• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2017, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #ifndef AOM_AOM_DSP_MATHUTILS_H_
13 #define AOM_AOM_DSP_MATHUTILS_H_
14 
15 #include <assert.h>
16 #include <math.h>
17 #include <string.h>
18 
19 #include "aom_dsp/aom_dsp_common.h"
20 #include "aom_mem/aom_mem.h"
21 
22 static const double TINY_NEAR_ZERO = 1.0E-16;
23 
24 // Solves Ax = b, where x and b are column vectors of size nx1 and A is nxn
linsolve(int n,double * A,int stride,double * b,double * x)25 static INLINE int linsolve(int n, double *A, int stride, double *b, double *x) {
26   int i, j, k;
27   double c;
28   // Forward elimination
29   for (k = 0; k < n - 1; k++) {
30     // Bring the largest magnitude to the diagonal position
31     for (i = n - 1; i > k; i--) {
32       if (fabs(A[(i - 1) * stride + k]) < fabs(A[i * stride + k])) {
33         for (j = 0; j < n; j++) {
34           c = A[i * stride + j];
35           A[i * stride + j] = A[(i - 1) * stride + j];
36           A[(i - 1) * stride + j] = c;
37         }
38         c = b[i];
39         b[i] = b[i - 1];
40         b[i - 1] = c;
41       }
42     }
43     for (i = k; i < n - 1; i++) {
44       if (fabs(A[k * stride + k]) < TINY_NEAR_ZERO) return 0;
45       c = A[(i + 1) * stride + k] / A[k * stride + k];
46       for (j = 0; j < n; j++) A[(i + 1) * stride + j] -= c * A[k * stride + j];
47       b[i + 1] -= c * b[k];
48     }
49   }
50   // Backward substitution
51   for (i = n - 1; i >= 0; i--) {
52     if (fabs(A[i * stride + i]) < TINY_NEAR_ZERO) return 0;
53     c = 0;
54     for (j = i + 1; j <= n - 1; j++) c += A[i * stride + j] * x[j];
55     x[i] = (b[i] - c) / A[i * stride + i];
56   }
57 
58   return 1;
59 }
60 
61 ////////////////////////////////////////////////////////////////////////////////
62 // Least-squares
63 // Solves for n-dim x in a least squares sense to minimize |Ax - b|^2
64 // The solution is simply x = (A'A)^-1 A'b or simply the solution for
65 // the system: A'A x = A'b
least_squares(int n,double * A,int rows,int stride,double * b,double * scratch,double * x)66 static INLINE int least_squares(int n, double *A, int rows, int stride,
67                                 double *b, double *scratch, double *x) {
68   int i, j, k;
69   double *scratch_ = NULL;
70   double *AtA, *Atb;
71   if (!scratch) {
72     scratch_ = (double *)aom_malloc(sizeof(*scratch) * n * (n + 1));
73     scratch = scratch_;
74   }
75   AtA = scratch;
76   Atb = scratch + n * n;
77 
78   for (i = 0; i < n; ++i) {
79     for (j = i; j < n; ++j) {
80       AtA[i * n + j] = 0.0;
81       for (k = 0; k < rows; ++k)
82         AtA[i * n + j] += A[k * stride + i] * A[k * stride + j];
83       AtA[j * n + i] = AtA[i * n + j];
84     }
85     Atb[i] = 0;
86     for (k = 0; k < rows; ++k) Atb[i] += A[k * stride + i] * b[k];
87   }
88   int ret = linsolve(n, AtA, n, Atb, x);
89   aom_free(scratch_);
90   return ret;
91 }
92 
93 // Matrix multiply
multiply_mat(const double * m1,const double * m2,double * res,const int m1_rows,const int inner_dim,const int m2_cols)94 static INLINE void multiply_mat(const double *m1, const double *m2, double *res,
95                                 const int m1_rows, const int inner_dim,
96                                 const int m2_cols) {
97   double sum;
98 
99   int row, col, inner;
100   for (row = 0; row < m1_rows; ++row) {
101     for (col = 0; col < m2_cols; ++col) {
102       sum = 0;
103       for (inner = 0; inner < inner_dim; ++inner)
104         sum += m1[row * inner_dim + inner] * m2[inner * m2_cols + col];
105       *(res++) = sum;
106     }
107   }
108 }
109 
110 //
111 // The functions below are needed only for homography computation
112 // Remove if the homography models are not used.
113 //
114 ///////////////////////////////////////////////////////////////////////////////
115 // svdcmp
116 // Adopted from Numerical Recipes in C
117 
apply_sign(double a,double b)118 static INLINE double apply_sign(double a, double b) {
119   return ((b) >= 0 ? fabs(a) : -fabs(a));
120 }
121 
pythag(double a,double b)122 static INLINE double pythag(double a, double b) {
123   double ct;
124   const double absa = fabs(a);
125   const double absb = fabs(b);
126 
127   if (absa > absb) {
128     ct = absb / absa;
129     return absa * sqrt(1.0 + ct * ct);
130   } else {
131     ct = absa / absb;
132     return (absb == 0) ? 0 : absb * sqrt(1.0 + ct * ct);
133   }
134 }
135 
svdcmp(double ** u,int m,int n,double w[],double ** v)136 static INLINE int svdcmp(double **u, int m, int n, double w[], double **v) {
137   const int max_its = 30;
138   int flag, i, its, j, jj, k, l, nm;
139   double anorm, c, f, g, h, s, scale, x, y, z;
140   double *rv1 = (double *)aom_malloc(sizeof(*rv1) * (n + 1));
141   g = scale = anorm = 0.0;
142   for (i = 0; i < n; i++) {
143     l = i + 1;
144     rv1[i] = scale * g;
145     g = s = scale = 0.0;
146     if (i < m) {
147       for (k = i; k < m; k++) scale += fabs(u[k][i]);
148       if (scale != 0.) {
149         for (k = i; k < m; k++) {
150           u[k][i] /= scale;
151           s += u[k][i] * u[k][i];
152         }
153         f = u[i][i];
154         g = -apply_sign(sqrt(s), f);
155         h = f * g - s;
156         u[i][i] = f - g;
157         for (j = l; j < n; j++) {
158           for (s = 0.0, k = i; k < m; k++) s += u[k][i] * u[k][j];
159           f = s / h;
160           for (k = i; k < m; k++) u[k][j] += f * u[k][i];
161         }
162         for (k = i; k < m; k++) u[k][i] *= scale;
163       }
164     }
165     w[i] = scale * g;
166     g = s = scale = 0.0;
167     if (i < m && i != n - 1) {
168       for (k = l; k < n; k++) scale += fabs(u[i][k]);
169       if (scale != 0.) {
170         for (k = l; k < n; k++) {
171           u[i][k] /= scale;
172           s += u[i][k] * u[i][k];
173         }
174         f = u[i][l];
175         g = -apply_sign(sqrt(s), f);
176         h = f * g - s;
177         u[i][l] = f - g;
178         for (k = l; k < n; k++) rv1[k] = u[i][k] / h;
179         for (j = l; j < m; j++) {
180           for (s = 0.0, k = l; k < n; k++) s += u[j][k] * u[i][k];
181           for (k = l; k < n; k++) u[j][k] += s * rv1[k];
182         }
183         for (k = l; k < n; k++) u[i][k] *= scale;
184       }
185     }
186     anorm = fmax(anorm, (fabs(w[i]) + fabs(rv1[i])));
187   }
188 
189   for (i = n - 1; i >= 0; i--) {
190     if (i < n - 1) {
191       if (g != 0.) {
192         for (j = l; j < n; j++) v[j][i] = (u[i][j] / u[i][l]) / g;
193         for (j = l; j < n; j++) {
194           for (s = 0.0, k = l; k < n; k++) s += u[i][k] * v[k][j];
195           for (k = l; k < n; k++) v[k][j] += s * v[k][i];
196         }
197       }
198       for (j = l; j < n; j++) v[i][j] = v[j][i] = 0.0;
199     }
200     v[i][i] = 1.0;
201     g = rv1[i];
202     l = i;
203   }
204   for (i = AOMMIN(m, n) - 1; i >= 0; i--) {
205     l = i + 1;
206     g = w[i];
207     for (j = l; j < n; j++) u[i][j] = 0.0;
208     if (g != 0.) {
209       g = 1.0 / g;
210       for (j = l; j < n; j++) {
211         for (s = 0.0, k = l; k < m; k++) s += u[k][i] * u[k][j];
212         f = (s / u[i][i]) * g;
213         for (k = i; k < m; k++) u[k][j] += f * u[k][i];
214       }
215       for (j = i; j < m; j++) u[j][i] *= g;
216     } else {
217       for (j = i; j < m; j++) u[j][i] = 0.0;
218     }
219     ++u[i][i];
220   }
221   for (k = n - 1; k >= 0; k--) {
222     for (its = 0; its < max_its; its++) {
223       flag = 1;
224       for (l = k; l >= 0; l--) {
225         nm = l - 1;
226         if ((double)(fabs(rv1[l]) + anorm) == anorm || nm < 0) {
227           flag = 0;
228           break;
229         }
230         if ((double)(fabs(w[nm]) + anorm) == anorm) break;
231       }
232       if (flag) {
233         c = 0.0;
234         s = 1.0;
235         for (i = l; i <= k; i++) {
236           f = s * rv1[i];
237           rv1[i] = c * rv1[i];
238           if ((double)(fabs(f) + anorm) == anorm) break;
239           g = w[i];
240           h = pythag(f, g);
241           w[i] = h;
242           h = 1.0 / h;
243           c = g * h;
244           s = -f * h;
245           for (j = 0; j < m; j++) {
246             y = u[j][nm];
247             z = u[j][i];
248             u[j][nm] = y * c + z * s;
249             u[j][i] = z * c - y * s;
250           }
251         }
252       }
253       z = w[k];
254       if (l == k) {
255         if (z < 0.0) {
256           w[k] = -z;
257           for (j = 0; j < n; j++) v[j][k] = -v[j][k];
258         }
259         break;
260       }
261       if (its == max_its - 1) {
262         aom_free(rv1);
263         return 1;
264       }
265       assert(k > 0);
266       x = w[l];
267       nm = k - 1;
268       y = w[nm];
269       g = rv1[nm];
270       h = rv1[k];
271       f = ((y - z) * (y + z) + (g - h) * (g + h)) / (2.0 * h * y);
272       g = pythag(f, 1.0);
273       f = ((x - z) * (x + z) + h * ((y / (f + apply_sign(g, f))) - h)) / x;
274       c = s = 1.0;
275       for (j = l; j <= nm; j++) {
276         i = j + 1;
277         g = rv1[i];
278         y = w[i];
279         h = s * g;
280         g = c * g;
281         z = pythag(f, h);
282         rv1[j] = z;
283         c = f / z;
284         s = h / z;
285         f = x * c + g * s;
286         g = g * c - x * s;
287         h = y * s;
288         y *= c;
289         for (jj = 0; jj < n; jj++) {
290           x = v[jj][j];
291           z = v[jj][i];
292           v[jj][j] = x * c + z * s;
293           v[jj][i] = z * c - x * s;
294         }
295         z = pythag(f, h);
296         w[j] = z;
297         if (z != 0.) {
298           z = 1.0 / z;
299           c = f * z;
300           s = h * z;
301         }
302         f = c * g + s * y;
303         x = c * y - s * g;
304         for (jj = 0; jj < m; jj++) {
305           y = u[jj][j];
306           z = u[jj][i];
307           u[jj][j] = y * c + z * s;
308           u[jj][i] = z * c - y * s;
309         }
310       }
311       rv1[l] = 0.0;
312       rv1[k] = f;
313       w[k] = x;
314     }
315   }
316   aom_free(rv1);
317   return 0;
318 }
319 
SVD(double * U,double * W,double * V,double * matx,int M,int N)320 static INLINE int SVD(double *U, double *W, double *V, double *matx, int M,
321                       int N) {
322   // Assumes allocation for U is MxN
323   double **nrU = (double **)aom_malloc((M) * sizeof(*nrU));
324   double **nrV = (double **)aom_malloc((N) * sizeof(*nrV));
325   int problem, i;
326 
327   problem = !(nrU && nrV);
328   if (!problem) {
329     for (i = 0; i < M; i++) {
330       nrU[i] = &U[i * N];
331     }
332     for (i = 0; i < N; i++) {
333       nrV[i] = &V[i * N];
334     }
335   } else {
336     if (nrU) aom_free(nrU);
337     if (nrV) aom_free(nrV);
338     return 1;
339   }
340 
341   /* copy from given matx into nrU */
342   for (i = 0; i < M; i++) {
343     memcpy(&(nrU[i][0]), matx + N * i, N * sizeof(*matx));
344   }
345 
346   /* HERE IT IS: do SVD */
347   if (svdcmp(nrU, M, N, W, nrV)) {
348     aom_free(nrU);
349     aom_free(nrV);
350     return 1;
351   }
352 
353   /* aom_free Numerical Recipes arrays */
354   aom_free(nrU);
355   aom_free(nrV);
356 
357   return 0;
358 }
359 
360 #endif  // AOM_AOM_DSP_MATHUTILS_H_
361