1 /*
2 * Copyright (C) 2019 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "src/trace_processor/importers/common/clock_tracker.h"
18
19 #include <random>
20
21 #include "perfetto/ext/base/optional.h"
22 #include "src/trace_processor/storage/trace_storage.h"
23 #include "src/trace_processor/types/trace_processor_context.h"
24 #include "test/gtest_and_gmock.h"
25
26 #include "protos/perfetto/common/builtin_clock.pbzero.h"
27 #include "protos/perfetto/trace/clock_snapshot.pbzero.h"
28
29 namespace perfetto {
30 namespace trace_processor {
31 namespace {
32
33 using ::testing::NiceMock;
34 using Clock = protos::pbzero::ClockSnapshot::Clock;
35
36 constexpr auto REALTIME = protos::pbzero::BUILTIN_CLOCK_REALTIME;
37 constexpr auto BOOTTIME = protos::pbzero::BUILTIN_CLOCK_BOOTTIME;
38 constexpr auto MONOTONIC = protos::pbzero::BUILTIN_CLOCK_MONOTONIC;
39 constexpr auto MONOTONIC_COARSE =
40 protos::pbzero::BUILTIN_CLOCK_MONOTONIC_COARSE;
41 constexpr auto MONOTONIC_RAW = protos::pbzero::BUILTIN_CLOCK_MONOTONIC_RAW;
42
43 class ClockTrackerTest : public ::testing::Test {
44 public:
ClockTrackerTest()45 ClockTrackerTest() { context_.storage.reset(new TraceStorage()); }
46
47 TraceProcessorContext context_;
48 ClockTracker ct_{&context_};
49 };
50
TEST_F(ClockTrackerTest,ClockDomainConversions)51 TEST_F(ClockTrackerTest, ClockDomainConversions) {
52 EXPECT_EQ(ct_.ToTraceTime(REALTIME, 0), base::nullopt);
53
54 ct_.AddSnapshot({{REALTIME, 10}, {BOOTTIME, 10010}});
55 ct_.AddSnapshot({{REALTIME, 20}, {BOOTTIME, 20220}});
56 ct_.AddSnapshot({{REALTIME, 30}, {BOOTTIME, 30030}});
57 ct_.AddSnapshot({{MONOTONIC, 1000}, {BOOTTIME, 100000}});
58
59 EXPECT_EQ(ct_.ToTraceTime(REALTIME, 0), 10000);
60 EXPECT_EQ(ct_.ToTraceTime(REALTIME, 1), 10001);
61 EXPECT_EQ(ct_.ToTraceTime(REALTIME, 9), 10009);
62 EXPECT_EQ(ct_.ToTraceTime(REALTIME, 10), 10010);
63 EXPECT_EQ(ct_.ToTraceTime(REALTIME, 11), 10011);
64 EXPECT_EQ(ct_.ToTraceTime(REALTIME, 19), 10019);
65 EXPECT_EQ(ct_.ToTraceTime(REALTIME, 20), 20220);
66 EXPECT_EQ(ct_.ToTraceTime(REALTIME, 21), 20221);
67 EXPECT_EQ(ct_.ToTraceTime(REALTIME, 29), 20229);
68 EXPECT_EQ(ct_.ToTraceTime(REALTIME, 30), 30030);
69 EXPECT_EQ(ct_.ToTraceTime(REALTIME, 40), 30040);
70
71 EXPECT_EQ(ct_.ToTraceTime(MONOTONIC, 0), 100000 - 1000);
72 EXPECT_EQ(ct_.ToTraceTime(MONOTONIC, 999), 100000 - 1);
73 EXPECT_EQ(ct_.ToTraceTime(MONOTONIC, 1000), 100000);
74 EXPECT_EQ(ct_.ToTraceTime(MONOTONIC, 1e6),
75 static_cast<int64_t>(100000 - 1000 + 1e6));
76 }
77
78 // When a clock moves backwards conversions *from* that clock are forbidden
79 // but conversions *to* that clock should still work.
80 // Think to the case of REALTIME going backwards from 3AM to 2AM during DST day.
81 // You can't convert 2.10AM REALTIME to BOOTTIME because there are two possible
82 // answers, but you can still unambiguosly convert BOOTTIME into REALTIME.
TEST_F(ClockTrackerTest,RealTimeClockMovingBackwards)83 TEST_F(ClockTrackerTest, RealTimeClockMovingBackwards) {
84 ct_.AddSnapshot({{BOOTTIME, 10010}, {REALTIME, 10}});
85
86 // At this point conversions are still possible in both ways because we
87 // haven't broken monotonicity yet.
88 EXPECT_EQ(ct_.Convert(REALTIME, 11, BOOTTIME), 10011);
89
90 ct_.AddSnapshot({{BOOTTIME, 10020}, {REALTIME, 20}});
91 ct_.AddSnapshot({{BOOTTIME, 30040}, {REALTIME, 40}});
92 ct_.AddSnapshot({{BOOTTIME, 40030}, {REALTIME, 30}});
93
94 // Now only BOOTIME -> REALTIME conversion should be possible.
95 EXPECT_FALSE(ct_.Convert(REALTIME, 11, BOOTTIME));
96 EXPECT_EQ(ct_.Convert(BOOTTIME, 10011, REALTIME), 11);
97 EXPECT_EQ(ct_.Convert(BOOTTIME, 10029, REALTIME), 29);
98 EXPECT_EQ(ct_.Convert(BOOTTIME, 40030, REALTIME), 30);
99 EXPECT_EQ(ct_.Convert(BOOTTIME, 40040, REALTIME), 40);
100
101 ct_.AddSnapshot({{BOOTTIME, 50000}, {REALTIME, 50}});
102 EXPECT_EQ(ct_.Convert(BOOTTIME, 50005, REALTIME), 55);
103
104 ct_.AddSnapshot({{BOOTTIME, 60020}, {REALTIME, 20}});
105 EXPECT_EQ(ct_.Convert(BOOTTIME, 60020, REALTIME), 20);
106 }
107
108 // Simulate the following scenario:
109 // MONOTONIC = MONOTONIC_COARSE + 10
110 // BOOTTIME = MONOTONIC + 1000 (until T=200)
111 // BOOTTIME = MONOTONIC + 2000 (from T=200)
112 // Then resolve MONOTONIC_COARSE. This requires a two-level resolution:
113 // MONOTONIC_COARSE -> MONOTONIC -> BOOTTIME.
TEST_F(ClockTrackerTest,ChainedResolutionSimple)114 TEST_F(ClockTrackerTest, ChainedResolutionSimple) {
115 ct_.AddSnapshot({{MONOTONIC_COARSE, 1}, {MONOTONIC, 11}});
116 ct_.AddSnapshot({{MONOTONIC, 100}, {BOOTTIME, 1100}});
117 ct_.AddSnapshot({{MONOTONIC, 200}, {BOOTTIME, 2200}});
118
119 EXPECT_EQ(ct_.Convert(MONOTONIC, 100, MONOTONIC_COARSE), 90);
120 EXPECT_EQ(ct_.Convert(MONOTONIC_COARSE, 20, MONOTONIC), 30);
121
122 // MONOTONIC_COARSE@100 == MONOTONIC@110 == BOOTTIME@1100.
123 EXPECT_EQ(ct_.ToTraceTime(MONOTONIC, 110), 1110);
124 EXPECT_EQ(*ct_.ToTraceTime(MONOTONIC_COARSE, 100), 100 + 10 + 1000);
125 EXPECT_EQ(*ct_.ToTraceTime(MONOTONIC_COARSE, 202), 202 + 10 + 2000);
126 }
127
TEST_F(ClockTrackerTest,ChainedResolutionHard)128 TEST_F(ClockTrackerTest, ChainedResolutionHard) {
129 // MONOTONIC_COARSE = MONOTONIC_RAW - 1.
130 ct_.AddSnapshot({{MONOTONIC_RAW, 10}, {MONOTONIC_COARSE, 9}});
131
132 // MONOTONIC = MONOTONIC_COARSE - 50.
133 ct_.AddSnapshot({{MONOTONIC_COARSE, 100}, {MONOTONIC, 50}});
134
135 // BOOTTIME = MONOTONIC + 1000 until T=100 (see below).
136 ct_.AddSnapshot({{MONOTONIC, 1}, {BOOTTIME, 1001}, {REALTIME, 10001}});
137
138 // BOOTTIME = MONOTONIC + 2000 from T=100.
139 // At the same time, REALTIME goes backwards.
140 ct_.AddSnapshot({{MONOTONIC, 101}, {BOOTTIME, 2101}, {REALTIME, 9101}});
141
142 // 1-hop conversions.
143 EXPECT_EQ(ct_.Convert(MONOTONIC_RAW, 2, MONOTONIC_COARSE), 1);
144 EXPECT_EQ(ct_.Convert(MONOTONIC_COARSE, 1, MONOTONIC_RAW), 2);
145 EXPECT_EQ(ct_.Convert(MONOTONIC_RAW, 100001, MONOTONIC_COARSE), 100000);
146 EXPECT_EQ(ct_.Convert(MONOTONIC_COARSE, 100000, MONOTONIC_RAW), 100001);
147
148 // 2-hop conversions (MONOTONIC_RAW <-> MONOTONIC_COARSE <-> MONOTONIC).
149 // From above, MONOTONIC = (MONOTONIC_RAW - 1) - 50.
150 EXPECT_EQ(ct_.Convert(MONOTONIC_RAW, 53, MONOTONIC), 53 - 1 - 50);
151 EXPECT_EQ(ct_.Convert(MONOTONIC, 2, MONOTONIC_RAW), 2 + 1 + 50);
152
153 // 3-hop conversions (as above + BOOTTIME)
154 EXPECT_EQ(ct_.Convert(MONOTONIC_RAW, 53, BOOTTIME), 53 - 1 - 50 + 1000);
155 EXPECT_EQ(ct_.Convert(BOOTTIME, 1002, MONOTONIC_RAW), 1002 - 1000 + 1 + 50);
156
157 EXPECT_EQ(*ct_.Convert(MONOTONIC_RAW, 753, BOOTTIME), 753 - 1 - 50 + 2000);
158 EXPECT_EQ(ct_.Convert(BOOTTIME, 2702, MONOTONIC_RAW), 2702 - 2000 + 1 + 50);
159
160 // 3-hop conversion to REALTIME, one way only (REALTIME goes backwards).
161 EXPECT_EQ(*ct_.Convert(MONOTONIC_RAW, 53, REALTIME), 53 - 1 - 50 + 10000);
162 EXPECT_EQ(*ct_.Convert(MONOTONIC_RAW, 753, REALTIME), 753 - 1 - 50 + 9000);
163 }
164
165 // Regression test for b/158182858. When taking two snapshots back-to-back,
166 // MONOTONIC_COARSE might be stuck to the last value. We should still be able
167 // to convert both ways in this case.
TEST_F(ClockTrackerTest,NonStrictlyMonotonic)168 TEST_F(ClockTrackerTest, NonStrictlyMonotonic) {
169 ct_.AddSnapshot({{BOOTTIME, 101}, {MONOTONIC, 51}, {MONOTONIC_COARSE, 50}});
170 ct_.AddSnapshot({{BOOTTIME, 105}, {MONOTONIC, 55}, {MONOTONIC_COARSE, 50}});
171
172 // This last snapshot is deliberately identical to the previous one. This
173 // is to simulate the case of taking two snapshots so close to each other that
174 // all clocks are identical.
175 ct_.AddSnapshot({{BOOTTIME, 105}, {MONOTONIC, 55}, {MONOTONIC_COARSE, 50}});
176
177 EXPECT_EQ(ct_.Convert(MONOTONIC_COARSE, 49, MONOTONIC), 50);
178 EXPECT_EQ(ct_.Convert(MONOTONIC_COARSE, 50, MONOTONIC), 55);
179 EXPECT_EQ(ct_.Convert(MONOTONIC_COARSE, 51, MONOTONIC), 56);
180
181 EXPECT_EQ(ct_.Convert(MONOTONIC_COARSE, 40, BOOTTIME), 91);
182 EXPECT_EQ(ct_.Convert(MONOTONIC_COARSE, 50, BOOTTIME), 105);
183 EXPECT_EQ(ct_.Convert(MONOTONIC_COARSE, 55, BOOTTIME), 110);
184
185 EXPECT_EQ(ct_.Convert(BOOTTIME, 91, MONOTONIC_COARSE), 40);
186 EXPECT_EQ(ct_.Convert(BOOTTIME, 105, MONOTONIC_COARSE), 50);
187 EXPECT_EQ(ct_.Convert(BOOTTIME, 110, MONOTONIC_COARSE), 55);
188 }
189
TEST_F(ClockTrackerTest,SequenceScopedClocks)190 TEST_F(ClockTrackerTest, SequenceScopedClocks) {
191 ct_.AddSnapshot({{MONOTONIC, 1000}, {BOOTTIME, 100000}});
192
193 ClockTracker::ClockId c64_1 = ct_.SeqScopedClockIdToGlobal(1, 64);
194 ClockTracker::ClockId c65_1 = ct_.SeqScopedClockIdToGlobal(1, 65);
195 ClockTracker::ClockId c66_1 = ct_.SeqScopedClockIdToGlobal(1, 66);
196 ClockTracker::ClockId c66_2 = ct_.SeqScopedClockIdToGlobal(2, 64);
197
198 ct_.AddSnapshot(
199 {{MONOTONIC, 10000},
200 {c64_1, 100000},
201 {c65_1, 100, /*unit_multiplier_ns=*/1000, /*is_incremental=*/false},
202 {c66_1, 10, /*unit_multiplier_ns=*/1000, /*is_incremental=*/true}});
203
204 // c64_1 is non-incremental and in nanos.
205 EXPECT_EQ(*ct_.Convert(c64_1, 150000, MONOTONIC), 60000);
206 EXPECT_EQ(*ct_.Convert(c64_1, 150000, BOOTTIME), 159000);
207 EXPECT_EQ(*ct_.ToTraceTime(c64_1, 150000), 159000);
208
209 // c65_1 is non-incremental and in micros.
210 EXPECT_EQ(*ct_.Convert(c65_1, 150, MONOTONIC), 60000);
211 EXPECT_EQ(*ct_.Convert(c65_1, 150, BOOTTIME), 159000);
212 EXPECT_EQ(*ct_.ToTraceTime(c65_1, 150), 159000);
213
214 // c66_1 is incremental and in micros.
215 EXPECT_EQ(*ct_.Convert(c66_1, 1 /* abs 11 */, MONOTONIC), 11000);
216 EXPECT_EQ(*ct_.Convert(c66_1, 1 /* abs 12 */, MONOTONIC), 12000);
217 EXPECT_EQ(*ct_.Convert(c66_1, 1 /* abs 13 */, BOOTTIME), 112000);
218 EXPECT_EQ(*ct_.ToTraceTime(c66_1, 2 /* abs 15 */), 114000);
219
220 ct_.AddSnapshot(
221 {{MONOTONIC, 20000},
222 {c66_1, 20, /*unit_multiplier_ns=*/1000, /*is_incremental=*/true}});
223 ct_.AddSnapshot(
224 {{MONOTONIC, 20000},
225 {c66_2, 20, /*unit_multiplier_ns=*/1000, /*is_incremental=*/true}});
226
227 // c66_1 and c66_2 are both incremental and in micros, but shouldn't affect
228 // each other.
229 EXPECT_EQ(*ct_.Convert(c66_1, 1 /* abs 21 */, MONOTONIC), 21000);
230 EXPECT_EQ(*ct_.Convert(c66_2, 2 /* abs 22 */, MONOTONIC), 22000);
231 EXPECT_EQ(*ct_.Convert(c66_1, 1 /* abs 22 */, MONOTONIC), 22000);
232 EXPECT_EQ(*ct_.Convert(c66_2, 2 /* abs 24 */, MONOTONIC), 24000);
233 EXPECT_EQ(*ct_.Convert(c66_1, 1 /* abs 23 */, BOOTTIME), 122000);
234 EXPECT_EQ(*ct_.Convert(c66_2, 2 /* abs 26 */, BOOTTIME), 125000);
235 EXPECT_EQ(*ct_.ToTraceTime(c66_1, 2 /* abs 25 */), 124000);
236 EXPECT_EQ(*ct_.ToTraceTime(c66_2, 4 /* abs 30 */), 129000);
237 }
238
239 // Tests that the cache doesn't affect the results of Convert() in unexpected
240 // ways.
TEST_F(ClockTrackerTest,CacheDoesntAffectResults)241 TEST_F(ClockTrackerTest, CacheDoesntAffectResults) {
242 std::minstd_rand rnd;
243 int last_mono = 0;
244 int last_boot = 0;
245 int last_raw = 0;
246 static const int increments[] = {1, 2, 10};
247 for (int i = 0; i < 1000; i++) {
248 last_mono += increments[rnd() % base::ArraySize(increments)];
249 last_boot += increments[rnd() % base::ArraySize(increments)];
250 ct_.AddSnapshot({{MONOTONIC, last_mono}, {BOOTTIME, last_boot}});
251
252 last_raw += increments[rnd() % base::ArraySize(increments)];
253 last_boot += increments[rnd() % base::ArraySize(increments)];
254 ct_.AddSnapshot({{MONOTONIC_RAW, last_raw}, {BOOTTIME, last_boot}});
255 }
256
257 for (int i = 0; i < 1000; i++) {
258 int64_t val = static_cast<int64_t>(rnd()) % 10000;
259 for (int j = 0; j < 5; j++) {
260 ClockTracker::ClockId src;
261 ClockTracker::ClockId tgt;
262 if (j == 0) {
263 std::tie(src, tgt) = std::make_tuple(MONOTONIC, BOOTTIME);
264 } else if (j == 1) {
265 std::tie(src, tgt) = std::make_tuple(MONOTONIC_RAW, BOOTTIME);
266 } else if (j == 2) {
267 std::tie(src, tgt) = std::make_tuple(BOOTTIME, MONOTONIC);
268 } else if (j == 3) {
269 std::tie(src, tgt) = std::make_tuple(BOOTTIME, MONOTONIC_RAW);
270 } else if (j == 4) {
271 std::tie(src, tgt) = std::make_tuple(MONOTONIC_RAW, MONOTONIC);
272 } else {
273 PERFETTO_FATAL("j out of bounds");
274 }
275 // It will still write the cache, just not lookup.
276 ct_.set_cache_lookups_disabled_for_testing(true);
277 auto not_cached = ct_.Convert(src, val, tgt);
278
279 // This should 100% hit the cache.
280 ct_.set_cache_lookups_disabled_for_testing(false);
281 auto cached = ct_.Convert(src, val, tgt);
282
283 ASSERT_EQ(not_cached, cached);
284 }
285 }
286 }
287
288 } // namespace
289 } // namespace trace_processor
290 } // namespace perfetto
291