1 /* 2 * Copyright (C) 2011 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #ifndef ART_RUNTIME_BASE_MUTEX_H_ 18 #define ART_RUNTIME_BASE_MUTEX_H_ 19 20 #include <limits.h> // for INT_MAX 21 #include <pthread.h> 22 #include <stdint.h> 23 #include <unistd.h> // for pid_t 24 25 #include <iosfwd> 26 #include <string> 27 28 #include <android-base/logging.h> 29 30 #include "base/aborting.h" 31 #include "base/atomic.h" 32 #include "runtime_globals.h" 33 #include "base/macros.h" 34 #include "locks.h" 35 36 #if defined(__linux__) 37 #define ART_USE_FUTEXES 1 38 #else 39 #define ART_USE_FUTEXES 0 40 #endif 41 42 // Currently Darwin doesn't support locks with timeouts. 43 #if !defined(__APPLE__) 44 #define HAVE_TIMED_RWLOCK 1 45 #else 46 #define HAVE_TIMED_RWLOCK 0 47 #endif 48 49 namespace art { 50 51 class SHARED_LOCKABLE ReaderWriterMutex; 52 class SHARED_LOCKABLE MutatorMutex; 53 class ScopedContentionRecorder; 54 class Thread; 55 class LOCKABLE Mutex; 56 57 constexpr bool kDebugLocking = kIsDebugBuild; 58 59 // Record Log contention information, dumpable via SIGQUIT. 60 #if ART_USE_FUTEXES 61 // To enable lock contention logging, set this to true. 62 constexpr bool kLogLockContentions = false; 63 // FUTEX_WAKE first argument: 64 constexpr int kWakeOne = 1; 65 constexpr int kWakeAll = INT_MAX; 66 #else 67 // Keep this false as lock contention logging is supported only with 68 // futex. 69 constexpr bool kLogLockContentions = false; 70 #endif 71 constexpr size_t kContentionLogSize = 4; 72 constexpr size_t kContentionLogDataSize = kLogLockContentions ? 1 : 0; 73 constexpr size_t kAllMutexDataSize = kLogLockContentions ? 1 : 0; 74 75 // Base class for all Mutex implementations 76 class BaseMutex { 77 public: GetName()78 const char* GetName() const { 79 return name_; 80 } 81 IsMutex()82 virtual bool IsMutex() const { return false; } IsReaderWriterMutex()83 virtual bool IsReaderWriterMutex() const { return false; } IsMutatorMutex()84 virtual bool IsMutatorMutex() const { return false; } 85 86 virtual void Dump(std::ostream& os) const = 0; 87 88 static void DumpAll(std::ostream& os); 89 ShouldRespondToEmptyCheckpointRequest()90 bool ShouldRespondToEmptyCheckpointRequest() const { 91 return should_respond_to_empty_checkpoint_request_; 92 } 93 SetShouldRespondToEmptyCheckpointRequest(bool value)94 void SetShouldRespondToEmptyCheckpointRequest(bool value) { 95 should_respond_to_empty_checkpoint_request_ = value; 96 } 97 98 virtual void WakeupToRespondToEmptyCheckpoint() = 0; 99 100 protected: 101 friend class ConditionVariable; 102 103 BaseMutex(const char* name, LockLevel level); 104 virtual ~BaseMutex(); 105 106 // Add this mutex to those owned by self, and perform appropriate checking. 107 // For this call only, self may also be another suspended thread. 108 void RegisterAsLocked(Thread* self); 109 void RegisterAsLockedImpl(Thread* self, LockLevel level); 110 111 void RegisterAsUnlocked(Thread* self); 112 void RegisterAsUnlockedImpl(Thread* self, LockLevel level); 113 114 void CheckSafeToWait(Thread* self); 115 116 friend class ScopedContentionRecorder; 117 118 void RecordContention(uint64_t blocked_tid, uint64_t owner_tid, uint64_t nano_time_blocked); 119 void DumpContention(std::ostream& os) const; 120 121 const char* const name_; 122 123 // A log entry that records contention but makes no guarantee that either tid will be held live. 124 struct ContentionLogEntry { ContentionLogEntryContentionLogEntry125 ContentionLogEntry() : blocked_tid(0), owner_tid(0) {} 126 uint64_t blocked_tid; 127 uint64_t owner_tid; 128 AtomicInteger count; 129 }; 130 struct ContentionLogData { 131 ContentionLogEntry contention_log[kContentionLogSize]; 132 // The next entry in the contention log to be updated. Value ranges from 0 to 133 // kContentionLogSize - 1. 134 AtomicInteger cur_content_log_entry; 135 // Number of times the Mutex has been contended. 136 AtomicInteger contention_count; 137 // Sum of time waited by all contenders in ns. 138 Atomic<uint64_t> wait_time; 139 void AddToWaitTime(uint64_t value); ContentionLogDataContentionLogData140 ContentionLogData() : wait_time(0) {} 141 }; 142 ContentionLogData contention_log_data_[kContentionLogDataSize]; 143 144 const LockLevel level_; // Support for lock hierarchy. 145 bool should_respond_to_empty_checkpoint_request_; 146 147 public: HasEverContended()148 bool HasEverContended() const { 149 if (kLogLockContentions) { 150 return contention_log_data_->contention_count.load(std::memory_order_seq_cst) > 0; 151 } 152 return false; 153 } 154 }; 155 156 // A Mutex is used to achieve mutual exclusion between threads. A Mutex can be used to gain 157 // exclusive access to what it guards. A Mutex can be in one of two states: 158 // - Free - not owned by any thread, 159 // - Exclusive - owned by a single thread. 160 // 161 // The effect of locking and unlocking operations on the state is: 162 // State | ExclusiveLock | ExclusiveUnlock 163 // ------------------------------------------- 164 // Free | Exclusive | error 165 // Exclusive | Block* | Free 166 // * Mutex is not reentrant unless recursive is true. An attempt to ExclusiveLock on a 167 // recursive=false Mutex on a thread already owning the Mutex results in an error. 168 // 169 // TODO(b/140590186): Remove support for recursive == true. 170 // 171 // Some mutexes, including those associated with Java monitors may be accessed (in particular 172 // acquired) by a thread in suspended state. Suspending all threads does NOT prevent mutex state 173 // from changing. 174 std::ostream& operator<<(std::ostream& os, const Mutex& mu); 175 class LOCKABLE Mutex : public BaseMutex { 176 public: 177 explicit Mutex(const char* name, LockLevel level = kDefaultMutexLevel, bool recursive = false); 178 ~Mutex(); 179 IsMutex()180 bool IsMutex() const override { return true; } 181 182 // Block until mutex is free then acquire exclusive access. 183 void ExclusiveLock(Thread* self) ACQUIRE(); Lock(Thread * self)184 void Lock(Thread* self) ACQUIRE() { ExclusiveLock(self); } 185 186 // Returns true if acquires exclusive access, false otherwise. 187 bool ExclusiveTryLock(Thread* self) TRY_ACQUIRE(true); TryLock(Thread * self)188 bool TryLock(Thread* self) TRY_ACQUIRE(true) { return ExclusiveTryLock(self); } 189 // Equivalent to ExclusiveTryLock, but retry for a short period before giving up. 190 bool ExclusiveTryLockWithSpinning(Thread* self) TRY_ACQUIRE(true); 191 192 // Release exclusive access. 193 void ExclusiveUnlock(Thread* self) RELEASE(); Unlock(Thread * self)194 void Unlock(Thread* self) RELEASE() { ExclusiveUnlock(self); } 195 196 // Is the current thread the exclusive holder of the Mutex. 197 ALWAYS_INLINE bool IsExclusiveHeld(const Thread* self) const; 198 199 // Assert that the Mutex is exclusively held by the current thread. 200 ALWAYS_INLINE void AssertExclusiveHeld(const Thread* self) const ASSERT_CAPABILITY(this); 201 ALWAYS_INLINE void AssertHeld(const Thread* self) const ASSERT_CAPABILITY(this); 202 203 // Assert that the Mutex is not held by the current thread. AssertNotHeldExclusive(const Thread * self)204 void AssertNotHeldExclusive(const Thread* self) ASSERT_CAPABILITY(!*this) { 205 if (kDebugLocking && (gAborting == 0)) { 206 CHECK(!IsExclusiveHeld(self)) << *this; 207 } 208 } AssertNotHeld(const Thread * self)209 void AssertNotHeld(const Thread* self) ASSERT_CAPABILITY(!*this) { 210 AssertNotHeldExclusive(self); 211 } 212 213 // Id associated with exclusive owner. No memory ordering semantics if called from a thread 214 // other than the owner. GetTid() == GetExclusiveOwnerTid() is a reliable way to determine 215 // whether we hold the lock; any other information may be invalidated before we return. 216 pid_t GetExclusiveOwnerTid() const; 217 218 // Returns how many times this Mutex has been locked, it is typically better to use 219 // AssertHeld/NotHeld. For a simply held mutex this method returns 1. Should only be called 220 // while holding the mutex or threads are suspended. GetDepth()221 unsigned int GetDepth() const { 222 return recursion_count_; 223 } 224 225 void Dump(std::ostream& os) const override; 226 227 void DumpStack(Thread *self, uint64_t wait_start_ms, uint64_t try_times = 1); 228 229 static bool IsDumpFrequent(Thread *self, uint64_t try_times = 1); 230 setEnableMonitorTimeout()231 void setEnableMonitorTimeout() { 232 enable_monitor_timeout_ = true; 233 } 234 setMonitorId(uint32_t monitorId)235 void setMonitorId(uint32_t monitorId) { 236 monitor_id_ = monitorId; 237 } 238 239 // For negative capabilities in clang annotations. 240 const Mutex& operator!() const { return *this; } 241 242 void WakeupToRespondToEmptyCheckpoint() override; 243 244 #if ART_USE_FUTEXES 245 // Acquire the mutex, possibly on behalf of another thread. Acquisition must be 246 // uncontended. New_owner must be current thread or suspended. 247 // Mutex must be at level kMonitorLock. 248 // Not implementable for the pthreads version, so we must avoid calling it there. 249 void ExclusiveLockUncontendedFor(Thread* new_owner); 250 251 // Undo the effect of the previous calling, setting the mutex back to unheld. 252 // Still assumes no concurrent access. 253 void ExclusiveUnlockUncontended(); 254 #endif // ART_USE_FUTEXES 255 256 private: 257 #if ART_USE_FUTEXES 258 // Low order bit: 0 is unheld, 1 is held. 259 // High order bits: Number of waiting contenders. 260 AtomicInteger state_and_contenders_; 261 262 static constexpr int32_t kHeldMask = 1; 263 264 static constexpr int32_t kContenderShift = 1; 265 266 static constexpr int32_t kContenderIncrement = 1 << kContenderShift; 267 increment_contenders()268 void increment_contenders() { 269 state_and_contenders_.fetch_add(kContenderIncrement); 270 } 271 decrement_contenders()272 void decrement_contenders() { 273 state_and_contenders_.fetch_sub(kContenderIncrement); 274 } 275 get_contenders()276 int32_t get_contenders() { 277 // Result is guaranteed to include any contention added by this thread; otherwise approximate. 278 // Treat contenders as unsigned because we're concerned about overflow; should never matter. 279 return static_cast<uint32_t>(state_and_contenders_.load(std::memory_order_relaxed)) 280 >> kContenderShift; 281 } 282 283 // Exclusive owner. 284 Atomic<pid_t> exclusive_owner_; 285 #else 286 pthread_mutex_t mutex_; 287 Atomic<pid_t> exclusive_owner_; // Guarded by mutex_. Asynchronous reads are OK. 288 #endif 289 290 unsigned int recursion_count_; 291 const bool recursive_; // Can the lock be recursively held? 292 293 bool enable_monitor_timeout_ = false; 294 295 uint32_t monitor_id_; 296 297 friend class ConditionVariable; 298 DISALLOW_COPY_AND_ASSIGN(Mutex); 299 }; 300 301 // A ReaderWriterMutex is used to achieve mutual exclusion between threads, similar to a Mutex. 302 // Unlike a Mutex a ReaderWriterMutex can be used to gain exclusive (writer) or shared (reader) 303 // access to what it guards. A flaw in relation to a Mutex is that it cannot be used with a 304 // condition variable. A ReaderWriterMutex can be in one of three states: 305 // - Free - not owned by any thread, 306 // - Exclusive - owned by a single thread, 307 // - Shared(n) - shared amongst n threads. 308 // 309 // The effect of locking and unlocking operations on the state is: 310 // 311 // State | ExclusiveLock | ExclusiveUnlock | SharedLock | SharedUnlock 312 // ---------------------------------------------------------------------------- 313 // Free | Exclusive | error | SharedLock(1) | error 314 // Exclusive | Block | Free | Block | error 315 // Shared(n) | Block | error | SharedLock(n+1)* | Shared(n-1) or Free 316 // * for large values of n the SharedLock may block. 317 std::ostream& operator<<(std::ostream& os, const ReaderWriterMutex& mu); 318 class SHARED_LOCKABLE ReaderWriterMutex : public BaseMutex { 319 public: 320 explicit ReaderWriterMutex(const char* name, LockLevel level = kDefaultMutexLevel); 321 ~ReaderWriterMutex(); 322 IsReaderWriterMutex()323 bool IsReaderWriterMutex() const override { return true; } 324 325 // Block until ReaderWriterMutex is free then acquire exclusive access. 326 void ExclusiveLock(Thread* self) ACQUIRE(); WriterLock(Thread * self)327 void WriterLock(Thread* self) ACQUIRE() { ExclusiveLock(self); } 328 329 // Release exclusive access. 330 void ExclusiveUnlock(Thread* self) RELEASE(); WriterUnlock(Thread * self)331 void WriterUnlock(Thread* self) RELEASE() { ExclusiveUnlock(self); } 332 333 // Block until ReaderWriterMutex is free and acquire exclusive access. Returns true on success 334 // or false if timeout is reached. 335 #if HAVE_TIMED_RWLOCK 336 bool ExclusiveLockWithTimeout(Thread* self, int64_t ms, int32_t ns) 337 EXCLUSIVE_TRYLOCK_FUNCTION(true); 338 #endif 339 340 // Block until ReaderWriterMutex is shared or free then acquire a share on the access. 341 void SharedLock(Thread* self) ACQUIRE_SHARED() ALWAYS_INLINE; ReaderLock(Thread * self)342 void ReaderLock(Thread* self) ACQUIRE_SHARED() { SharedLock(self); } 343 344 // Try to acquire share of ReaderWriterMutex. 345 bool SharedTryLock(Thread* self) SHARED_TRYLOCK_FUNCTION(true); 346 347 // Release a share of the access. 348 void SharedUnlock(Thread* self) RELEASE_SHARED() ALWAYS_INLINE; ReaderUnlock(Thread * self)349 void ReaderUnlock(Thread* self) RELEASE_SHARED() { SharedUnlock(self); } 350 351 // Is the current thread the exclusive holder of the ReaderWriterMutex. 352 ALWAYS_INLINE bool IsExclusiveHeld(const Thread* self) const; 353 354 // Assert the current thread has exclusive access to the ReaderWriterMutex. 355 ALWAYS_INLINE void AssertExclusiveHeld(const Thread* self) const ASSERT_CAPABILITY(this); 356 ALWAYS_INLINE void AssertWriterHeld(const Thread* self) const ASSERT_CAPABILITY(this); 357 358 // Assert the current thread doesn't have exclusive access to the ReaderWriterMutex. AssertNotExclusiveHeld(const Thread * self)359 void AssertNotExclusiveHeld(const Thread* self) ASSERT_CAPABILITY(!this) { 360 if (kDebugLocking && (gAborting == 0)) { 361 CHECK(!IsExclusiveHeld(self)) << *this; 362 } 363 } AssertNotWriterHeld(const Thread * self)364 void AssertNotWriterHeld(const Thread* self) ASSERT_CAPABILITY(!this) { 365 AssertNotExclusiveHeld(self); 366 } 367 368 // Is the current thread a shared holder of the ReaderWriterMutex. 369 bool IsSharedHeld(const Thread* self) const; 370 371 // Assert the current thread has shared access to the ReaderWriterMutex. AssertSharedHeld(const Thread * self)372 ALWAYS_INLINE void AssertSharedHeld(const Thread* self) ASSERT_SHARED_CAPABILITY(this) { 373 if (kDebugLocking && (gAborting == 0)) { 374 // TODO: we can only assert this well when self != null. 375 CHECK(IsSharedHeld(self) || self == nullptr) << *this; 376 } 377 } AssertReaderHeld(const Thread * self)378 ALWAYS_INLINE void AssertReaderHeld(const Thread* self) ASSERT_SHARED_CAPABILITY(this) { 379 AssertSharedHeld(self); 380 } 381 382 // Assert the current thread doesn't hold this ReaderWriterMutex either in shared or exclusive 383 // mode. AssertNotHeld(const Thread * self)384 ALWAYS_INLINE void AssertNotHeld(const Thread* self) ASSERT_CAPABILITY(!this) { 385 if (kDebugLocking && (gAborting == 0)) { 386 CHECK(!IsExclusiveHeld(self)) << *this; 387 CHECK(!IsSharedHeld(self)) << *this; 388 } 389 } 390 391 // Id associated with exclusive owner. No memory ordering semantics if called from a thread other 392 // than the owner. Returns 0 if the lock is not held. Returns either 0 or -1 if it is held by 393 // one or more readers. 394 pid_t GetExclusiveOwnerTid() const; 395 396 void Dump(std::ostream& os) const override; 397 398 // For negative capabilities in clang annotations. 399 const ReaderWriterMutex& operator!() const { return *this; } 400 401 void WakeupToRespondToEmptyCheckpoint() override; 402 403 private: 404 #if ART_USE_FUTEXES 405 // Out-of-inline path for handling contention for a SharedLock. 406 void HandleSharedLockContention(Thread* self, int32_t cur_state); 407 408 // -1 implies held exclusive, >= 0: shared held by state_ many owners. 409 AtomicInteger state_; 410 // Exclusive owner. Modification guarded by this mutex. 411 Atomic<pid_t> exclusive_owner_; 412 // Number of contenders waiting for either a reader share or exclusive access. We only maintain 413 // the sum, since we would otherwise need to read both in all unlock operations. 414 // We keep this separate from the state, since futexes are limited to 32 bits, and obvious 415 // approaches to combining with state_ risk overflow. 416 AtomicInteger num_contenders_; 417 #else 418 pthread_rwlock_t rwlock_; 419 Atomic<pid_t> exclusive_owner_; // Writes guarded by rwlock_. Asynchronous reads are OK. 420 #endif 421 DISALLOW_COPY_AND_ASSIGN(ReaderWriterMutex); 422 }; 423 424 // MutatorMutex is a special kind of ReaderWriterMutex created specifically for the 425 // Locks::mutator_lock_ mutex. The behaviour is identical to the ReaderWriterMutex except that 426 // thread state changes also play a part in lock ownership. The mutator_lock_ will not be truly 427 // held by any mutator threads. However, a thread in the kRunnable state is considered to have 428 // shared ownership of the mutator lock and therefore transitions in and out of the kRunnable 429 // state have associated implications on lock ownership. Extra methods to handle the state 430 // transitions have been added to the interface but are only accessible to the methods dealing 431 // with state transitions. The thread state and flags attributes are used to ensure thread state 432 // transitions are consistent with the permitted behaviour of the mutex. 433 // 434 // *) The most important consequence of this behaviour is that all threads must be in one of the 435 // suspended states before exclusive ownership of the mutator mutex is sought. 436 // 437 std::ostream& operator<<(std::ostream& os, const MutatorMutex& mu); 438 class SHARED_LOCKABLE MutatorMutex : public ReaderWriterMutex { 439 public: 440 explicit MutatorMutex(const char* name, LockLevel level = kDefaultMutexLevel) ReaderWriterMutex(name,level)441 : ReaderWriterMutex(name, level) {} ~MutatorMutex()442 ~MutatorMutex() {} 443 IsMutatorMutex()444 virtual bool IsMutatorMutex() const { return true; } 445 446 // For negative capabilities in clang annotations. 447 const MutatorMutex& operator!() const { return *this; } 448 449 private: 450 friend class Thread; 451 void TransitionFromRunnableToSuspended(Thread* self) UNLOCK_FUNCTION() ALWAYS_INLINE; 452 void TransitionFromSuspendedToRunnable(Thread* self) SHARED_LOCK_FUNCTION() ALWAYS_INLINE; 453 454 DISALLOW_COPY_AND_ASSIGN(MutatorMutex); 455 }; 456 457 // ConditionVariables allow threads to queue and sleep. Threads may then be resumed individually 458 // (Signal) or all at once (Broadcast). 459 class ConditionVariable { 460 public: 461 ConditionVariable(const char* name, Mutex& mutex); 462 ~ConditionVariable(); 463 464 // Requires the mutex to be held. 465 void Broadcast(Thread* self); 466 // Requires the mutex to be held. 467 void Signal(Thread* self); 468 // TODO: No thread safety analysis on Wait and TimedWait as they call mutex operations via their 469 // pointer copy, thereby defeating annotalysis. 470 void Wait(Thread* self) NO_THREAD_SAFETY_ANALYSIS; 471 bool TimedWait(Thread* self, int64_t ms, int32_t ns) NO_THREAD_SAFETY_ANALYSIS; 472 // Variant of Wait that should be used with caution. Doesn't validate that no mutexes are held 473 // when waiting. 474 // TODO: remove this. 475 void WaitHoldingLocks(Thread* self) NO_THREAD_SAFETY_ANALYSIS; 476 CheckSafeToWait(Thread * self)477 void CheckSafeToWait(Thread* self) NO_THREAD_SAFETY_ANALYSIS { 478 if (kDebugLocking) { 479 guard_.CheckSafeToWait(self); 480 } 481 } 482 483 private: 484 const char* const name_; 485 // The Mutex being used by waiters. It is an error to mix condition variables between different 486 // Mutexes. 487 Mutex& guard_; 488 #if ART_USE_FUTEXES 489 // A counter that is modified by signals and broadcasts. This ensures that when a waiter gives up 490 // their Mutex and another thread takes it and signals, the waiting thread observes that sequence_ 491 // changed and doesn't enter the wait. Modified while holding guard_, but is read by futex wait 492 // without guard_ held. 493 AtomicInteger sequence_; 494 // Number of threads that have come into to wait, not the length of the waiters on the futex as 495 // waiters may have been requeued onto guard_. Guarded by guard_. 496 int32_t num_waiters_; 497 498 void RequeueWaiters(int32_t count); 499 #else 500 pthread_cond_t cond_; 501 #endif 502 DISALLOW_COPY_AND_ASSIGN(ConditionVariable); 503 }; 504 505 // Scoped locker/unlocker for a regular Mutex that acquires mu upon construction and releases it 506 // upon destruction. 507 class SCOPED_CAPABILITY MutexLock { 508 public: MutexLock(Thread * self,Mutex & mu)509 MutexLock(Thread* self, Mutex& mu) ACQUIRE(mu) : self_(self), mu_(mu) { 510 mu_.ExclusiveLock(self_); 511 } 512 RELEASE()513 ~MutexLock() RELEASE() { 514 mu_.ExclusiveUnlock(self_); 515 } 516 517 private: 518 Thread* const self_; 519 Mutex& mu_; 520 DISALLOW_COPY_AND_ASSIGN(MutexLock); 521 }; 522 523 // Scoped locker/unlocker for a ReaderWriterMutex that acquires read access to mu upon 524 // construction and releases it upon destruction. 525 class SCOPED_CAPABILITY ReaderMutexLock { 526 public: 527 ALWAYS_INLINE ReaderMutexLock(Thread* self, ReaderWriterMutex& mu) ACQUIRE(mu); 528 529 ALWAYS_INLINE ~ReaderMutexLock() RELEASE(); 530 531 private: 532 Thread* const self_; 533 ReaderWriterMutex& mu_; 534 DISALLOW_COPY_AND_ASSIGN(ReaderMutexLock); 535 }; 536 537 // Scoped locker/unlocker for a ReaderWriterMutex that acquires write access to mu upon 538 // construction and releases it upon destruction. 539 class SCOPED_CAPABILITY WriterMutexLock { 540 public: WriterMutexLock(Thread * self,ReaderWriterMutex & mu)541 WriterMutexLock(Thread* self, ReaderWriterMutex& mu) EXCLUSIVE_LOCK_FUNCTION(mu) : 542 self_(self), mu_(mu) { 543 mu_.ExclusiveLock(self_); 544 } 545 UNLOCK_FUNCTION()546 ~WriterMutexLock() UNLOCK_FUNCTION() { 547 mu_.ExclusiveUnlock(self_); 548 } 549 550 private: 551 Thread* const self_; 552 ReaderWriterMutex& mu_; 553 DISALLOW_COPY_AND_ASSIGN(WriterMutexLock); 554 }; 555 556 } // namespace art 557 558 #endif // ART_RUNTIME_BASE_MUTEX_H_ 559