• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright 2016 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 #ifndef TENSORFLOW_CORE_KERNELS_GPU_DEVICE_ARRAY_H_
16 #define TENSORFLOW_CORE_KERNELS_GPU_DEVICE_ARRAY_H_
17 
18 #if (defined(GOOGLE_CUDA) && GOOGLE_CUDA) || \
19     (defined(TENSORFLOW_USE_ROCM) && TENSORFLOW_USE_ROCM)
20 
21 #include "tensorflow/core/common_runtime/gpu/gpu_event_mgr.h"
22 #include "tensorflow/core/framework/op_kernel.h"
23 #include "tensorflow/core/framework/tensor_reference.h"
24 #include "tensorflow/core/kernels/gpu_device_array_gpu.h"
25 
26 namespace tensorflow {
27 
28 // Create an array of value on the host, to be sent to kernel using
29 // GpuDeviceArrayStruct.
30 //
31 // Usage:
32 //   int size = ...;
33 //   GpuDeviceArrayOnHost ptrs(context, size);
34 //   OP_REQUIRES_OK(ptrs.Init());
35 //   for (int i = 0; i < size; ++i) {
36 //     ptrs.Set(i, ...);
37 //   }
38 //   OP_REQUIRES_OK(ptrs.Finalize());
39 //   launchKernel(..., ptrs.data, ...);
40 //
41 // ValueType must be memcopyable.
42 template <typename ValueType, int MaxInlineValues = 8>
43 class GpuDeviceArrayOnHost {
44  public:
GpuDeviceArrayOnHost(OpKernelContext * context,int32_t size)45   GpuDeviceArrayOnHost(OpKernelContext* context, int32_t size)
46       : context_(context),
47         total_bytes_(static_cast<int64>(size) * sizeof(ValueType)) {
48     data_.size = size;
49   }
50 
Init()51   Status Init() {
52     if (inlined()) {
53       values_ = data_.inline_values;
54       return Status::OK();
55     }
56 
57     // Out-of-line: allocate data that will be memcopied.
58     AllocatorAttributes attr;
59     attr.set_on_host(true);
60     attr.set_gpu_compatible(true);
61     TF_RETURN_IF_ERROR(
62         context_->allocate_temp(DT_INT8, TensorShape{total_bytes_},
63                                 &out_of_line_values_on_host_, attr));
64     values_ = reinterpret_cast<ValueType*>(
65         out_of_line_values_on_host_.flat<int8>().data());
66     return Status::OK();
67   }
68 
Set(int index,ValueType val)69   void Set(int index, ValueType val) {
70     DCHECK(values_);  // ensure Init was called.
71     DCHECK_LT(index, data_.size);
72     *(values_ + index) = val;
73   }
74 
Finalize()75   Status Finalize() {
76     if (inlined()) {
77       return Status::OK();
78     }
79 
80     // Out-of-line - copy pointers to device.
81     auto stream = context_->op_device_context()->stream();
82     TensorReference tensor_ref(out_of_line_values_on_host_);
83     TF_RETURN_IF_ERROR(context_->allocate_temp(
84         DT_INT8, TensorShape{total_bytes_}, &out_of_line_values_on_gpu_));
85     se::DeviceMemoryBase output_values_base{
86         out_of_line_values_on_gpu_.flat<int8>().data(),
87         static_cast<uint64>(total_bytes_)};
88     stream->ThenMemcpy(&output_values_base,
89                        out_of_line_values_on_host_.flat<int8>().data(),
90                        total_bytes_);
91     context_->device()->tensorflow_gpu_device_info()->event_mgr->ThenExecute(
92         stream, [tensor_ref]() { tensor_ref.Unref(); });
93     data_.out_of_line_values = reinterpret_cast<ValueType*>(
94         out_of_line_values_on_gpu_.flat<int8>().data());
95     return Status::OK();
96   }
97 
data()98   const GpuDeviceArrayStruct<ValueType, MaxInlineValues>& data() const {
99     // Ensure Finalize is called.
100     DCHECK(inlined() || out_of_line_values_on_gpu_.IsInitialized());
101     return data_;
102   }
103 
104  private:
inlined()105   bool inlined() const { return data_.size <= MaxInlineValues; }
106 
107   OpKernelContext* const context_;
108   const int64 total_bytes_;  // total size of all pointers.
109   ValueType* values_ = nullptr;
110   GpuDeviceArrayStruct<ValueType, MaxInlineValues> data_;
111 
112   Tensor out_of_line_values_on_host_;
113   Tensor out_of_line_values_on_gpu_;
114 
115   TF_DISALLOW_COPY_AND_ASSIGN(GpuDeviceArrayOnHost);
116 };
117 
118 }  // namespace tensorflow
119 
120 #endif  // GOOGLE_CUDA || TENSORFLOW_USE_ROCM
121 
122 #endif  // TENSORFLOW_CORE_KERNELS_GPU_DEVICE_ARRAY_H_
123