectChannel(ISensors::SharedMemInfo::SharedMemType memType) {
1009     constexpr size_t kNumEvents = 1;
1010     constexpr size_t kMemSize = kNumEvents * kEventSize;
1011 
1012     std::shared_ptr<SensorsAidlTestSharedMemory<SensorType, Event>> mem(
1013             SensorsAidlTestSharedMemory<SensorType, Event>::create(memType, kMemSize));
1014     ASSERT_NE(mem, nullptr);
1015 
1016     bool supportsSharedMemType;
1017     bool supportsAnyDirectChannel;
1018     queryDirectChannelSupport(memType, &supportsSharedMemType, &supportsAnyDirectChannel);
1019 
1020     for (const SensorInfo& sensor : getSensorsList()) {
1021         int32_t directChannelHandle = 0;
1022         verifyRegisterDirectChannel(mem, &directChannelHandle, supportsSharedMemType,
1023                                     supportsAnyDirectChannel);
1024         verifyConfigure(sensor, memType, directChannelHandle, supportsAnyDirectChannel);
1025         verifyUnregisterDirectChannel(&directChannelHandle, supportsAnyDirectChannel);
1026     }
1027 }
1028 
verifyConfigure(const SensorInfo & sensor,ISensors::SharedMemInfo::SharedMemType memType,int32_t directChannelHandle,bool supportsAnyDirectChannel)1029 void SensorsAidlTest::verifyConfigure(const SensorInfo& sensor,
1030                                       ISensors::SharedMemInfo::SharedMemType memType,
1031                                       int32_t directChannelHandle, bool supportsAnyDirectChannel) {
1032     SCOPED_TRACE(::testing::Message()
1033                  << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
1034                  << sensor.sensorHandle << std::dec << " type=" << static_cast<int>(sensor.type)
1035                  << " name=" << sensor.name);
1036 
1037     int32_t reportToken = 0;
1038     if (isDirectChannelTypeSupported(sensor, memType)) {
1039         // Verify that each rate level is properly supported
1040         checkRateLevel(sensor, directChannelHandle, ISensors::RateLevel::NORMAL, &reportToken);
1041         checkRateLevel(sensor, directChannelHandle, ISensors::RateLevel::FAST, &reportToken);
1042         checkRateLevel(sensor, directChannelHandle, ISensors::RateLevel::VERY_FAST, &reportToken);
1043         checkRateLevel(sensor, directChannelHandle, ISensors::RateLevel::STOP, &reportToken);
1044 
1045         // Verify that a sensor handle of -1 is only acceptable when using RateLevel::STOP
1046         ndk::ScopedAStatus status = configDirectReport(-1 /* sensorHandle */, directChannelHandle,
1047                                                        ISensors::RateLevel::NORMAL, &reportToken);
1048         ASSERT_EQ(status.getExceptionCode(), EX_ILLEGAL_ARGUMENT);
1049 
1050         status = configDirectReport(-1 /* sensorHandle */, directChannelHandle,
1051                                     ISensors::RateLevel::STOP, &reportToken);
1052         ASSERT_TRUE(status.isOk());
1053     } else {
1054         // directChannelHandle will be -1 here, HAL should either reject it as a bad value if there
1055         // is some level of direct channel report, otherwise return INVALID_OPERATION if direct
1056         // channel is not supported at all
1057         int error = supportsAnyDirectChannel ? EX_ILLEGAL_ARGUMENT : EX_UNSUPPORTED_OPERATION;
1058         ndk::ScopedAStatus status = configDirectReport(sensor.sensorHandle, directChannelHandle,
1059                                                        ISensors::RateLevel::NORMAL, &reportToken);
1060         ASSERT_EQ(status.getExceptionCode(), error);
1061     }
1062 }
1063 
TEST_P(SensorsAidlTest,DirectChannelAshmem)1064 TEST_P(SensorsAidlTest, DirectChannelAshmem) {
1065     verifyDirectChannel(ISensors::SharedMemInfo::SharedMemType::ASHMEM);
1066 }
1067 
TEST_P(SensorsAidlTest,DirectChannelGralloc)1068 TEST_P(SensorsAidlTest, DirectChannelGralloc) {
1069     verifyDirectChannel(ISensors::SharedMemInfo::SharedMemType::GRALLOC);
1070 }
1071 
1072 GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(SensorsAidlTest);
1073 INSTANTIATE_TEST_SUITE_P(Sensors, SensorsAidlTest,
1074                          testing::ValuesIn(android::getAidlHalInstanceNames(ISensors::descriptor)),
1075                          android::PrintInstanceNameToString);
1076 
main(int argc,char ** argv)1077 int main(int argc, char** argv) {
1078     ::testing::InitGoogleTest(&argc, argv);
1079     ProcessState::self()->setThreadPoolMaxThreadCount(1);
1080     ProcessState::self()->startThreadPool();
1081     return RUN_ALL_TESTS();
1082 }
1083