• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1Classes
2#######
3
4This section presents advanced binding code for classes and it is assumed
5that you are already familiar with the basics from :doc:`/classes`.
6
7.. _overriding_virtuals:
8
9Overriding virtual functions in Python
10======================================
11
12Suppose that a C++ class or interface has a virtual function that we'd like to
13to override from within Python (we'll focus on the class ``Animal``; ``Dog`` is
14given as a specific example of how one would do this with traditional C++
15code).
16
17.. code-block:: cpp
18
19    class Animal {
20    public:
21        virtual ~Animal() { }
22        virtual std::string go(int n_times) = 0;
23    };
24
25    class Dog : public Animal {
26    public:
27        std::string go(int n_times) override {
28            std::string result;
29            for (int i=0; i<n_times; ++i)
30                result += "woof! ";
31            return result;
32        }
33    };
34
35Let's also suppose that we are given a plain function which calls the
36function ``go()`` on an arbitrary ``Animal`` instance.
37
38.. code-block:: cpp
39
40    std::string call_go(Animal *animal) {
41        return animal->go(3);
42    }
43
44Normally, the binding code for these classes would look as follows:
45
46.. code-block:: cpp
47
48    PYBIND11_MODULE(example, m) {
49        py::class_<Animal>(m, "Animal")
50            .def("go", &Animal::go);
51
52        py::class_<Dog, Animal>(m, "Dog")
53            .def(py::init<>());
54
55        m.def("call_go", &call_go);
56    }
57
58However, these bindings are impossible to extend: ``Animal`` is not
59constructible, and we clearly require some kind of "trampoline" that
60redirects virtual calls back to Python.
61
62Defining a new type of ``Animal`` from within Python is possible but requires a
63helper class that is defined as follows:
64
65.. code-block:: cpp
66
67    class PyAnimal : public Animal {
68    public:
69        /* Inherit the constructors */
70        using Animal::Animal;
71
72        /* Trampoline (need one for each virtual function) */
73        std::string go(int n_times) override {
74            PYBIND11_OVERRIDE_PURE(
75                std::string, /* Return type */
76                Animal,      /* Parent class */
77                go,          /* Name of function in C++ (must match Python name) */
78                n_times      /* Argument(s) */
79            );
80        }
81    };
82
83The macro :c:macro:`PYBIND11_OVERRIDE_PURE` should be used for pure virtual
84functions, and :c:macro:`PYBIND11_OVERRIDE` should be used for functions which have
85a default implementation.  There are also two alternate macros
86:c:macro:`PYBIND11_OVERRIDE_PURE_NAME` and :c:macro:`PYBIND11_OVERRIDE_NAME` which
87take a string-valued name argument between the *Parent class* and *Name of the
88function* slots, which defines the name of function in Python. This is required
89when the C++ and Python versions of the
90function have different names, e.g.  ``operator()`` vs ``__call__``.
91
92The binding code also needs a few minor adaptations (highlighted):
93
94.. code-block:: cpp
95    :emphasize-lines: 2,3
96
97    PYBIND11_MODULE(example, m) {
98        py::class_<Animal, PyAnimal /* <--- trampoline*/>(m, "Animal")
99            .def(py::init<>())
100            .def("go", &Animal::go);
101
102        py::class_<Dog, Animal>(m, "Dog")
103            .def(py::init<>());
104
105        m.def("call_go", &call_go);
106    }
107
108Importantly, pybind11 is made aware of the trampoline helper class by
109specifying it as an extra template argument to :class:`class_`. (This can also
110be combined with other template arguments such as a custom holder type; the
111order of template types does not matter).  Following this, we are able to
112define a constructor as usual.
113
114Bindings should be made against the actual class, not the trampoline helper class.
115
116.. code-block:: cpp
117    :emphasize-lines: 3
118
119    py::class_<Animal, PyAnimal /* <--- trampoline*/>(m, "Animal");
120        .def(py::init<>())
121        .def("go", &PyAnimal::go); /* <--- THIS IS WRONG, use &Animal::go */
122
123Note, however, that the above is sufficient for allowing python classes to
124extend ``Animal``, but not ``Dog``: see :ref:`virtual_and_inheritance` for the
125necessary steps required to providing proper overriding support for inherited
126classes.
127
128The Python session below shows how to override ``Animal::go`` and invoke it via
129a virtual method call.
130
131.. code-block:: pycon
132
133    >>> from example import *
134    >>> d = Dog()
135    >>> call_go(d)
136    u'woof! woof! woof! '
137    >>> class Cat(Animal):
138    ...     def go(self, n_times):
139    ...             return "meow! " * n_times
140    ...
141    >>> c = Cat()
142    >>> call_go(c)
143    u'meow! meow! meow! '
144
145If you are defining a custom constructor in a derived Python class, you *must*
146ensure that you explicitly call the bound C++ constructor using ``__init__``,
147*regardless* of whether it is a default constructor or not. Otherwise, the
148memory for the C++ portion of the instance will be left uninitialized, which
149will generally leave the C++ instance in an invalid state and cause undefined
150behavior if the C++ instance is subsequently used.
151
152.. versionchanged:: 2.6
153   The default pybind11 metaclass will throw a ``TypeError`` when it detects
154   that ``__init__`` was not called by a derived class.
155
156Here is an example:
157
158.. code-block:: python
159
160    class Dachshund(Dog):
161        def __init__(self, name):
162            Dog.__init__(self) # Without this, a TypeError is raised.
163            self.name = name
164        def bark(self):
165            return "yap!"
166
167Note that a direct ``__init__`` constructor *should be called*, and ``super()``
168should not be used. For simple cases of linear inheritance, ``super()``
169may work, but once you begin mixing Python and C++ multiple inheritance,
170things will fall apart due to differences between Python's MRO and C++'s
171mechanisms.
172
173Please take a look at the :ref:`macro_notes` before using this feature.
174
175.. note::
176
177    When the overridden type returns a reference or pointer to a type that
178    pybind11 converts from Python (for example, numeric values, std::string,
179    and other built-in value-converting types), there are some limitations to
180    be aware of:
181
182    - because in these cases there is no C++ variable to reference (the value
183      is stored in the referenced Python variable), pybind11 provides one in
184      the PYBIND11_OVERRIDE macros (when needed) with static storage duration.
185      Note that this means that invoking the overridden method on *any*
186      instance will change the referenced value stored in *all* instances of
187      that type.
188
189    - Attempts to modify a non-const reference will not have the desired
190      effect: it will change only the static cache variable, but this change
191      will not propagate to underlying Python instance, and the change will be
192      replaced the next time the override is invoked.
193
194.. warning::
195
196    The :c:macro:`PYBIND11_OVERRIDE` and accompanying macros used to be called
197    ``PYBIND11_OVERLOAD`` up until pybind11 v2.5.0, and :func:`get_override`
198    used to be called ``get_overload``. This naming was corrected and the older
199    macro and function names may soon be deprecated, in order to reduce
200    confusion with overloaded functions and methods and ``py::overload_cast``
201    (see :ref:`classes`).
202
203.. seealso::
204
205    The file :file:`tests/test_virtual_functions.cpp` contains a complete
206    example that demonstrates how to override virtual functions using pybind11
207    in more detail.
208
209.. _virtual_and_inheritance:
210
211Combining virtual functions and inheritance
212===========================================
213
214When combining virtual methods with inheritance, you need to be sure to provide
215an override for each method for which you want to allow overrides from derived
216python classes.  For example, suppose we extend the above ``Animal``/``Dog``
217example as follows:
218
219.. code-block:: cpp
220
221    class Animal {
222    public:
223        virtual std::string go(int n_times) = 0;
224        virtual std::string name() { return "unknown"; }
225    };
226    class Dog : public Animal {
227    public:
228        std::string go(int n_times) override {
229            std::string result;
230            for (int i=0; i<n_times; ++i)
231                result += bark() + " ";
232            return result;
233        }
234        virtual std::string bark() { return "woof!"; }
235    };
236
237then the trampoline class for ``Animal`` must, as described in the previous
238section, override ``go()`` and ``name()``, but in order to allow python code to
239inherit properly from ``Dog``, we also need a trampoline class for ``Dog`` that
240overrides both the added ``bark()`` method *and* the ``go()`` and ``name()``
241methods inherited from ``Animal`` (even though ``Dog`` doesn't directly
242override the ``name()`` method):
243
244.. code-block:: cpp
245
246    class PyAnimal : public Animal {
247    public:
248        using Animal::Animal; // Inherit constructors
249        std::string go(int n_times) override { PYBIND11_OVERRIDE_PURE(std::string, Animal, go, n_times); }
250        std::string name() override { PYBIND11_OVERRIDE(std::string, Animal, name, ); }
251    };
252    class PyDog : public Dog {
253    public:
254        using Dog::Dog; // Inherit constructors
255        std::string go(int n_times) override { PYBIND11_OVERRIDE(std::string, Dog, go, n_times); }
256        std::string name() override { PYBIND11_OVERRIDE(std::string, Dog, name, ); }
257        std::string bark() override { PYBIND11_OVERRIDE(std::string, Dog, bark, ); }
258    };
259
260.. note::
261
262    Note the trailing commas in the ``PYBIND11_OVERIDE`` calls to ``name()``
263    and ``bark()``. These are needed to portably implement a trampoline for a
264    function that does not take any arguments. For functions that take
265    a nonzero number of arguments, the trailing comma must be omitted.
266
267A registered class derived from a pybind11-registered class with virtual
268methods requires a similar trampoline class, *even if* it doesn't explicitly
269declare or override any virtual methods itself:
270
271.. code-block:: cpp
272
273    class Husky : public Dog {};
274    class PyHusky : public Husky {
275    public:
276        using Husky::Husky; // Inherit constructors
277        std::string go(int n_times) override { PYBIND11_OVERRIDE_PURE(std::string, Husky, go, n_times); }
278        std::string name() override { PYBIND11_OVERRIDE(std::string, Husky, name, ); }
279        std::string bark() override { PYBIND11_OVERRIDE(std::string, Husky, bark, ); }
280    };
281
282There is, however, a technique that can be used to avoid this duplication
283(which can be especially helpful for a base class with several virtual
284methods).  The technique involves using template trampoline classes, as
285follows:
286
287.. code-block:: cpp
288
289    template <class AnimalBase = Animal> class PyAnimal : public AnimalBase {
290    public:
291        using AnimalBase::AnimalBase; // Inherit constructors
292        std::string go(int n_times) override { PYBIND11_OVERRIDE_PURE(std::string, AnimalBase, go, n_times); }
293        std::string name() override { PYBIND11_OVERRIDE(std::string, AnimalBase, name, ); }
294    };
295    template <class DogBase = Dog> class PyDog : public PyAnimal<DogBase> {
296    public:
297        using PyAnimal<DogBase>::PyAnimal; // Inherit constructors
298        // Override PyAnimal's pure virtual go() with a non-pure one:
299        std::string go(int n_times) override { PYBIND11_OVERRIDE(std::string, DogBase, go, n_times); }
300        std::string bark() override { PYBIND11_OVERRIDE(std::string, DogBase, bark, ); }
301    };
302
303This technique has the advantage of requiring just one trampoline method to be
304declared per virtual method and pure virtual method override.  It does,
305however, require the compiler to generate at least as many methods (and
306possibly more, if both pure virtual and overridden pure virtual methods are
307exposed, as above).
308
309The classes are then registered with pybind11 using:
310
311.. code-block:: cpp
312
313    py::class_<Animal, PyAnimal<>> animal(m, "Animal");
314    py::class_<Dog, Animal, PyDog<>> dog(m, "Dog");
315    py::class_<Husky, Dog, PyDog<Husky>> husky(m, "Husky");
316    // ... add animal, dog, husky definitions
317
318Note that ``Husky`` did not require a dedicated trampoline template class at
319all, since it neither declares any new virtual methods nor provides any pure
320virtual method implementations.
321
322With either the repeated-virtuals or templated trampoline methods in place, you
323can now create a python class that inherits from ``Dog``:
324
325.. code-block:: python
326
327    class ShihTzu(Dog):
328        def bark(self):
329            return "yip!"
330
331.. seealso::
332
333    See the file :file:`tests/test_virtual_functions.cpp` for complete examples
334    using both the duplication and templated trampoline approaches.
335
336.. _extended_aliases:
337
338Extended trampoline class functionality
339=======================================
340
341.. _extended_class_functionality_forced_trampoline:
342
343Forced trampoline class initialisation
344--------------------------------------
345The trampoline classes described in the previous sections are, by default, only
346initialized when needed.  More specifically, they are initialized when a python
347class actually inherits from a registered type (instead of merely creating an
348instance of the registered type), or when a registered constructor is only
349valid for the trampoline class but not the registered class.  This is primarily
350for performance reasons: when the trampoline class is not needed for anything
351except virtual method dispatching, not initializing the trampoline class
352improves performance by avoiding needing to do a run-time check to see if the
353inheriting python instance has an overridden method.
354
355Sometimes, however, it is useful to always initialize a trampoline class as an
356intermediate class that does more than just handle virtual method dispatching.
357For example, such a class might perform extra class initialization, extra
358destruction operations, and might define new members and methods to enable a
359more python-like interface to a class.
360
361In order to tell pybind11 that it should *always* initialize the trampoline
362class when creating new instances of a type, the class constructors should be
363declared using ``py::init_alias<Args, ...>()`` instead of the usual
364``py::init<Args, ...>()``.  This forces construction via the trampoline class,
365ensuring member initialization and (eventual) destruction.
366
367.. seealso::
368
369    See the file :file:`tests/test_virtual_functions.cpp` for complete examples
370    showing both normal and forced trampoline instantiation.
371
372Different method signatures
373---------------------------
374The macro's introduced in :ref:`overriding_virtuals` cover most of the standard
375use cases when exposing C++ classes to Python. Sometimes it is hard or unwieldy
376to create a direct one-on-one mapping between the arguments and method return
377type.
378
379An example would be when the C++ signature contains output arguments using
380references (See also :ref:`faq_reference_arguments`). Another way of solving
381this is to use the method body of the trampoline class to do conversions to the
382input and return of the Python method.
383
384The main building block to do so is the :func:`get_override`, this function
385allows retrieving a method implemented in Python from within the trampoline's
386methods. Consider for example a C++ method which has the signature
387``bool myMethod(int32_t& value)``, where the return indicates whether
388something should be done with the ``value``. This can be made convenient on the
389Python side by allowing the Python function to return ``None`` or an ``int``:
390
391.. code-block:: cpp
392
393    bool MyClass::myMethod(int32_t& value)
394    {
395        pybind11::gil_scoped_acquire gil;  // Acquire the GIL while in this scope.
396        // Try to look up the overridden method on the Python side.
397        pybind11::function override = pybind11::get_override(this, "myMethod");
398        if (override) {  // method is found
399            auto obj = override(value);  // Call the Python function.
400            if (py::isinstance<py::int_>(obj)) {  // check if it returned a Python integer type
401                value = obj.cast<int32_t>();  // Cast it and assign it to the value.
402                return true;  // Return true; value should be used.
403            } else {
404                return false;  // Python returned none, return false.
405            }
406        }
407        return false;  // Alternatively return MyClass::myMethod(value);
408    }
409
410
411.. _custom_constructors:
412
413Custom constructors
414===================
415
416The syntax for binding constructors was previously introduced, but it only
417works when a constructor of the appropriate arguments actually exists on the
418C++ side.  To extend this to more general cases, pybind11 makes it possible
419to bind factory functions as constructors. For example, suppose you have a
420class like this:
421
422.. code-block:: cpp
423
424    class Example {
425    private:
426        Example(int); // private constructor
427    public:
428        // Factory function:
429        static Example create(int a) { return Example(a); }
430    };
431
432    py::class_<Example>(m, "Example")
433        .def(py::init(&Example::create));
434
435While it is possible to create a straightforward binding of the static
436``create`` method, it may sometimes be preferable to expose it as a constructor
437on the Python side. This can be accomplished by calling ``.def(py::init(...))``
438with the function reference returning the new instance passed as an argument.
439It is also possible to use this approach to bind a function returning a new
440instance by raw pointer or by the holder (e.g. ``std::unique_ptr``).
441
442The following example shows the different approaches:
443
444.. code-block:: cpp
445
446    class Example {
447    private:
448        Example(int); // private constructor
449    public:
450        // Factory function - returned by value:
451        static Example create(int a) { return Example(a); }
452
453        // These constructors are publicly callable:
454        Example(double);
455        Example(int, int);
456        Example(std::string);
457    };
458
459    py::class_<Example>(m, "Example")
460        // Bind the factory function as a constructor:
461        .def(py::init(&Example::create))
462        // Bind a lambda function returning a pointer wrapped in a holder:
463        .def(py::init([](std::string arg) {
464            return std::unique_ptr<Example>(new Example(arg));
465        }))
466        // Return a raw pointer:
467        .def(py::init([](int a, int b) { return new Example(a, b); }))
468        // You can mix the above with regular C++ constructor bindings as well:
469        .def(py::init<double>())
470        ;
471
472When the constructor is invoked from Python, pybind11 will call the factory
473function and store the resulting C++ instance in the Python instance.
474
475When combining factory functions constructors with :ref:`virtual function
476trampolines <overriding_virtuals>` there are two approaches.  The first is to
477add a constructor to the alias class that takes a base value by
478rvalue-reference.  If such a constructor is available, it will be used to
479construct an alias instance from the value returned by the factory function.
480The second option is to provide two factory functions to ``py::init()``: the
481first will be invoked when no alias class is required (i.e. when the class is
482being used but not inherited from in Python), and the second will be invoked
483when an alias is required.
484
485You can also specify a single factory function that always returns an alias
486instance: this will result in behaviour similar to ``py::init_alias<...>()``,
487as described in the :ref:`extended trampoline class documentation
488<extended_aliases>`.
489
490The following example shows the different factory approaches for a class with
491an alias:
492
493.. code-block:: cpp
494
495    #include <pybind11/factory.h>
496    class Example {
497    public:
498        // ...
499        virtual ~Example() = default;
500    };
501    class PyExample : public Example {
502    public:
503        using Example::Example;
504        PyExample(Example &&base) : Example(std::move(base)) {}
505    };
506    py::class_<Example, PyExample>(m, "Example")
507        // Returns an Example pointer.  If a PyExample is needed, the Example
508        // instance will be moved via the extra constructor in PyExample, above.
509        .def(py::init([]() { return new Example(); }))
510        // Two callbacks:
511        .def(py::init([]() { return new Example(); } /* no alias needed */,
512                      []() { return new PyExample(); } /* alias needed */))
513        // *Always* returns an alias instance (like py::init_alias<>())
514        .def(py::init([]() { return new PyExample(); }))
515        ;
516
517Brace initialization
518--------------------
519
520``pybind11::init<>`` internally uses C++11 brace initialization to call the
521constructor of the target class. This means that it can be used to bind
522*implicit* constructors as well:
523
524.. code-block:: cpp
525
526    struct Aggregate {
527        int a;
528        std::string b;
529    };
530
531    py::class_<Aggregate>(m, "Aggregate")
532        .def(py::init<int, const std::string &>());
533
534.. note::
535
536    Note that brace initialization preferentially invokes constructor overloads
537    taking a ``std::initializer_list``. In the rare event that this causes an
538    issue, you can work around it by using ``py::init(...)`` with a lambda
539    function that constructs the new object as desired.
540
541.. _classes_with_non_public_destructors:
542
543Non-public destructors
544======================
545
546If a class has a private or protected destructor (as might e.g. be the case in
547a singleton pattern), a compile error will occur when creating bindings via
548pybind11. The underlying issue is that the ``std::unique_ptr`` holder type that
549is responsible for managing the lifetime of instances will reference the
550destructor even if no deallocations ever take place. In order to expose classes
551with private or protected destructors, it is possible to override the holder
552type via a holder type argument to ``class_``. Pybind11 provides a helper class
553``py::nodelete`` that disables any destructor invocations. In this case, it is
554crucial that instances are deallocated on the C++ side to avoid memory leaks.
555
556.. code-block:: cpp
557
558    /* ... definition ... */
559
560    class MyClass {
561    private:
562        ~MyClass() { }
563    };
564
565    /* ... binding code ... */
566
567    py::class_<MyClass, std::unique_ptr<MyClass, py::nodelete>>(m, "MyClass")
568        .def(py::init<>())
569
570.. _destructors_that_call_python:
571
572Destructors that call Python
573============================
574
575If a Python function is invoked from a C++ destructor, an exception may be thrown
576of type :class:`error_already_set`. If this error is thrown out of a class destructor,
577``std::terminate()`` will be called, terminating the process. Class destructors
578must catch all exceptions of type :class:`error_already_set` to discard the Python
579exception using :func:`error_already_set::discard_as_unraisable`.
580
581Every Python function should be treated as *possibly throwing*. When a Python generator
582stops yielding items, Python will throw a ``StopIteration`` exception, which can pass
583though C++ destructors if the generator's stack frame holds the last reference to C++
584objects.
585
586For more information, see :ref:`the documentation on exceptions <unraisable_exceptions>`.
587
588.. code-block:: cpp
589
590    class MyClass {
591    public:
592        ~MyClass() {
593            try {
594                py::print("Even printing is dangerous in a destructor");
595                py::exec("raise ValueError('This is an unraisable exception')");
596            } catch (py::error_already_set &e) {
597                // error_context should be information about where/why the occurred,
598                // e.g. use __func__ to get the name of the current function
599                e.discard_as_unraisable(__func__);
600            }
601        }
602    };
603
604.. note::
605
606    pybind11 does not support C++ destructors marked ``noexcept(false)``.
607
608.. versionadded:: 2.6
609
610.. _implicit_conversions:
611
612Implicit conversions
613====================
614
615Suppose that instances of two types ``A`` and ``B`` are used in a project, and
616that an ``A`` can easily be converted into an instance of type ``B`` (examples of this
617could be a fixed and an arbitrary precision number type).
618
619.. code-block:: cpp
620
621    py::class_<A>(m, "A")
622        /// ... members ...
623
624    py::class_<B>(m, "B")
625        .def(py::init<A>())
626        /// ... members ...
627
628    m.def("func",
629        [](const B &) { /* .... */ }
630    );
631
632To invoke the function ``func`` using a variable ``a`` containing an ``A``
633instance, we'd have to write ``func(B(a))`` in Python. On the other hand, C++
634will automatically apply an implicit type conversion, which makes it possible
635to directly write ``func(a)``.
636
637In this situation (i.e. where ``B`` has a constructor that converts from
638``A``), the following statement enables similar implicit conversions on the
639Python side:
640
641.. code-block:: cpp
642
643    py::implicitly_convertible<A, B>();
644
645.. note::
646
647    Implicit conversions from ``A`` to ``B`` only work when ``B`` is a custom
648    data type that is exposed to Python via pybind11.
649
650    To prevent runaway recursion, implicit conversions are non-reentrant: an
651    implicit conversion invoked as part of another implicit conversion of the
652    same type (i.e. from ``A`` to ``B``) will fail.
653
654.. _static_properties:
655
656Static properties
657=================
658
659The section on :ref:`properties` discussed the creation of instance properties
660that are implemented in terms of C++ getters and setters.
661
662Static properties can also be created in a similar way to expose getters and
663setters of static class attributes. Note that the implicit ``self`` argument
664also exists in this case and is used to pass the Python ``type`` subclass
665instance. This parameter will often not be needed by the C++ side, and the
666following example illustrates how to instantiate a lambda getter function
667that ignores it:
668
669.. code-block:: cpp
670
671    py::class_<Foo>(m, "Foo")
672        .def_property_readonly_static("foo", [](py::object /* self */) { return Foo(); });
673
674Operator overloading
675====================
676
677Suppose that we're given the following ``Vector2`` class with a vector addition
678and scalar multiplication operation, all implemented using overloaded operators
679in C++.
680
681.. code-block:: cpp
682
683    class Vector2 {
684    public:
685        Vector2(float x, float y) : x(x), y(y) { }
686
687        Vector2 operator+(const Vector2 &v) const { return Vector2(x + v.x, y + v.y); }
688        Vector2 operator*(float value) const { return Vector2(x * value, y * value); }
689        Vector2& operator+=(const Vector2 &v) { x += v.x; y += v.y; return *this; }
690        Vector2& operator*=(float v) { x *= v; y *= v; return *this; }
691
692        friend Vector2 operator*(float f, const Vector2 &v) {
693            return Vector2(f * v.x, f * v.y);
694        }
695
696        std::string toString() const {
697            return "[" + std::to_string(x) + ", " + std::to_string(y) + "]";
698        }
699    private:
700        float x, y;
701    };
702
703The following snippet shows how the above operators can be conveniently exposed
704to Python.
705
706.. code-block:: cpp
707
708    #include <pybind11/operators.h>
709
710    PYBIND11_MODULE(example, m) {
711        py::class_<Vector2>(m, "Vector2")
712            .def(py::init<float, float>())
713            .def(py::self + py::self)
714            .def(py::self += py::self)
715            .def(py::self *= float())
716            .def(float() * py::self)
717            .def(py::self * float())
718            .def(-py::self)
719            .def("__repr__", &Vector2::toString);
720    }
721
722Note that a line like
723
724.. code-block:: cpp
725
726            .def(py::self * float())
727
728is really just short hand notation for
729
730.. code-block:: cpp
731
732    .def("__mul__", [](const Vector2 &a, float b) {
733        return a * b;
734    }, py::is_operator())
735
736This can be useful for exposing additional operators that don't exist on the
737C++ side, or to perform other types of customization. The ``py::is_operator``
738flag marker is needed to inform pybind11 that this is an operator, which
739returns ``NotImplemented`` when invoked with incompatible arguments rather than
740throwing a type error.
741
742.. note::
743
744    To use the more convenient ``py::self`` notation, the additional
745    header file :file:`pybind11/operators.h` must be included.
746
747.. seealso::
748
749    The file :file:`tests/test_operator_overloading.cpp` contains a
750    complete example that demonstrates how to work with overloaded operators in
751    more detail.
752
753.. _pickling:
754
755Pickling support
756================
757
758Python's ``pickle`` module provides a powerful facility to serialize and
759de-serialize a Python object graph into a binary data stream. To pickle and
760unpickle C++ classes using pybind11, a ``py::pickle()`` definition must be
761provided. Suppose the class in question has the following signature:
762
763.. code-block:: cpp
764
765    class Pickleable {
766    public:
767        Pickleable(const std::string &value) : m_value(value) { }
768        const std::string &value() const { return m_value; }
769
770        void setExtra(int extra) { m_extra = extra; }
771        int extra() const { return m_extra; }
772    private:
773        std::string m_value;
774        int m_extra = 0;
775    };
776
777Pickling support in Python is enabled by defining the ``__setstate__`` and
778``__getstate__`` methods [#f3]_. For pybind11 classes, use ``py::pickle()``
779to bind these two functions:
780
781.. code-block:: cpp
782
783    py::class_<Pickleable>(m, "Pickleable")
784        .def(py::init<std::string>())
785        .def("value", &Pickleable::value)
786        .def("extra", &Pickleable::extra)
787        .def("setExtra", &Pickleable::setExtra)
788        .def(py::pickle(
789            [](const Pickleable &p) { // __getstate__
790                /* Return a tuple that fully encodes the state of the object */
791                return py::make_tuple(p.value(), p.extra());
792            },
793            [](py::tuple t) { // __setstate__
794                if (t.size() != 2)
795                    throw std::runtime_error("Invalid state!");
796
797                /* Create a new C++ instance */
798                Pickleable p(t[0].cast<std::string>());
799
800                /* Assign any additional state */
801                p.setExtra(t[1].cast<int>());
802
803                return p;
804            }
805        ));
806
807The ``__setstate__`` part of the ``py::picke()`` definition follows the same
808rules as the single-argument version of ``py::init()``. The return type can be
809a value, pointer or holder type. See :ref:`custom_constructors` for details.
810
811An instance can now be pickled as follows:
812
813.. code-block:: python
814
815    try:
816        import cPickle as pickle  # Use cPickle on Python 2.7
817    except ImportError:
818        import pickle
819
820    p = Pickleable("test_value")
821    p.setExtra(15)
822    data = pickle.dumps(p, 2)
823
824
825.. note::
826    Note that only the cPickle module is supported on Python 2.7.
827
828    The second argument to ``dumps`` is also crucial: it selects the pickle
829    protocol version 2, since the older version 1 is not supported. Newer
830    versions are also fine—for instance, specify ``-1`` to always use the
831    latest available version. Beware: failure to follow these instructions
832    will cause important pybind11 memory allocation routines to be skipped
833    during unpickling, which will likely lead to memory corruption and/or
834    segmentation faults.
835
836.. seealso::
837
838    The file :file:`tests/test_pickling.cpp` contains a complete example
839    that demonstrates how to pickle and unpickle types using pybind11 in more
840    detail.
841
842.. [#f3] http://docs.python.org/3/library/pickle.html#pickling-class-instances
843
844Deepcopy support
845================
846
847Python normally uses references in assignments. Sometimes a real copy is needed
848to prevent changing all copies. The ``copy`` module [#f5]_ provides these
849capabilities.
850
851On Python 3, a class with pickle support is automatically also (deep)copy
852compatible. However, performance can be improved by adding custom
853``__copy__`` and ``__deepcopy__`` methods. With Python 2.7, these custom methods
854are mandatory for (deep)copy compatibility, because pybind11 only supports
855cPickle.
856
857For simple classes (deep)copy can be enabled by using the copy constructor,
858which should look as follows:
859
860.. code-block:: cpp
861
862    py::class_<Copyable>(m, "Copyable")
863        .def("__copy__",  [](const Copyable &self) {
864            return Copyable(self);
865        })
866        .def("__deepcopy__", [](const Copyable &self, py::dict) {
867            return Copyable(self);
868        }, "memo"_a);
869
870.. note::
871
872    Dynamic attributes will not be copied in this example.
873
874.. [#f5] https://docs.python.org/3/library/copy.html
875
876Multiple Inheritance
877====================
878
879pybind11 can create bindings for types that derive from multiple base types
880(aka. *multiple inheritance*). To do so, specify all bases in the template
881arguments of the ``class_`` declaration:
882
883.. code-block:: cpp
884
885    py::class_<MyType, BaseType1, BaseType2, BaseType3>(m, "MyType")
886       ...
887
888The base types can be specified in arbitrary order, and they can even be
889interspersed with alias types and holder types (discussed earlier in this
890document)---pybind11 will automatically find out which is which. The only
891requirement is that the first template argument is the type to be declared.
892
893It is also permitted to inherit multiply from exported C++ classes in Python,
894as well as inheriting from multiple Python and/or pybind11-exported classes.
895
896There is one caveat regarding the implementation of this feature:
897
898When only one base type is specified for a C++ type that actually has multiple
899bases, pybind11 will assume that it does not participate in multiple
900inheritance, which can lead to undefined behavior. In such cases, add the tag
901``multiple_inheritance`` to the class constructor:
902
903.. code-block:: cpp
904
905    py::class_<MyType, BaseType2>(m, "MyType", py::multiple_inheritance());
906
907The tag is redundant and does not need to be specified when multiple base types
908are listed.
909
910.. _module_local:
911
912Module-local class bindings
913===========================
914
915When creating a binding for a class, pybind11 by default makes that binding
916"global" across modules.  What this means is that a type defined in one module
917can be returned from any module resulting in the same Python type.  For
918example, this allows the following:
919
920.. code-block:: cpp
921
922    // In the module1.cpp binding code for module1:
923    py::class_<Pet>(m, "Pet")
924        .def(py::init<std::string>())
925        .def_readonly("name", &Pet::name);
926
927.. code-block:: cpp
928
929    // In the module2.cpp binding code for module2:
930    m.def("create_pet", [](std::string name) { return new Pet(name); });
931
932.. code-block:: pycon
933
934    >>> from module1 import Pet
935    >>> from module2 import create_pet
936    >>> pet1 = Pet("Kitty")
937    >>> pet2 = create_pet("Doggy")
938    >>> pet2.name()
939    'Doggy'
940
941When writing binding code for a library, this is usually desirable: this
942allows, for example, splitting up a complex library into multiple Python
943modules.
944
945In some cases, however, this can cause conflicts.  For example, suppose two
946unrelated modules make use of an external C++ library and each provide custom
947bindings for one of that library's classes.  This will result in an error when
948a Python program attempts to import both modules (directly or indirectly)
949because of conflicting definitions on the external type:
950
951.. code-block:: cpp
952
953    // dogs.cpp
954
955    // Binding for external library class:
956    py::class<pets::Pet>(m, "Pet")
957        .def("name", &pets::Pet::name);
958
959    // Binding for local extension class:
960    py::class<Dog, pets::Pet>(m, "Dog")
961        .def(py::init<std::string>());
962
963.. code-block:: cpp
964
965    // cats.cpp, in a completely separate project from the above dogs.cpp.
966
967    // Binding for external library class:
968    py::class<pets::Pet>(m, "Pet")
969        .def("get_name", &pets::Pet::name);
970
971    // Binding for local extending class:
972    py::class<Cat, pets::Pet>(m, "Cat")
973        .def(py::init<std::string>());
974
975.. code-block:: pycon
976
977    >>> import cats
978    >>> import dogs
979    Traceback (most recent call last):
980      File "<stdin>", line 1, in <module>
981    ImportError: generic_type: type "Pet" is already registered!
982
983To get around this, you can tell pybind11 to keep the external class binding
984localized to the module by passing the ``py::module_local()`` attribute into
985the ``py::class_`` constructor:
986
987.. code-block:: cpp
988
989    // Pet binding in dogs.cpp:
990    py::class<pets::Pet>(m, "Pet", py::module_local())
991        .def("name", &pets::Pet::name);
992
993.. code-block:: cpp
994
995    // Pet binding in cats.cpp:
996    py::class<pets::Pet>(m, "Pet", py::module_local())
997        .def("get_name", &pets::Pet::name);
998
999This makes the Python-side ``dogs.Pet`` and ``cats.Pet`` into distinct classes,
1000avoiding the conflict and allowing both modules to be loaded.  C++ code in the
1001``dogs`` module that casts or returns a ``Pet`` instance will result in a
1002``dogs.Pet`` Python instance, while C++ code in the ``cats`` module will result
1003in a ``cats.Pet`` Python instance.
1004
1005This does come with two caveats, however: First, external modules cannot return
1006or cast a ``Pet`` instance to Python (unless they also provide their own local
1007bindings).  Second, from the Python point of view they are two distinct classes.
1008
1009Note that the locality only applies in the C++ -> Python direction.  When
1010passing such a ``py::module_local`` type into a C++ function, the module-local
1011classes are still considered.  This means that if the following function is
1012added to any module (including but not limited to the ``cats`` and ``dogs``
1013modules above) it will be callable with either a ``dogs.Pet`` or ``cats.Pet``
1014argument:
1015
1016.. code-block:: cpp
1017
1018    m.def("pet_name", [](const pets::Pet &pet) { return pet.name(); });
1019
1020For example, suppose the above function is added to each of ``cats.cpp``,
1021``dogs.cpp`` and ``frogs.cpp`` (where ``frogs.cpp`` is some other module that
1022does *not* bind ``Pets`` at all).
1023
1024.. code-block:: pycon
1025
1026    >>> import cats, dogs, frogs  # No error because of the added py::module_local()
1027    >>> mycat, mydog = cats.Cat("Fluffy"), dogs.Dog("Rover")
1028    >>> (cats.pet_name(mycat), dogs.pet_name(mydog))
1029    ('Fluffy', 'Rover')
1030    >>> (cats.pet_name(mydog), dogs.pet_name(mycat), frogs.pet_name(mycat))
1031    ('Rover', 'Fluffy', 'Fluffy')
1032
1033It is possible to use ``py::module_local()`` registrations in one module even
1034if another module registers the same type globally: within the module with the
1035module-local definition, all C++ instances will be cast to the associated bound
1036Python type.  In other modules any such values are converted to the global
1037Python type created elsewhere.
1038
1039.. note::
1040
1041    STL bindings (as provided via the optional :file:`pybind11/stl_bind.h`
1042    header) apply ``py::module_local`` by default when the bound type might
1043    conflict with other modules; see :ref:`stl_bind` for details.
1044
1045.. note::
1046
1047    The localization of the bound types is actually tied to the shared object
1048    or binary generated by the compiler/linker.  For typical modules created
1049    with ``PYBIND11_MODULE()``, this distinction is not significant.  It is
1050    possible, however, when :ref:`embedding` to embed multiple modules in the
1051    same binary (see :ref:`embedding_modules`).  In such a case, the
1052    localization will apply across all embedded modules within the same binary.
1053
1054.. seealso::
1055
1056    The file :file:`tests/test_local_bindings.cpp` contains additional examples
1057    that demonstrate how ``py::module_local()`` works.
1058
1059Binding protected member functions
1060==================================
1061
1062It's normally not possible to expose ``protected`` member functions to Python:
1063
1064.. code-block:: cpp
1065
1066    class A {
1067    protected:
1068        int foo() const { return 42; }
1069    };
1070
1071    py::class_<A>(m, "A")
1072        .def("foo", &A::foo); // error: 'foo' is a protected member of 'A'
1073
1074On one hand, this is good because non-``public`` members aren't meant to be
1075accessed from the outside. But we may want to make use of ``protected``
1076functions in derived Python classes.
1077
1078The following pattern makes this possible:
1079
1080.. code-block:: cpp
1081
1082    class A {
1083    protected:
1084        int foo() const { return 42; }
1085    };
1086
1087    class Publicist : public A { // helper type for exposing protected functions
1088    public:
1089        using A::foo; // inherited with different access modifier
1090    };
1091
1092    py::class_<A>(m, "A") // bind the primary class
1093        .def("foo", &Publicist::foo); // expose protected methods via the publicist
1094
1095This works because ``&Publicist::foo`` is exactly the same function as
1096``&A::foo`` (same signature and address), just with a different access
1097modifier. The only purpose of the ``Publicist`` helper class is to make
1098the function name ``public``.
1099
1100If the intent is to expose ``protected`` ``virtual`` functions which can be
1101overridden in Python, the publicist pattern can be combined with the previously
1102described trampoline:
1103
1104.. code-block:: cpp
1105
1106    class A {
1107    public:
1108        virtual ~A() = default;
1109
1110    protected:
1111        virtual int foo() const { return 42; }
1112    };
1113
1114    class Trampoline : public A {
1115    public:
1116        int foo() const override { PYBIND11_OVERRIDE(int, A, foo, ); }
1117    };
1118
1119    class Publicist : public A {
1120    public:
1121        using A::foo;
1122    };
1123
1124    py::class_<A, Trampoline>(m, "A") // <-- `Trampoline` here
1125        .def("foo", &Publicist::foo); // <-- `Publicist` here, not `Trampoline`!
1126
1127.. note::
1128
1129    MSVC 2015 has a compiler bug (fixed in version 2017) which
1130    requires a more explicit function binding in the form of
1131    ``.def("foo", static_cast<int (A::*)() const>(&Publicist::foo));``
1132    where ``int (A::*)() const`` is the type of ``A::foo``.
1133
1134Binding final classes
1135=====================
1136
1137Some classes may not be appropriate to inherit from. In C++11, classes can
1138use the ``final`` specifier to ensure that a class cannot be inherited from.
1139The ``py::is_final`` attribute can be used to ensure that Python classes
1140cannot inherit from a specified type. The underlying C++ type does not need
1141to be declared final.
1142
1143.. code-block:: cpp
1144
1145    class IsFinal final {};
1146
1147    py::class_<IsFinal>(m, "IsFinal", py::is_final());
1148
1149When you try to inherit from such a class in Python, you will now get this
1150error:
1151
1152.. code-block:: pycon
1153
1154    >>> class PyFinalChild(IsFinal):
1155    ...     pass
1156    TypeError: type 'IsFinal' is not an acceptable base type
1157
1158.. note:: This attribute is currently ignored on PyPy
1159
1160.. versionadded:: 2.6
1161
1162Custom automatic downcasters
1163============================
1164
1165As explained in :ref:`inheritance`, pybind11 comes with built-in
1166understanding of the dynamic type of polymorphic objects in C++; that
1167is, returning a Pet to Python produces a Python object that knows it's
1168wrapping a Dog, if Pet has virtual methods and pybind11 knows about
1169Dog and this Pet is in fact a Dog. Sometimes, you might want to
1170provide this automatic downcasting behavior when creating bindings for
1171a class hierarchy that does not use standard C++ polymorphism, such as
1172LLVM [#f4]_. As long as there's some way to determine at runtime
1173whether a downcast is safe, you can proceed by specializing the
1174``pybind11::polymorphic_type_hook`` template:
1175
1176.. code-block:: cpp
1177
1178    enum class PetKind { Cat, Dog, Zebra };
1179    struct Pet {   // Not polymorphic: has no virtual methods
1180        const PetKind kind;
1181        int age = 0;
1182      protected:
1183        Pet(PetKind _kind) : kind(_kind) {}
1184    };
1185    struct Dog : Pet {
1186        Dog() : Pet(PetKind::Dog) {}
1187        std::string sound = "woof!";
1188        std::string bark() const { return sound; }
1189    };
1190
1191    namespace pybind11 {
1192        template<> struct polymorphic_type_hook<Pet> {
1193            static const void *get(const Pet *src, const std::type_info*& type) {
1194                // note that src may be nullptr
1195                if (src && src->kind == PetKind::Dog) {
1196                    type = &typeid(Dog);
1197                    return static_cast<const Dog*>(src);
1198                }
1199                return src;
1200            }
1201        };
1202    } // namespace pybind11
1203
1204When pybind11 wants to convert a C++ pointer of type ``Base*`` to a
1205Python object, it calls ``polymorphic_type_hook<Base>::get()`` to
1206determine if a downcast is possible. The ``get()`` function should use
1207whatever runtime information is available to determine if its ``src``
1208parameter is in fact an instance of some class ``Derived`` that
1209inherits from ``Base``. If it finds such a ``Derived``, it sets ``type
1210= &typeid(Derived)`` and returns a pointer to the ``Derived`` object
1211that contains ``src``. Otherwise, it just returns ``src``, leaving
1212``type`` at its default value of nullptr. If you set ``type`` to a
1213type that pybind11 doesn't know about, no downcasting will occur, and
1214the original ``src`` pointer will be used with its static type
1215``Base*``.
1216
1217It is critical that the returned pointer and ``type`` argument of
1218``get()`` agree with each other: if ``type`` is set to something
1219non-null, the returned pointer must point to the start of an object
1220whose type is ``type``. If the hierarchy being exposed uses only
1221single inheritance, a simple ``return src;`` will achieve this just
1222fine, but in the general case, you must cast ``src`` to the
1223appropriate derived-class pointer (e.g. using
1224``static_cast<Derived>(src)``) before allowing it to be returned as a
1225``void*``.
1226
1227.. [#f4] https://llvm.org/docs/HowToSetUpLLVMStyleRTTI.html
1228
1229.. note::
1230
1231    pybind11's standard support for downcasting objects whose types
1232    have virtual methods is implemented using
1233    ``polymorphic_type_hook`` too, using the standard C++ ability to
1234    determine the most-derived type of a polymorphic object using
1235    ``typeid()`` and to cast a base pointer to that most-derived type
1236    (even if you don't know what it is) using ``dynamic_cast<void*>``.
1237
1238.. seealso::
1239
1240    The file :file:`tests/test_tagbased_polymorphic.cpp` contains a
1241    more complete example, including a demonstration of how to provide
1242    automatic downcasting for an entire class hierarchy without
1243    writing one get() function for each class.
1244
1245Accessing the type object
1246=========================
1247
1248You can get the type object from a C++ class that has already been registered using:
1249
1250.. code-block:: python
1251
1252    py::type T_py = py::type::of<T>();
1253
1254You can directly use ``py::type::of(ob)`` to get the type object from any python
1255object, just like ``type(ob)`` in Python.
1256
1257.. note::
1258
1259    Other types, like ``py::type::of<int>()``, do not work, see :ref:`type-conversions`.
1260
1261.. versionadded:: 2.6
1262