• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2016-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #ifndef ARM_COMPUTE_ITENSORINFO_H
25 #define ARM_COMPUTE_ITENSORINFO_H
26 
27 #include "arm_compute/core/Coordinates.h"
28 #include "arm_compute/core/Strides.h"
29 #include "arm_compute/core/TensorShape.h"
30 #include "arm_compute/core/Types.h"
31 #include "arm_compute/core/Utils.h"
32 #include "arm_compute/core/utils/misc/Utility.h"
33 #include "support/ICloneable.h"
34 
35 #include <cstddef>
36 
37 namespace arm_compute
38 {
39 /** Store the tensor's metadata */
40 class ITensorInfo : public misc::ICloneable<ITensorInfo>
41 {
42 public:
43     /** Default virtual destructor */
44     virtual ~ITensorInfo() = default;
45     /** Set the data type to the specified value.
46      *
47      * @warning This resets the format to UNKNOWN.
48      *
49      * @param[in] data_type The new data type.
50      *
51      * @return Reference to this ITensorInfo object
52      */
53     virtual ITensorInfo &set_data_type(DataType data_type) = 0;
54     /** Set the number of channels to the specified value.
55      *
56      * @warning This resets the format to UNKNOWN.
57      *
58      * @param[in] num_channels New number of channels.
59      *
60      * @return Reference to this ITensorInfo object
61      */
62     virtual ITensorInfo &set_num_channels(int num_channels) = 0;
63     /** Set the format of an already initialized tensor.
64      *
65      * @note If the data type has already been configured (i.e. not UNKNOWN) it
66      * must match the new format. If data type hasn't been configured it will
67      * be based on the format.
68      *
69      * @param[in] format Single-plane format of the tensor.
70      *
71      * @return Reference to this ITensorInfo object
72      */
73     virtual ITensorInfo &set_format(Format format) = 0;
74     /** Set the shape of an already initialized tensor.
75      *
76      * @warning Changing the shape requires to recompute the strides and is
77      * therefore only possible if the tensor hasn't been allocated yet.
78      *
79      * @param[in] shape New tensor shape.
80      *
81      * @return Reference to this ITensorInfo object
82      */
83     virtual ITensorInfo &set_tensor_shape(const TensorShape &shape) = 0;
84     /** Set the quantization settings (scale and offset) of the tensor.
85      *
86      * @param[in] quantization_info QuantizationInfo containing the scale and offset
87      *
88      * @return Reference to this ITensorInfo object
89      */
90     virtual ITensorInfo &set_quantization_info(const QuantizationInfo &quantization_info) = 0;
91     /** Set the data layout of the tensor.
92      *
93      * @param[in] data_layout DataLayout containing the layout data information.
94      *
95      * @return Reference to this ITensorInfo object
96      */
97     virtual ITensorInfo &set_data_layout(const DataLayout &data_layout) = 0;
98     /** Resets the padding settings of the tensor.
99     *
100     * @return Reference to this ITensorInfo object
101     */
102     virtual ITensorInfo &reset_padding() = 0;
103     /** Update the offset to the first element and the strides to automatically computed values.
104      *
105      * @note The padding used by this method is really conservative so that the tensor can be used for most functions.
106      *
107      * @return True if the strides or the offset to the first element have changed.
108      */
109     virtual bool auto_padding() = 0;
110     /** Update the offset to the first element, the strides and the total size.
111      *
112      * @note This function can only increase the offset, strides and total size.
113      *
114      * @param[in] padding Padding around the XY plane in number of elements.
115      *
116      * @return True if the strides, offset and total size have changed.
117      */
118     virtual bool extend_padding(const PaddingSize &padding) = 0;
119     /** Return the size of the requested dimension
120      *
121      * @param[in] index Index of the dimension
122      *
123      * @return Dimension of the requested dimension
124      */
125     virtual size_t dimension(size_t index) const = 0;
126     /** Return the size of the requested data layout dimension
127      *
128      * @param[in] dimension DataLayoutDimension of the dimension
129      *
130      * @return Dimension of the requested dimension
131      */
132     virtual size_t dimension(DataLayoutDimension dimension) const = 0;
133     /** The strides in bytes for accessing each dimension of the tensor
134      *
135      * @return Strides in bytes for each tensor dimension
136      */
137     virtual const Strides &strides_in_bytes() const = 0;
138     /** The offset from the beginning of the memory allocation to the first element of the tensor.
139      *  This can be used to access efficiently elements in a 2D tensor
140      *
141      * @return The offset in bytes to access the first element of the tensor.
142      */
143     virtual size_t offset_first_element_in_bytes() const = 0;
144     /** The offset in bytes from the beginning of the memory allocation to access the element at position (x, y, z ...)
145      *
146      * @param[in] pos Vector with the coordinates of the element to access.
147      *                The size of this vector must be equal to the number of dimensions of the tensor
148      *
149      * @return Offset in bytes from the beginning of the memory allocation to access the element (x, y, z, ...)
150      */
151     virtual int32_t offset_element_in_bytes(const Coordinates &pos) const = 0;
152 
153     /** Element size in bytes calculated as data_size() * num_channels()
154      *
155      * @return The size of one element in bytes
156      */
157     virtual size_t element_size() const = 0;
158     /** The number of dimensions of the tensor (rank)
159      *
160      * @return The number of dimensions of the tensor (rank)
161      */
162     virtual size_t num_dimensions() const = 0;
163     /** The number of channels for each tensor element
164      *
165      * @return The number of channels for each tensor element
166      */
167     virtual size_t num_channels() const = 0;
168     /** Size for each dimension of the tensor
169      *
170      * @return A vector with the size for each dimension of the tensor
171      */
172     virtual const TensorShape &tensor_shape() const = 0;
173     /** Data type used for each element of the tensor
174      *
175      * @return Tensor data type
176      */
177     virtual DataType data_type() const = 0;
178     /** Colour format of the image
179      *
180      * @return Colour format of the image
181      */
182     virtual Format format() const = 0;
183     /** Returns the total size of the tensor in bytes.
184      *
185      * @return Total size of the tensor in bytes.
186      */
187     virtual size_t total_size() const = 0;
188     /** Padding of tensor.
189      *
190      * @return Padding.
191      */
192     virtual PaddingSize padding() const = 0;
193     /** Checks if the tensor has been allocated with padding or not.
194      *
195      * @return True if padding is allocated in the tensor, otherwise false.
196      */
197     virtual bool has_padding() const = 0;
198     /** Flag indicating whether the size of the tensor can be changed.
199      *
200      * @return True if the tensor size can be changed.
201      */
202     virtual bool is_resizable() const = 0;
203     /** Flag indicating whether the shape of the tensor is dynamic, meaning that it can change on kernel/function execution.
204      *
205      * @return True if its dynamic else false
206      */
207     virtual bool is_dynamic() const = 0;
208     /** Set the flag whether the tensor size can be changed.
209      *
210      * @param[in] is_resizable Flag that marks the tensor if it can be changed or not.
211      *
212      * @return Reference to this ITensorInfo object
213      */
214     virtual ITensorInfo &set_is_resizable(bool is_resizable) = 0;
215     /** Set the flag whether the tensor size is dynamic.
216      *
217      * @param[in] is_dynamic Flag that marks the tensor if it's dynamic.
218      *
219      * @return Reference to this ITensorInfo object
220      */
221     virtual ITensorInfo &set_is_dynamic(bool is_dynamic) = 0;
222     /** Valid region of the tensor. All elements in the valid region have defined values, i.e. are not undefined.
223      *
224      * @return The valid region.
225      */
226     virtual ValidRegion valid_region() const = 0;
227     /** Set the valid region of the tensor.
228      *
229      * @param[in] valid_region Valid region to set.
230      */
231     virtual void set_valid_region(const ValidRegion &valid_region) = 0;
232 
233     /** Get the quantization settings (scale and offset) of the tensor.
234     *
235     * @return A QuantizationInfo containing the scale and offset.
236     */
237     virtual QuantizationInfo quantization_info() const = 0;
238     /** Get the data layout of the tensor.
239     *
240     * @return A DataLayout containing the layout data information.
241     */
242     virtual DataLayout data_layout() const = 0;
243 
244     /** If infos are broadcast compatible tensor info's, return the broadcasted shape and the intersection of
245      * the broadcasted valid regions of the tensors.
246      *
247      * Two tensor info's are broadcast compatible if their shapes are broadcast compatible.
248      *
249      * Two tensor shapes are broadcast compatible if for each dimension, they're equal or one of them is 1.
250      *
251      * If two shapes are compatible, each dimension in the broadcasted shape is the max of the original dimensions.
252      *
253      * @param[in] infos Tensor info's.
254      *
255      * @return The broadcasted shape and valid region, or an empty shape and valid region if the info's are
256      * not broadcast compatible.
257      */
258     template <typename... Infos>
broadcast_shape_and_valid_region(const Infos &...infos)259     static std::pair<TensorShape, ValidRegion> broadcast_shape_and_valid_region(const Infos &... infos)
260     {
261         TensorShape bc_shape = TensorShape::broadcast_shape(infos.tensor_shape()...);
262         ValidRegion bc_valid_region{ Coordinates(), bc_shape };
263 
264         auto broadcast_valid_region = [&bc_valid_region](const ITensorInfo & info)
265         {
266             if(info.num_dimensions() != 0)
267             {
268                 for(size_t d = 0; d < bc_valid_region.shape.num_dimensions(); ++d)
269                 {
270                     const bool is_broadcast = (info.tensor_shape()[d] == 1);
271 
272                     const int    anchor_max = std::max(bc_valid_region.anchor[d], info.valid_region().anchor[d]);
273                     const size_t valid_min  = std::min(bc_valid_region.shape[d], info.valid_region().shape[d]);
274 
275                     if(!is_broadcast || (valid_min == 0))
276                     {
277                         bc_valid_region.anchor.set(d, anchor_max);
278                         bc_valid_region.shape.set(d, valid_min);
279                     }
280                 }
281             }
282         };
283 
284         utility::for_each(broadcast_valid_region, infos...);
285 
286         return std::pair<TensorShape, ValidRegion>(bc_shape, bc_valid_region);
287     }
288 };
289 } // namespace arm_compute
290 #endif /*ARM_COMPUTE_TENSORINFO_H */
291