• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2018-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #ifndef ARM_COMPUTE_NERNNLAYER_H
25 #define ARM_COMPUTE_NERNNLAYER_H
26 
27 #include "arm_compute/core/Types.h"
28 #include "arm_compute/runtime/NEON/functions/NEActivationLayer.h"
29 #include "arm_compute/runtime/NEON/functions/NEArithmeticAddition.h"
30 #include "arm_compute/runtime/NEON/functions/NEFullyConnectedLayer.h"
31 #include "arm_compute/runtime/NEON/functions/NEGEMM.h"
32 
33 namespace arm_compute
34 {
35 // Forward declarations
36 class ITensor;
37 class NECopyKernel;
38 
39 /** Basic function to run @ref NERNNLayer */
40 class NERNNLayer : public IFunction
41 {
42 public:
43     /** Default constructor */
44     NERNNLayer(std::shared_ptr<IMemoryManager> memory_manager = nullptr);
45     /** Prevent instances of this class from being copied (As this class contains pointers) */
46     NERNNLayer(const NERNNLayer &) = delete;
47     /** Prevent instances of this class from being moved (As this class contains pointers) */
48     NERNNLayer(NERNNLayer &&) = delete;
49     /** Prevent instances of this class from being copied (As this class contains pointers) */
50     NERNNLayer &operator=(const NERNNLayer &) = delete;
51     /** Prevent instances of this class from being moved (As this class contains pointers) */
52     NERNNLayer &operator=(NERNNLayer &&) = delete;
53     /** Default destructor */
54     ~NERNNLayer();
55     /** Initialize the function
56      *
57      * @param[in]     input             Input is a 2-D tensor of shape [input_size, batch_size]. Data types supported: F16/F32
58      * @param[in]     weights           Weights tensor of shape [input_size, num_units] that multiplies the input. Data types supported: Same as @p input
59      * @param[in]     recurrent_weights Weights tensor of shape [num_units, num_units] that multiplies the current 'state'. Data types supported: Same as @p input
60      * @param[in]     bias              Bias vector of shape [num_units]. Data types supported: Same as @p input
61      * @param[out]    output            Output tensor of shape [num_units, batch_size]. Data types supported: Same as @p input
62      * @param[in,out] hidden_state      Output tensor of shape [num_units, batch_size]. Data types supported: Same as @p input
63      * @param[in]     info              Activation layer parameter.
64      */
65     void configure(const ITensor *input, const ITensor *weights, const ITensor *recurrent_weights, const ITensor *bias, ITensor *hidden_state, ITensor *output, ActivationLayerInfo &info);
66     /** Initialize the function
67      *
68      * @param[in] input             Input is a 2-D tensor of shape [input_size, batch_size]. Data types supported: F16/F32
69      * @param[in] weights           Weights tensor of shape [input_size, num_units] that multiplies the input. Data types supported: Same as @p input
70      * @param[in] recurrent_weights Weights tensor of shape [num_units, num_units] that multiplies the current 'state'. Data types supported: Same as @p input
71      * @param[in] bias              Bias vector of shape [num_units]. Data types supported: Same as @p input
72      * @param[in] output            Output tensor of shape [num_units, batch_size]. Data types supported: Same as @p input
73      * @param[in] hidden_state      Output tensor of shape [num_units, batch_size]. Data types supported: Same as @p input
74      * @param[in] info              Activation layer parameter.
75      *
76      * @return a status
77      */
78     static Status validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *recurrent_weights, const ITensorInfo *bias, const ITensorInfo *hidden_state, const ITensorInfo *output,
79                            const ActivationLayerInfo &info);
80 
81     // Inherited methods overridden:
82     void run() override;
83     void prepare() override;
84 
85 private:
86     MemoryGroup                   _memory_group;
87     NEGEMM                        _gemm_state_f;
88     NEArithmeticAddition          _add_f;
89     NEActivationLayer             _activation;
90     NEFullyConnectedLayer         _fully_connected;
91     std::unique_ptr<NECopyKernel> _copy_kernel;
92     Tensor                        _fully_connected_out;
93     Tensor                        _gemm_output;
94     Tensor                        _add_output;
95     bool                          _is_prepared;
96 };
97 } // namespace arm_compute
98 #endif /* ARM_COMPUTE_NERNNLAYER_H */
99