1Classes 2####### 3 4This section presents advanced binding code for classes and it is assumed 5that you are already familiar with the basics from :doc:`/classes`. 6 7.. _overriding_virtuals: 8 9Overriding virtual functions in Python 10====================================== 11 12Suppose that a C++ class or interface has a virtual function that we'd like to 13to override from within Python (we'll focus on the class ``Animal``; ``Dog`` is 14given as a specific example of how one would do this with traditional C++ 15code). 16 17.. code-block:: cpp 18 19 class Animal { 20 public: 21 virtual ~Animal() { } 22 virtual std::string go(int n_times) = 0; 23 }; 24 25 class Dog : public Animal { 26 public: 27 std::string go(int n_times) override { 28 std::string result; 29 for (int i=0; i<n_times; ++i) 30 result += "woof! "; 31 return result; 32 } 33 }; 34 35Let's also suppose that we are given a plain function which calls the 36function ``go()`` on an arbitrary ``Animal`` instance. 37 38.. code-block:: cpp 39 40 std::string call_go(Animal *animal) { 41 return animal->go(3); 42 } 43 44Normally, the binding code for these classes would look as follows: 45 46.. code-block:: cpp 47 48 PYBIND11_MODULE(example, m) { 49 py::class_<Animal>(m, "Animal") 50 .def("go", &Animal::go); 51 52 py::class_<Dog, Animal>(m, "Dog") 53 .def(py::init<>()); 54 55 m.def("call_go", &call_go); 56 } 57 58However, these bindings are impossible to extend: ``Animal`` is not 59constructible, and we clearly require some kind of "trampoline" that 60redirects virtual calls back to Python. 61 62Defining a new type of ``Animal`` from within Python is possible but requires a 63helper class that is defined as follows: 64 65.. code-block:: cpp 66 67 class PyAnimal : public Animal { 68 public: 69 /* Inherit the constructors */ 70 using Animal::Animal; 71 72 /* Trampoline (need one for each virtual function) */ 73 std::string go(int n_times) override { 74 PYBIND11_OVERRIDE_PURE( 75 std::string, /* Return type */ 76 Animal, /* Parent class */ 77 go, /* Name of function in C++ (must match Python name) */ 78 n_times /* Argument(s) */ 79 ); 80 } 81 }; 82 83The macro :c:macro:`PYBIND11_OVERRIDE_PURE` should be used for pure virtual 84functions, and :c:macro:`PYBIND11_OVERRIDE` should be used for functions which have 85a default implementation. There are also two alternate macros 86:c:macro:`PYBIND11_OVERRIDE_PURE_NAME` and :c:macro:`PYBIND11_OVERRIDE_NAME` which 87take a string-valued name argument between the *Parent class* and *Name of the 88function* slots, which defines the name of function in Python. This is required 89when the C++ and Python versions of the 90function have different names, e.g. ``operator()`` vs ``__call__``. 91 92The binding code also needs a few minor adaptations (highlighted): 93 94.. code-block:: cpp 95 :emphasize-lines: 2,3 96 97 PYBIND11_MODULE(example, m) { 98 py::class_<Animal, PyAnimal /* <--- trampoline*/>(m, "Animal") 99 .def(py::init<>()) 100 .def("go", &Animal::go); 101 102 py::class_<Dog, Animal>(m, "Dog") 103 .def(py::init<>()); 104 105 m.def("call_go", &call_go); 106 } 107 108Importantly, pybind11 is made aware of the trampoline helper class by 109specifying it as an extra template argument to :class:`class_`. (This can also 110be combined with other template arguments such as a custom holder type; the 111order of template types does not matter). Following this, we are able to 112define a constructor as usual. 113 114Bindings should be made against the actual class, not the trampoline helper class. 115 116.. code-block:: cpp 117 :emphasize-lines: 3 118 119 py::class_<Animal, PyAnimal /* <--- trampoline*/>(m, "Animal"); 120 .def(py::init<>()) 121 .def("go", &PyAnimal::go); /* <--- THIS IS WRONG, use &Animal::go */ 122 123Note, however, that the above is sufficient for allowing python classes to 124extend ``Animal``, but not ``Dog``: see :ref:`virtual_and_inheritance` for the 125necessary steps required to providing proper overriding support for inherited 126classes. 127 128The Python session below shows how to override ``Animal::go`` and invoke it via 129a virtual method call. 130 131.. code-block:: pycon 132 133 >>> from example import * 134 >>> d = Dog() 135 >>> call_go(d) 136 u'woof! woof! woof! ' 137 >>> class Cat(Animal): 138 ... def go(self, n_times): 139 ... return "meow! " * n_times 140 ... 141 >>> c = Cat() 142 >>> call_go(c) 143 u'meow! meow! meow! ' 144 145If you are defining a custom constructor in a derived Python class, you *must* 146ensure that you explicitly call the bound C++ constructor using ``__init__``, 147*regardless* of whether it is a default constructor or not. Otherwise, the 148memory for the C++ portion of the instance will be left uninitialized, which 149will generally leave the C++ instance in an invalid state and cause undefined 150behavior if the C++ instance is subsequently used. 151 152.. versionchanged:: 2.6 153 The default pybind11 metaclass will throw a ``TypeError`` when it detects 154 that ``__init__`` was not called by a derived class. 155 156Here is an example: 157 158.. code-block:: python 159 160 class Dachshund(Dog): 161 def __init__(self, name): 162 Dog.__init__(self) # Without this, a TypeError is raised. 163 self.name = name 164 def bark(self): 165 return "yap!" 166 167Note that a direct ``__init__`` constructor *should be called*, and ``super()`` 168should not be used. For simple cases of linear inheritance, ``super()`` 169may work, but once you begin mixing Python and C++ multiple inheritance, 170things will fall apart due to differences between Python's MRO and C++'s 171mechanisms. 172 173Please take a look at the :ref:`macro_notes` before using this feature. 174 175.. note:: 176 177 When the overridden type returns a reference or pointer to a type that 178 pybind11 converts from Python (for example, numeric values, std::string, 179 and other built-in value-converting types), there are some limitations to 180 be aware of: 181 182 - because in these cases there is no C++ variable to reference (the value 183 is stored in the referenced Python variable), pybind11 provides one in 184 the PYBIND11_OVERRIDE macros (when needed) with static storage duration. 185 Note that this means that invoking the overridden method on *any* 186 instance will change the referenced value stored in *all* instances of 187 that type. 188 189 - Attempts to modify a non-const reference will not have the desired 190 effect: it will change only the static cache variable, but this change 191 will not propagate to underlying Python instance, and the change will be 192 replaced the next time the override is invoked. 193 194.. warning:: 195 196 The :c:macro:`PYBIND11_OVERRIDE` and accompanying macros used to be called 197 ``PYBIND11_OVERLOAD`` up until pybind11 v2.5.0, and :func:`get_override` 198 used to be called ``get_overload``. This naming was corrected and the older 199 macro and function names may soon be deprecated, in order to reduce 200 confusion with overloaded functions and methods and ``py::overload_cast`` 201 (see :ref:`classes`). 202 203.. seealso:: 204 205 The file :file:`tests/test_virtual_functions.cpp` contains a complete 206 example that demonstrates how to override virtual functions using pybind11 207 in more detail. 208 209.. _virtual_and_inheritance: 210 211Combining virtual functions and inheritance 212=========================================== 213 214When combining virtual methods with inheritance, you need to be sure to provide 215an override for each method for which you want to allow overrides from derived 216python classes. For example, suppose we extend the above ``Animal``/``Dog`` 217example as follows: 218 219.. code-block:: cpp 220 221 class Animal { 222 public: 223 virtual std::string go(int n_times) = 0; 224 virtual std::string name() { return "unknown"; } 225 }; 226 class Dog : public Animal { 227 public: 228 std::string go(int n_times) override { 229 std::string result; 230 for (int i=0; i<n_times; ++i) 231 result += bark() + " "; 232 return result; 233 } 234 virtual std::string bark() { return "woof!"; } 235 }; 236 237then the trampoline class for ``Animal`` must, as described in the previous 238section, override ``go()`` and ``name()``, but in order to allow python code to 239inherit properly from ``Dog``, we also need a trampoline class for ``Dog`` that 240overrides both the added ``bark()`` method *and* the ``go()`` and ``name()`` 241methods inherited from ``Animal`` (even though ``Dog`` doesn't directly 242override the ``name()`` method): 243 244.. code-block:: cpp 245 246 class PyAnimal : public Animal { 247 public: 248 using Animal::Animal; // Inherit constructors 249 std::string go(int n_times) override { PYBIND11_OVERRIDE_PURE(std::string, Animal, go, n_times); } 250 std::string name() override { PYBIND11_OVERRIDE(std::string, Animal, name, ); } 251 }; 252 class PyDog : public Dog { 253 public: 254 using Dog::Dog; // Inherit constructors 255 std::string go(int n_times) override { PYBIND11_OVERRIDE(std::string, Dog, go, n_times); } 256 std::string name() override { PYBIND11_OVERRIDE(std::string, Dog, name, ); } 257 std::string bark() override { PYBIND11_OVERRIDE(std::string, Dog, bark, ); } 258 }; 259 260.. note:: 261 262 Note the trailing commas in the ``PYBIND11_OVERIDE`` calls to ``name()`` 263 and ``bark()``. These are needed to portably implement a trampoline for a 264 function that does not take any arguments. For functions that take 265 a nonzero number of arguments, the trailing comma must be omitted. 266 267A registered class derived from a pybind11-registered class with virtual 268methods requires a similar trampoline class, *even if* it doesn't explicitly 269declare or override any virtual methods itself: 270 271.. code-block:: cpp 272 273 class Husky : public Dog {}; 274 class PyHusky : public Husky { 275 public: 276 using Husky::Husky; // Inherit constructors 277 std::string go(int n_times) override { PYBIND11_OVERRIDE_PURE(std::string, Husky, go, n_times); } 278 std::string name() override { PYBIND11_OVERRIDE(std::string, Husky, name, ); } 279 std::string bark() override { PYBIND11_OVERRIDE(std::string, Husky, bark, ); } 280 }; 281 282There is, however, a technique that can be used to avoid this duplication 283(which can be especially helpful for a base class with several virtual 284methods). The technique involves using template trampoline classes, as 285follows: 286 287.. code-block:: cpp 288 289 template <class AnimalBase = Animal> class PyAnimal : public AnimalBase { 290 public: 291 using AnimalBase::AnimalBase; // Inherit constructors 292 std::string go(int n_times) override { PYBIND11_OVERRIDE_PURE(std::string, AnimalBase, go, n_times); } 293 std::string name() override { PYBIND11_OVERRIDE(std::string, AnimalBase, name, ); } 294 }; 295 template <class DogBase = Dog> class PyDog : public PyAnimal<DogBase> { 296 public: 297 using PyAnimal<DogBase>::PyAnimal; // Inherit constructors 298 // Override PyAnimal's pure virtual go() with a non-pure one: 299 std::string go(int n_times) override { PYBIND11_OVERRIDE(std::string, DogBase, go, n_times); } 300 std::string bark() override { PYBIND11_OVERRIDE(std::string, DogBase, bark, ); } 301 }; 302 303This technique has the advantage of requiring just one trampoline method to be 304declared per virtual method and pure virtual method override. It does, 305however, require the compiler to generate at least as many methods (and 306possibly more, if both pure virtual and overridden pure virtual methods are 307exposed, as above). 308 309The classes are then registered with pybind11 using: 310 311.. code-block:: cpp 312 313 py::class_<Animal, PyAnimal<>> animal(m, "Animal"); 314 py::class_<Dog, Animal, PyDog<>> dog(m, "Dog"); 315 py::class_<Husky, Dog, PyDog<Husky>> husky(m, "Husky"); 316 // ... add animal, dog, husky definitions 317 318Note that ``Husky`` did not require a dedicated trampoline template class at 319all, since it neither declares any new virtual methods nor provides any pure 320virtual method implementations. 321 322With either the repeated-virtuals or templated trampoline methods in place, you 323can now create a python class that inherits from ``Dog``: 324 325.. code-block:: python 326 327 class ShihTzu(Dog): 328 def bark(self): 329 return "yip!" 330 331.. seealso:: 332 333 See the file :file:`tests/test_virtual_functions.cpp` for complete examples 334 using both the duplication and templated trampoline approaches. 335 336.. _extended_aliases: 337 338Extended trampoline class functionality 339======================================= 340 341.. _extended_class_functionality_forced_trampoline: 342 343Forced trampoline class initialisation 344-------------------------------------- 345The trampoline classes described in the previous sections are, by default, only 346initialized when needed. More specifically, they are initialized when a python 347class actually inherits from a registered type (instead of merely creating an 348instance of the registered type), or when a registered constructor is only 349valid for the trampoline class but not the registered class. This is primarily 350for performance reasons: when the trampoline class is not needed for anything 351except virtual method dispatching, not initializing the trampoline class 352improves performance by avoiding needing to do a run-time check to see if the 353inheriting python instance has an overridden method. 354 355Sometimes, however, it is useful to always initialize a trampoline class as an 356intermediate class that does more than just handle virtual method dispatching. 357For example, such a class might perform extra class initialization, extra 358destruction operations, and might define new members and methods to enable a 359more python-like interface to a class. 360 361In order to tell pybind11 that it should *always* initialize the trampoline 362class when creating new instances of a type, the class constructors should be 363declared using ``py::init_alias<Args, ...>()`` instead of the usual 364``py::init<Args, ...>()``. This forces construction via the trampoline class, 365ensuring member initialization and (eventual) destruction. 366 367.. seealso:: 368 369 See the file :file:`tests/test_virtual_functions.cpp` for complete examples 370 showing both normal and forced trampoline instantiation. 371 372Different method signatures 373--------------------------- 374The macro's introduced in :ref:`overriding_virtuals` cover most of the standard 375use cases when exposing C++ classes to Python. Sometimes it is hard or unwieldy 376to create a direct one-on-one mapping between the arguments and method return 377type. 378 379An example would be when the C++ signature contains output arguments using 380references (See also :ref:`faq_reference_arguments`). Another way of solving 381this is to use the method body of the trampoline class to do conversions to the 382input and return of the Python method. 383 384The main building block to do so is the :func:`get_override`, this function 385allows retrieving a method implemented in Python from within the trampoline's 386methods. Consider for example a C++ method which has the signature 387``bool myMethod(int32_t& value)``, where the return indicates whether 388something should be done with the ``value``. This can be made convenient on the 389Python side by allowing the Python function to return ``None`` or an ``int``: 390 391.. code-block:: cpp 392 393 bool MyClass::myMethod(int32_t& value) 394 { 395 pybind11::gil_scoped_acquire gil; // Acquire the GIL while in this scope. 396 // Try to look up the overridden method on the Python side. 397 pybind11::function override = pybind11::get_override(this, "myMethod"); 398 if (override) { // method is found 399 auto obj = override(value); // Call the Python function. 400 if (py::isinstance<py::int_>(obj)) { // check if it returned a Python integer type 401 value = obj.cast<int32_t>(); // Cast it and assign it to the value. 402 return true; // Return true; value should be used. 403 } else { 404 return false; // Python returned none, return false. 405 } 406 } 407 return false; // Alternatively return MyClass::myMethod(value); 408 } 409 410 411.. _custom_constructors: 412 413Custom constructors 414=================== 415 416The syntax for binding constructors was previously introduced, but it only 417works when a constructor of the appropriate arguments actually exists on the 418C++ side. To extend this to more general cases, pybind11 makes it possible 419to bind factory functions as constructors. For example, suppose you have a 420class like this: 421 422.. code-block:: cpp 423 424 class Example { 425 private: 426 Example(int); // private constructor 427 public: 428 // Factory function: 429 static Example create(int a) { return Example(a); } 430 }; 431 432 py::class_<Example>(m, "Example") 433 .def(py::init(&Example::create)); 434 435While it is possible to create a straightforward binding of the static 436``create`` method, it may sometimes be preferable to expose it as a constructor 437on the Python side. This can be accomplished by calling ``.def(py::init(...))`` 438with the function reference returning the new instance passed as an argument. 439It is also possible to use this approach to bind a function returning a new 440instance by raw pointer or by the holder (e.g. ``std::unique_ptr``). 441 442The following example shows the different approaches: 443 444.. code-block:: cpp 445 446 class Example { 447 private: 448 Example(int); // private constructor 449 public: 450 // Factory function - returned by value: 451 static Example create(int a) { return Example(a); } 452 453 // These constructors are publicly callable: 454 Example(double); 455 Example(int, int); 456 Example(std::string); 457 }; 458 459 py::class_<Example>(m, "Example") 460 // Bind the factory function as a constructor: 461 .def(py::init(&Example::create)) 462 // Bind a lambda function returning a pointer wrapped in a holder: 463 .def(py::init([](std::string arg) { 464 return std::unique_ptr<Example>(new Example(arg)); 465 })) 466 // Return a raw pointer: 467 .def(py::init([](int a, int b) { return new Example(a, b); })) 468 // You can mix the above with regular C++ constructor bindings as well: 469 .def(py::init<double>()) 470 ; 471 472When the constructor is invoked from Python, pybind11 will call the factory 473function and store the resulting C++ instance in the Python instance. 474 475When combining factory functions constructors with :ref:`virtual function 476trampolines <overriding_virtuals>` there are two approaches. The first is to 477add a constructor to the alias class that takes a base value by 478rvalue-reference. If such a constructor is available, it will be used to 479construct an alias instance from the value returned by the factory function. 480The second option is to provide two factory functions to ``py::init()``: the 481first will be invoked when no alias class is required (i.e. when the class is 482being used but not inherited from in Python), and the second will be invoked 483when an alias is required. 484 485You can also specify a single factory function that always returns an alias 486instance: this will result in behaviour similar to ``py::init_alias<...>()``, 487as described in the :ref:`extended trampoline class documentation 488<extended_aliases>`. 489 490The following example shows the different factory approaches for a class with 491an alias: 492 493.. code-block:: cpp 494 495 #include <pybind11/factory.h> 496 class Example { 497 public: 498 // ... 499 virtual ~Example() = default; 500 }; 501 class PyExample : public Example { 502 public: 503 using Example::Example; 504 PyExample(Example &&base) : Example(std::move(base)) {} 505 }; 506 py::class_<Example, PyExample>(m, "Example") 507 // Returns an Example pointer. If a PyExample is needed, the Example 508 // instance will be moved via the extra constructor in PyExample, above. 509 .def(py::init([]() { return new Example(); })) 510 // Two callbacks: 511 .def(py::init([]() { return new Example(); } /* no alias needed */, 512 []() { return new PyExample(); } /* alias needed */)) 513 // *Always* returns an alias instance (like py::init_alias<>()) 514 .def(py::init([]() { return new PyExample(); })) 515 ; 516 517Brace initialization 518-------------------- 519 520``pybind11::init<>`` internally uses C++11 brace initialization to call the 521constructor of the target class. This means that it can be used to bind 522*implicit* constructors as well: 523 524.. code-block:: cpp 525 526 struct Aggregate { 527 int a; 528 std::string b; 529 }; 530 531 py::class_<Aggregate>(m, "Aggregate") 532 .def(py::init<int, const std::string &>()); 533 534.. note:: 535 536 Note that brace initialization preferentially invokes constructor overloads 537 taking a ``std::initializer_list``. In the rare event that this causes an 538 issue, you can work around it by using ``py::init(...)`` with a lambda 539 function that constructs the new object as desired. 540 541.. _classes_with_non_public_destructors: 542 543Non-public destructors 544====================== 545 546If a class has a private or protected destructor (as might e.g. be the case in 547a singleton pattern), a compile error will occur when creating bindings via 548pybind11. The underlying issue is that the ``std::unique_ptr`` holder type that 549is responsible for managing the lifetime of instances will reference the 550destructor even if no deallocations ever take place. In order to expose classes 551with private or protected destructors, it is possible to override the holder 552type via a holder type argument to ``class_``. Pybind11 provides a helper class 553``py::nodelete`` that disables any destructor invocations. In this case, it is 554crucial that instances are deallocated on the C++ side to avoid memory leaks. 555 556.. code-block:: cpp 557 558 /* ... definition ... */ 559 560 class MyClass { 561 private: 562 ~MyClass() { } 563 }; 564 565 /* ... binding code ... */ 566 567 py::class_<MyClass, std::unique_ptr<MyClass, py::nodelete>>(m, "MyClass") 568 .def(py::init<>()) 569 570.. _destructors_that_call_python: 571 572Destructors that call Python 573============================ 574 575If a Python function is invoked from a C++ destructor, an exception may be thrown 576of type :class:`error_already_set`. If this error is thrown out of a class destructor, 577``std::terminate()`` will be called, terminating the process. Class destructors 578must catch all exceptions of type :class:`error_already_set` to discard the Python 579exception using :func:`error_already_set::discard_as_unraisable`. 580 581Every Python function should be treated as *possibly throwing*. When a Python generator 582stops yielding items, Python will throw a ``StopIteration`` exception, which can pass 583though C++ destructors if the generator's stack frame holds the last reference to C++ 584objects. 585 586For more information, see :ref:`the documentation on exceptions <unraisable_exceptions>`. 587 588.. code-block:: cpp 589 590 class MyClass { 591 public: 592 ~MyClass() { 593 try { 594 py::print("Even printing is dangerous in a destructor"); 595 py::exec("raise ValueError('This is an unraisable exception')"); 596 } catch (py::error_already_set &e) { 597 // error_context should be information about where/why the occurred, 598 // e.g. use __func__ to get the name of the current function 599 e.discard_as_unraisable(__func__); 600 } 601 } 602 }; 603 604.. note:: 605 606 pybind11 does not support C++ destructors marked ``noexcept(false)``. 607 608.. versionadded:: 2.6 609 610.. _implicit_conversions: 611 612Implicit conversions 613==================== 614 615Suppose that instances of two types ``A`` and ``B`` are used in a project, and 616that an ``A`` can easily be converted into an instance of type ``B`` (examples of this 617could be a fixed and an arbitrary precision number type). 618 619.. code-block:: cpp 620 621 py::class_<A>(m, "A") 622 /// ... members ... 623 624 py::class_<B>(m, "B") 625 .def(py::init<A>()) 626 /// ... members ... 627 628 m.def("func", 629 [](const B &) { /* .... */ } 630 ); 631 632To invoke the function ``func`` using a variable ``a`` containing an ``A`` 633instance, we'd have to write ``func(B(a))`` in Python. On the other hand, C++ 634will automatically apply an implicit type conversion, which makes it possible 635to directly write ``func(a)``. 636 637In this situation (i.e. where ``B`` has a constructor that converts from 638``A``), the following statement enables similar implicit conversions on the 639Python side: 640 641.. code-block:: cpp 642 643 py::implicitly_convertible<A, B>(); 644 645.. note:: 646 647 Implicit conversions from ``A`` to ``B`` only work when ``B`` is a custom 648 data type that is exposed to Python via pybind11. 649 650 To prevent runaway recursion, implicit conversions are non-reentrant: an 651 implicit conversion invoked as part of another implicit conversion of the 652 same type (i.e. from ``A`` to ``B``) will fail. 653 654.. _static_properties: 655 656Static properties 657================= 658 659The section on :ref:`properties` discussed the creation of instance properties 660that are implemented in terms of C++ getters and setters. 661 662Static properties can also be created in a similar way to expose getters and 663setters of static class attributes. Note that the implicit ``self`` argument 664also exists in this case and is used to pass the Python ``type`` subclass 665instance. This parameter will often not be needed by the C++ side, and the 666following example illustrates how to instantiate a lambda getter function 667that ignores it: 668 669.. code-block:: cpp 670 671 py::class_<Foo>(m, "Foo") 672 .def_property_readonly_static("foo", [](py::object /* self */) { return Foo(); }); 673 674Operator overloading 675==================== 676 677Suppose that we're given the following ``Vector2`` class with a vector addition 678and scalar multiplication operation, all implemented using overloaded operators 679in C++. 680 681.. code-block:: cpp 682 683 class Vector2 { 684 public: 685 Vector2(float x, float y) : x(x), y(y) { } 686 687 Vector2 operator+(const Vector2 &v) const { return Vector2(x + v.x, y + v.y); } 688 Vector2 operator*(float value) const { return Vector2(x * value, y * value); } 689 Vector2& operator+=(const Vector2 &v) { x += v.x; y += v.y; return *this; } 690 Vector2& operator*=(float v) { x *= v; y *= v; return *this; } 691 692 friend Vector2 operator*(float f, const Vector2 &v) { 693 return Vector2(f * v.x, f * v.y); 694 } 695 696 std::string toString() const { 697 return "[" + std::to_string(x) + ", " + std::to_string(y) + "]"; 698 } 699 private: 700 float x, y; 701 }; 702 703The following snippet shows how the above operators can be conveniently exposed 704to Python. 705 706.. code-block:: cpp 707 708 #include <pybind11/operators.h> 709 710 PYBIND11_MODULE(example, m) { 711 py::class_<Vector2>(m, "Vector2") 712 .def(py::init<float, float>()) 713 .def(py::self + py::self) 714 .def(py::self += py::self) 715 .def(py::self *= float()) 716 .def(float() * py::self) 717 .def(py::self * float()) 718 .def(-py::self) 719 .def("__repr__", &Vector2::toString); 720 } 721 722Note that a line like 723 724.. code-block:: cpp 725 726 .def(py::self * float()) 727 728is really just short hand notation for 729 730.. code-block:: cpp 731 732 .def("__mul__", [](const Vector2 &a, float b) { 733 return a * b; 734 }, py::is_operator()) 735 736This can be useful for exposing additional operators that don't exist on the 737C++ side, or to perform other types of customization. The ``py::is_operator`` 738flag marker is needed to inform pybind11 that this is an operator, which 739returns ``NotImplemented`` when invoked with incompatible arguments rather than 740throwing a type error. 741 742.. note:: 743 744 To use the more convenient ``py::self`` notation, the additional 745 header file :file:`pybind11/operators.h` must be included. 746 747.. seealso:: 748 749 The file :file:`tests/test_operator_overloading.cpp` contains a 750 complete example that demonstrates how to work with overloaded operators in 751 more detail. 752 753.. _pickling: 754 755Pickling support 756================ 757 758Python's ``pickle`` module provides a powerful facility to serialize and 759de-serialize a Python object graph into a binary data stream. To pickle and 760unpickle C++ classes using pybind11, a ``py::pickle()`` definition must be 761provided. Suppose the class in question has the following signature: 762 763.. code-block:: cpp 764 765 class Pickleable { 766 public: 767 Pickleable(const std::string &value) : m_value(value) { } 768 const std::string &value() const { return m_value; } 769 770 void setExtra(int extra) { m_extra = extra; } 771 int extra() const { return m_extra; } 772 private: 773 std::string m_value; 774 int m_extra = 0; 775 }; 776 777Pickling support in Python is enabled by defining the ``__setstate__`` and 778``__getstate__`` methods [#f3]_. For pybind11 classes, use ``py::pickle()`` 779to bind these two functions: 780 781.. code-block:: cpp 782 783 py::class_<Pickleable>(m, "Pickleable") 784 .def(py::init<std::string>()) 785 .def("value", &Pickleable::value) 786 .def("extra", &Pickleable::extra) 787 .def("setExtra", &Pickleable::setExtra) 788 .def(py::pickle( 789 [](const Pickleable &p) { // __getstate__ 790 /* Return a tuple that fully encodes the state of the object */ 791 return py::make_tuple(p.value(), p.extra()); 792 }, 793 [](py::tuple t) { // __setstate__ 794 if (t.size() != 2) 795 throw std::runtime_error("Invalid state!"); 796 797 /* Create a new C++ instance */ 798 Pickleable p(t[0].cast<std::string>()); 799 800 /* Assign any additional state */ 801 p.setExtra(t[1].cast<int>()); 802 803 return p; 804 } 805 )); 806 807The ``__setstate__`` part of the ``py::picke()`` definition follows the same 808rules as the single-argument version of ``py::init()``. The return type can be 809a value, pointer or holder type. See :ref:`custom_constructors` for details. 810 811An instance can now be pickled as follows: 812 813.. code-block:: python 814 815 try: 816 import cPickle as pickle # Use cPickle on Python 2.7 817 except ImportError: 818 import pickle 819 820 p = Pickleable("test_value") 821 p.setExtra(15) 822 data = pickle.dumps(p, 2) 823 824 825.. note:: 826 Note that only the cPickle module is supported on Python 2.7. 827 828 The second argument to ``dumps`` is also crucial: it selects the pickle 829 protocol version 2, since the older version 1 is not supported. Newer 830 versions are also fine—for instance, specify ``-1`` to always use the 831 latest available version. Beware: failure to follow these instructions 832 will cause important pybind11 memory allocation routines to be skipped 833 during unpickling, which will likely lead to memory corruption and/or 834 segmentation faults. 835 836.. seealso:: 837 838 The file :file:`tests/test_pickling.cpp` contains a complete example 839 that demonstrates how to pickle and unpickle types using pybind11 in more 840 detail. 841 842.. [#f3] http://docs.python.org/3/library/pickle.html#pickling-class-instances 843 844Deepcopy support 845================ 846 847Python normally uses references in assignments. Sometimes a real copy is needed 848to prevent changing all copies. The ``copy`` module [#f5]_ provides these 849capabilities. 850 851On Python 3, a class with pickle support is automatically also (deep)copy 852compatible. However, performance can be improved by adding custom 853``__copy__`` and ``__deepcopy__`` methods. With Python 2.7, these custom methods 854are mandatory for (deep)copy compatibility, because pybind11 only supports 855cPickle. 856 857For simple classes (deep)copy can be enabled by using the copy constructor, 858which should look as follows: 859 860.. code-block:: cpp 861 862 py::class_<Copyable>(m, "Copyable") 863 .def("__copy__", [](const Copyable &self) { 864 return Copyable(self); 865 }) 866 .def("__deepcopy__", [](const Copyable &self, py::dict) { 867 return Copyable(self); 868 }, "memo"_a); 869 870.. note:: 871 872 Dynamic attributes will not be copied in this example. 873 874.. [#f5] https://docs.python.org/3/library/copy.html 875 876Multiple Inheritance 877==================== 878 879pybind11 can create bindings for types that derive from multiple base types 880(aka. *multiple inheritance*). To do so, specify all bases in the template 881arguments of the ``class_`` declaration: 882 883.. code-block:: cpp 884 885 py::class_<MyType, BaseType1, BaseType2, BaseType3>(m, "MyType") 886 ... 887 888The base types can be specified in arbitrary order, and they can even be 889interspersed with alias types and holder types (discussed earlier in this 890document)---pybind11 will automatically find out which is which. The only 891requirement is that the first template argument is the type to be declared. 892 893It is also permitted to inherit multiply from exported C++ classes in Python, 894as well as inheriting from multiple Python and/or pybind11-exported classes. 895 896There is one caveat regarding the implementation of this feature: 897 898When only one base type is specified for a C++ type that actually has multiple 899bases, pybind11 will assume that it does not participate in multiple 900inheritance, which can lead to undefined behavior. In such cases, add the tag 901``multiple_inheritance`` to the class constructor: 902 903.. code-block:: cpp 904 905 py::class_<MyType, BaseType2>(m, "MyType", py::multiple_inheritance()); 906 907The tag is redundant and does not need to be specified when multiple base types 908are listed. 909 910.. _module_local: 911 912Module-local class bindings 913=========================== 914 915When creating a binding for a class, pybind11 by default makes that binding 916"global" across modules. What this means is that a type defined in one module 917can be returned from any module resulting in the same Python type. For 918example, this allows the following: 919 920.. code-block:: cpp 921 922 // In the module1.cpp binding code for module1: 923 py::class_<Pet>(m, "Pet") 924 .def(py::init<std::string>()) 925 .def_readonly("name", &Pet::name); 926 927.. code-block:: cpp 928 929 // In the module2.cpp binding code for module2: 930 m.def("create_pet", [](std::string name) { return new Pet(name); }); 931 932.. code-block:: pycon 933 934 >>> from module1 import Pet 935 >>> from module2 import create_pet 936 >>> pet1 = Pet("Kitty") 937 >>> pet2 = create_pet("Doggy") 938 >>> pet2.name() 939 'Doggy' 940 941When writing binding code for a library, this is usually desirable: this 942allows, for example, splitting up a complex library into multiple Python 943modules. 944 945In some cases, however, this can cause conflicts. For example, suppose two 946unrelated modules make use of an external C++ library and each provide custom 947bindings for one of that library's classes. This will result in an error when 948a Python program attempts to import both modules (directly or indirectly) 949because of conflicting definitions on the external type: 950 951.. code-block:: cpp 952 953 // dogs.cpp 954 955 // Binding for external library class: 956 py::class<pets::Pet>(m, "Pet") 957 .def("name", &pets::Pet::name); 958 959 // Binding for local extension class: 960 py::class<Dog, pets::Pet>(m, "Dog") 961 .def(py::init<std::string>()); 962 963.. code-block:: cpp 964 965 // cats.cpp, in a completely separate project from the above dogs.cpp. 966 967 // Binding for external library class: 968 py::class<pets::Pet>(m, "Pet") 969 .def("get_name", &pets::Pet::name); 970 971 // Binding for local extending class: 972 py::class<Cat, pets::Pet>(m, "Cat") 973 .def(py::init<std::string>()); 974 975.. code-block:: pycon 976 977 >>> import cats 978 >>> import dogs 979 Traceback (most recent call last): 980 File "<stdin>", line 1, in <module> 981 ImportError: generic_type: type "Pet" is already registered! 982 983To get around this, you can tell pybind11 to keep the external class binding 984localized to the module by passing the ``py::module_local()`` attribute into 985the ``py::class_`` constructor: 986 987.. code-block:: cpp 988 989 // Pet binding in dogs.cpp: 990 py::class<pets::Pet>(m, "Pet", py::module_local()) 991 .def("name", &pets::Pet::name); 992 993.. code-block:: cpp 994 995 // Pet binding in cats.cpp: 996 py::class<pets::Pet>(m, "Pet", py::module_local()) 997 .def("get_name", &pets::Pet::name); 998 999This makes the Python-side ``dogs.Pet`` and ``cats.Pet`` into distinct classes, 1000avoiding the conflict and allowing both modules to be loaded. C++ code in the 1001``dogs`` module that casts or returns a ``Pet`` instance will result in a 1002``dogs.Pet`` Python instance, while C++ code in the ``cats`` module will result 1003in a ``cats.Pet`` Python instance. 1004 1005This does come with two caveats, however: First, external modules cannot return 1006or cast a ``Pet`` instance to Python (unless they also provide their own local 1007bindings). Second, from the Python point of view they are two distinct classes. 1008 1009Note that the locality only applies in the C++ -> Python direction. When 1010passing such a ``py::module_local`` type into a C++ function, the module-local 1011classes are still considered. This means that if the following function is 1012added to any module (including but not limited to the ``cats`` and ``dogs`` 1013modules above) it will be callable with either a ``dogs.Pet`` or ``cats.Pet`` 1014argument: 1015 1016.. code-block:: cpp 1017 1018 m.def("pet_name", [](const pets::Pet &pet) { return pet.name(); }); 1019 1020For example, suppose the above function is added to each of ``cats.cpp``, 1021``dogs.cpp`` and ``frogs.cpp`` (where ``frogs.cpp`` is some other module that 1022does *not* bind ``Pets`` at all). 1023 1024.. code-block:: pycon 1025 1026 >>> import cats, dogs, frogs # No error because of the added py::module_local() 1027 >>> mycat, mydog = cats.Cat("Fluffy"), dogs.Dog("Rover") 1028 >>> (cats.pet_name(mycat), dogs.pet_name(mydog)) 1029 ('Fluffy', 'Rover') 1030 >>> (cats.pet_name(mydog), dogs.pet_name(mycat), frogs.pet_name(mycat)) 1031 ('Rover', 'Fluffy', 'Fluffy') 1032 1033It is possible to use ``py::module_local()`` registrations in one module even 1034if another module registers the same type globally: within the module with the 1035module-local definition, all C++ instances will be cast to the associated bound 1036Python type. In other modules any such values are converted to the global 1037Python type created elsewhere. 1038 1039.. note:: 1040 1041 STL bindings (as provided via the optional :file:`pybind11/stl_bind.h` 1042 header) apply ``py::module_local`` by default when the bound type might 1043 conflict with other modules; see :ref:`stl_bind` for details. 1044 1045.. note:: 1046 1047 The localization of the bound types is actually tied to the shared object 1048 or binary generated by the compiler/linker. For typical modules created 1049 with ``PYBIND11_MODULE()``, this distinction is not significant. It is 1050 possible, however, when :ref:`embedding` to embed multiple modules in the 1051 same binary (see :ref:`embedding_modules`). In such a case, the 1052 localization will apply across all embedded modules within the same binary. 1053 1054.. seealso:: 1055 1056 The file :file:`tests/test_local_bindings.cpp` contains additional examples 1057 that demonstrate how ``py::module_local()`` works. 1058 1059Binding protected member functions 1060================================== 1061 1062It's normally not possible to expose ``protected`` member functions to Python: 1063 1064.. code-block:: cpp 1065 1066 class A { 1067 protected: 1068 int foo() const { return 42; } 1069 }; 1070 1071 py::class_<A>(m, "A") 1072 .def("foo", &A::foo); // error: 'foo' is a protected member of 'A' 1073 1074On one hand, this is good because non-``public`` members aren't meant to be 1075accessed from the outside. But we may want to make use of ``protected`` 1076functions in derived Python classes. 1077 1078The following pattern makes this possible: 1079 1080.. code-block:: cpp 1081 1082 class A { 1083 protected: 1084 int foo() const { return 42; } 1085 }; 1086 1087 class Publicist : public A { // helper type for exposing protected functions 1088 public: 1089 using A::foo; // inherited with different access modifier 1090 }; 1091 1092 py::class_<A>(m, "A") // bind the primary class 1093 .def("foo", &Publicist::foo); // expose protected methods via the publicist 1094 1095This works because ``&Publicist::foo`` is exactly the same function as 1096``&A::foo`` (same signature and address), just with a different access 1097modifier. The only purpose of the ``Publicist`` helper class is to make 1098the function name ``public``. 1099 1100If the intent is to expose ``protected`` ``virtual`` functions which can be 1101overridden in Python, the publicist pattern can be combined with the previously 1102described trampoline: 1103 1104.. code-block:: cpp 1105 1106 class A { 1107 public: 1108 virtual ~A() = default; 1109 1110 protected: 1111 virtual int foo() const { return 42; } 1112 }; 1113 1114 class Trampoline : public A { 1115 public: 1116 int foo() const override { PYBIND11_OVERRIDE(int, A, foo, ); } 1117 }; 1118 1119 class Publicist : public A { 1120 public: 1121 using A::foo; 1122 }; 1123 1124 py::class_<A, Trampoline>(m, "A") // <-- `Trampoline` here 1125 .def("foo", &Publicist::foo); // <-- `Publicist` here, not `Trampoline`! 1126 1127.. note:: 1128 1129 MSVC 2015 has a compiler bug (fixed in version 2017) which 1130 requires a more explicit function binding in the form of 1131 ``.def("foo", static_cast<int (A::*)() const>(&Publicist::foo));`` 1132 where ``int (A::*)() const`` is the type of ``A::foo``. 1133 1134Binding final classes 1135===================== 1136 1137Some classes may not be appropriate to inherit from. In C++11, classes can 1138use the ``final`` specifier to ensure that a class cannot be inherited from. 1139The ``py::is_final`` attribute can be used to ensure that Python classes 1140cannot inherit from a specified type. The underlying C++ type does not need 1141to be declared final. 1142 1143.. code-block:: cpp 1144 1145 class IsFinal final {}; 1146 1147 py::class_<IsFinal>(m, "IsFinal", py::is_final()); 1148 1149When you try to inherit from such a class in Python, you will now get this 1150error: 1151 1152.. code-block:: pycon 1153 1154 >>> class PyFinalChild(IsFinal): 1155 ... pass 1156 TypeError: type 'IsFinal' is not an acceptable base type 1157 1158.. note:: This attribute is currently ignored on PyPy 1159 1160.. versionadded:: 2.6 1161 1162Custom automatic downcasters 1163============================ 1164 1165As explained in :ref:`inheritance`, pybind11 comes with built-in 1166understanding of the dynamic type of polymorphic objects in C++; that 1167is, returning a Pet to Python produces a Python object that knows it's 1168wrapping a Dog, if Pet has virtual methods and pybind11 knows about 1169Dog and this Pet is in fact a Dog. Sometimes, you might want to 1170provide this automatic downcasting behavior when creating bindings for 1171a class hierarchy that does not use standard C++ polymorphism, such as 1172LLVM [#f4]_. As long as there's some way to determine at runtime 1173whether a downcast is safe, you can proceed by specializing the 1174``pybind11::polymorphic_type_hook`` template: 1175 1176.. code-block:: cpp 1177 1178 enum class PetKind { Cat, Dog, Zebra }; 1179 struct Pet { // Not polymorphic: has no virtual methods 1180 const PetKind kind; 1181 int age = 0; 1182 protected: 1183 Pet(PetKind _kind) : kind(_kind) {} 1184 }; 1185 struct Dog : Pet { 1186 Dog() : Pet(PetKind::Dog) {} 1187 std::string sound = "woof!"; 1188 std::string bark() const { return sound; } 1189 }; 1190 1191 namespace pybind11 { 1192 template<> struct polymorphic_type_hook<Pet> { 1193 static const void *get(const Pet *src, const std::type_info*& type) { 1194 // note that src may be nullptr 1195 if (src && src->kind == PetKind::Dog) { 1196 type = &typeid(Dog); 1197 return static_cast<const Dog*>(src); 1198 } 1199 return src; 1200 } 1201 }; 1202 } // namespace pybind11 1203 1204When pybind11 wants to convert a C++ pointer of type ``Base*`` to a 1205Python object, it calls ``polymorphic_type_hook<Base>::get()`` to 1206determine if a downcast is possible. The ``get()`` function should use 1207whatever runtime information is available to determine if its ``src`` 1208parameter is in fact an instance of some class ``Derived`` that 1209inherits from ``Base``. If it finds such a ``Derived``, it sets ``type 1210= &typeid(Derived)`` and returns a pointer to the ``Derived`` object 1211that contains ``src``. Otherwise, it just returns ``src``, leaving 1212``type`` at its default value of nullptr. If you set ``type`` to a 1213type that pybind11 doesn't know about, no downcasting will occur, and 1214the original ``src`` pointer will be used with its static type 1215``Base*``. 1216 1217It is critical that the returned pointer and ``type`` argument of 1218``get()`` agree with each other: if ``type`` is set to something 1219non-null, the returned pointer must point to the start of an object 1220whose type is ``type``. If the hierarchy being exposed uses only 1221single inheritance, a simple ``return src;`` will achieve this just 1222fine, but in the general case, you must cast ``src`` to the 1223appropriate derived-class pointer (e.g. using 1224``static_cast<Derived>(src)``) before allowing it to be returned as a 1225``void*``. 1226 1227.. [#f4] https://llvm.org/docs/HowToSetUpLLVMStyleRTTI.html 1228 1229.. note:: 1230 1231 pybind11's standard support for downcasting objects whose types 1232 have virtual methods is implemented using 1233 ``polymorphic_type_hook`` too, using the standard C++ ability to 1234 determine the most-derived type of a polymorphic object using 1235 ``typeid()`` and to cast a base pointer to that most-derived type 1236 (even if you don't know what it is) using ``dynamic_cast<void*>``. 1237 1238.. seealso:: 1239 1240 The file :file:`tests/test_tagbased_polymorphic.cpp` contains a 1241 more complete example, including a demonstration of how to provide 1242 automatic downcasting for an entire class hierarchy without 1243 writing one get() function for each class. 1244 1245Accessing the type object 1246========================= 1247 1248You can get the type object from a C++ class that has already been registered using: 1249 1250.. code-block:: python 1251 1252 py::type T_py = py::type::of<T>(); 1253 1254You can directly use ``py::type::of(ob)`` to get the type object from any python 1255object, just like ``type(ob)`` in Python. 1256 1257.. note:: 1258 1259 Other types, like ``py::type::of<int>()``, do not work, see :ref:`type-conversions`. 1260 1261.. versionadded:: 2.6 1262