• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ART_LIBARTBASE_BASE_HASH_SET_H_
18 #define ART_LIBARTBASE_BASE_HASH_SET_H_
19 
20 #include <stdint.h>
21 
22 #include <functional>
23 #include <iterator>
24 #include <memory>
25 #include <string>
26 #include <type_traits>
27 #include <utility>
28 
29 #include <android-base/logging.h>
30 
31 #include "base/data_hash.h"
32 #include "bit_utils.h"
33 #include "macros.h"
34 
35 namespace art {
36 
37 template <class Elem, class HashSetType>
38 class HashSetIterator {
39  public:
40   using iterator_category = std::forward_iterator_tag;
41   using value_type = Elem;
42   using difference_type = std::ptrdiff_t;
43   using pointer = Elem*;
44   using reference = Elem&;
45 
46   HashSetIterator(const HashSetIterator&) = default;
47   HashSetIterator(HashSetIterator&&) noexcept = default;
HashSetIterator(HashSetType * hash_set,size_t index)48   HashSetIterator(HashSetType* hash_set, size_t index) : index_(index), hash_set_(hash_set) {}
49 
50   // Conversion from iterator to const_iterator.
51   template <class OtherElem,
52             class OtherHashSetType,
53             typename = std::enable_if_t<
54                 std::is_same_v<Elem, const OtherElem> &&
55                 std::is_same_v<HashSetType, const OtherHashSetType>>>
HashSetIterator(const HashSetIterator<OtherElem,OtherHashSetType> & other)56   HashSetIterator(const HashSetIterator<OtherElem, OtherHashSetType>& other)
57       : index_(other.index_), hash_set_(other.hash_set_) {}
58 
59   HashSetIterator& operator=(const HashSetIterator&) = default;
60   HashSetIterator& operator=(HashSetIterator&&) noexcept = default;
61 
62   bool operator==(const HashSetIterator& other) const {
63     return hash_set_ == other.hash_set_ && this->index_ == other.index_;
64   }
65 
66   bool operator!=(const HashSetIterator& other) const {
67     return !(*this == other);
68   }
69 
70   HashSetIterator operator++() {  // Value after modification.
71     this->index_ = hash_set_->NextNonEmptySlot(index_);
72     return *this;
73   }
74 
75   HashSetIterator operator++(int) {
76     HashSetIterator temp = *this;
77     ++*this;
78     return temp;
79   }
80 
81   Elem& operator*() const {
82     DCHECK(!hash_set_->IsFreeSlot(this->index_));
83     return hash_set_->ElementForIndex(this->index_);
84   }
85 
86   Elem* operator->() const {
87     return &**this;
88   }
89 
90  private:
91   size_t index_;
92   HashSetType* hash_set_;
93 
94   template <class Elem1, class HashSetType1, class Elem2, class HashSetType2>
95   friend bool operator==(const HashSetIterator<Elem1, HashSetType1>& lhs,
96                          const HashSetIterator<Elem2, HashSetType2>& rhs);
97   template <class T, class EmptyFn, class HashFn, class Pred, class Alloc> friend class HashSet;
98   template <class OtherElem, class OtherHashSetType> friend class HashSetIterator;
99 };
100 
101 template <class Elem1, class HashSetType1, class Elem2, class HashSetType2>
102 bool operator==(const HashSetIterator<Elem1, HashSetType1>& lhs,
103                 const HashSetIterator<Elem2, HashSetType2>& rhs) {
104   static_assert(
105       std::is_convertible_v<HashSetIterator<Elem1, HashSetType1>,
106                             HashSetIterator<Elem2, HashSetType2>> ||
107       std::is_convertible_v<HashSetIterator<Elem2, HashSetType2>,
108                             HashSetIterator<Elem1, HashSetType1>>, "Bad iterator types.");
109   DCHECK_EQ(lhs.hash_set_, rhs.hash_set_);
110   return lhs.index_ == rhs.index_;
111 }
112 
113 template <class Elem1, class HashSetType1, class Elem2, class HashSetType2>
114 bool operator!=(const HashSetIterator<Elem1, HashSetType1>& lhs,
115                 const HashSetIterator<Elem2, HashSetType2>& rhs) {
116   return !(lhs == rhs);
117 }
118 
119 // Returns true if an item is empty.
120 template <class T>
121 class DefaultEmptyFn {
122  public:
MakeEmpty(T & item)123   void MakeEmpty(T& item) const {
124     item = T();
125   }
IsEmpty(const T & item)126   bool IsEmpty(const T& item) const {
127     return item == T();
128   }
129 };
130 
131 template <class T>
132 class DefaultEmptyFn<T*> {
133  public:
MakeEmpty(T * & item)134   void MakeEmpty(T*& item) const {
135     item = nullptr;
136   }
IsEmpty(T * const & item)137   bool IsEmpty(T* const& item) const {
138     return item == nullptr;
139   }
140 };
141 
142 template <class T>
143 using DefaultHashFn = std::conditional_t<std::is_same_v<T, std::string>, DataHash, std::hash<T>>;
144 
145 struct DefaultStringEquals {
146   // Allow comparison with anything that can be compared to std::string,
147   // for example std::string_view.
148   template <typename T>
operatorDefaultStringEquals149   bool operator()(const std::string& lhs, const T& rhs) const {
150     return lhs == rhs;
151   }
152 };
153 
154 template <class T>
155 using DefaultPred =
156     std::conditional_t<std::is_same_v<T, std::string>, DefaultStringEquals, std::equal_to<T>>;
157 
158 // Low memory version of a hash set, uses less memory than std::unordered_multiset since elements
159 // aren't boxed. Uses linear probing to resolve collisions.
160 // EmptyFn needs to implement two functions MakeEmpty(T& item) and IsEmpty(const T& item).
161 // TODO: We could get rid of this requirement by using a bitmap, though maybe this would be slower
162 // and more complicated.
163 template <class T,
164           class EmptyFn = DefaultEmptyFn<T>,
165           class HashFn = DefaultHashFn<T>,
166           class Pred = DefaultPred<T>,
167           class Alloc = std::allocator<T>>
168 class HashSet {
169  public:
170   using value_type = T;
171   using allocator_type = Alloc;
172   using reference = T&;
173   using const_reference = const T&;
174   using pointer = T*;
175   using const_pointer = const T*;
176   using iterator = HashSetIterator<T, HashSet>;
177   using const_iterator = HashSetIterator<const T, const HashSet>;
178   using size_type = size_t;
179   using difference_type = ptrdiff_t;
180 
181   static constexpr double kDefaultMinLoadFactor = 0.4;
182   static constexpr double kDefaultMaxLoadFactor = 0.7;
183   static constexpr size_t kMinBuckets = 1000;
184 
185   // If we don't own the data, this will create a new array which owns the data.
clear()186   void clear() {
187     DeallocateStorage();
188     num_elements_ = 0;
189     elements_until_expand_ = 0;
190   }
191 
HashSet()192   HashSet() : HashSet(kDefaultMinLoadFactor, kDefaultMaxLoadFactor) {}
HashSet(const allocator_type & alloc)193   explicit HashSet(const allocator_type& alloc) noexcept
194       : HashSet(kDefaultMinLoadFactor, kDefaultMaxLoadFactor, alloc) {}
195 
HashSet(double min_load_factor,double max_load_factor)196   HashSet(double min_load_factor, double max_load_factor) noexcept
197       : HashSet(min_load_factor, max_load_factor, allocator_type()) {}
HashSet(double min_load_factor,double max_load_factor,const allocator_type & alloc)198   HashSet(double min_load_factor, double max_load_factor, const allocator_type& alloc) noexcept
199       : HashSet(min_load_factor, max_load_factor, HashFn(), Pred(), alloc) {}
200 
HashSet(const HashFn & hashfn,const Pred & pred)201   HashSet(const HashFn& hashfn,
202           const Pred& pred) noexcept
203       : HashSet(kDefaultMinLoadFactor, kDefaultMaxLoadFactor, hashfn, pred) {}
HashSet(const HashFn & hashfn,const Pred & pred,const allocator_type & alloc)204   HashSet(const HashFn& hashfn,
205           const Pred& pred,
206           const allocator_type& alloc) noexcept
207       : HashSet(kDefaultMinLoadFactor, kDefaultMaxLoadFactor, hashfn, pred, alloc) {}
208 
HashSet(double min_load_factor,double max_load_factor,const HashFn & hashfn,const Pred & pred)209   HashSet(double min_load_factor,
210           double max_load_factor,
211           const HashFn& hashfn,
212           const Pred& pred) noexcept
213       : HashSet(min_load_factor, max_load_factor, hashfn, pred, allocator_type()) {}
HashSet(double min_load_factor,double max_load_factor,const HashFn & hashfn,const Pred & pred,const allocator_type & alloc)214   HashSet(double min_load_factor,
215           double max_load_factor,
216           const HashFn& hashfn,
217           const Pred& pred,
218           const allocator_type& alloc) noexcept
219       : allocfn_(alloc),
220         hashfn_(hashfn),
221         emptyfn_(),
222         pred_(pred),
223         num_elements_(0u),
224         num_buckets_(0u),
225         elements_until_expand_(0u),
226         owns_data_(false),
227         data_(nullptr),
228         min_load_factor_(min_load_factor),
229         max_load_factor_(max_load_factor) {
230     DCHECK_GT(min_load_factor, 0.0);
231     DCHECK_LT(max_load_factor, 1.0);
232   }
233 
HashSet(const HashSet & other)234   HashSet(const HashSet& other)
235       : allocfn_(other.allocfn_),
236         hashfn_(other.hashfn_),
237         emptyfn_(other.emptyfn_),
238         pred_(other.pred_),
239         num_elements_(other.num_elements_),
240         num_buckets_(0),
241         elements_until_expand_(other.elements_until_expand_),
242         owns_data_(false),
243         data_(nullptr),
244         min_load_factor_(other.min_load_factor_),
245         max_load_factor_(other.max_load_factor_) {
246     AllocateStorage(other.NumBuckets());
247     for (size_t i = 0; i < num_buckets_; ++i) {
248       ElementForIndex(i) = other.data_[i];
249     }
250   }
251 
252   // noexcept required so that the move constructor is used instead of copy constructor.
253   // b/27860101
HashSet(HashSet && other)254   HashSet(HashSet&& other) noexcept
255       : allocfn_(std::move(other.allocfn_)),
256         hashfn_(std::move(other.hashfn_)),
257         emptyfn_(std::move(other.emptyfn_)),
258         pred_(std::move(other.pred_)),
259         num_elements_(other.num_elements_),
260         num_buckets_(other.num_buckets_),
261         elements_until_expand_(other.elements_until_expand_),
262         owns_data_(other.owns_data_),
263         data_(other.data_),
264         min_load_factor_(other.min_load_factor_),
265         max_load_factor_(other.max_load_factor_) {
266     other.num_elements_ = 0u;
267     other.num_buckets_ = 0u;
268     other.elements_until_expand_ = 0u;
269     other.owns_data_ = false;
270     other.data_ = nullptr;
271   }
272 
273   // Construct with pre-existing buffer, usually stack-allocated,
274   // to avoid malloc/free overhead for small HashSet<>s.
HashSet(value_type * buffer,size_t buffer_size)275   HashSet(value_type* buffer, size_t buffer_size)
276       : HashSet(kDefaultMinLoadFactor, kDefaultMaxLoadFactor, buffer, buffer_size) {}
HashSet(value_type * buffer,size_t buffer_size,const allocator_type & alloc)277   HashSet(value_type* buffer, size_t buffer_size, const allocator_type& alloc)
278       : HashSet(kDefaultMinLoadFactor, kDefaultMaxLoadFactor, buffer, buffer_size, alloc) {}
HashSet(double min_load_factor,double max_load_factor,value_type * buffer,size_t buffer_size)279   HashSet(double min_load_factor, double max_load_factor, value_type* buffer, size_t buffer_size)
280       : HashSet(min_load_factor, max_load_factor, buffer, buffer_size, allocator_type()) {}
HashSet(double min_load_factor,double max_load_factor,value_type * buffer,size_t buffer_size,const allocator_type & alloc)281   HashSet(double min_load_factor,
282           double max_load_factor,
283           value_type* buffer,
284           size_t buffer_size,
285           const allocator_type& alloc)
286       : HashSet(min_load_factor, max_load_factor, HashFn(), Pred(), buffer, buffer_size, alloc) {}
HashSet(double min_load_factor,double max_load_factor,const HashFn & hashfn,const Pred & pred,value_type * buffer,size_t buffer_size,const allocator_type & alloc)287   HashSet(double min_load_factor,
288           double max_load_factor,
289           const HashFn& hashfn,
290           const Pred& pred,
291           value_type* buffer,
292           size_t buffer_size,
293           const allocator_type& alloc)
294       : allocfn_(alloc),
295         hashfn_(hashfn),
296         pred_(pred),
297         num_elements_(0u),
298         num_buckets_(buffer_size),
299         elements_until_expand_(buffer_size * max_load_factor),
300         owns_data_(false),
301         data_(buffer),
302         min_load_factor_(min_load_factor),
303         max_load_factor_(max_load_factor) {
304     DCHECK_GT(min_load_factor, 0.0);
305     DCHECK_LT(max_load_factor, 1.0);
306     for (size_t i = 0; i != buffer_size; ++i) {
307       emptyfn_.MakeEmpty(buffer[i]);
308     }
309   }
310 
311   // Construct from existing data.
312   // Read from a block of memory, if make_copy_of_data is false, then data_ points to within the
313   // passed in ptr_.
HashSet(const uint8_t * ptr,bool make_copy_of_data,size_t * read_count)314   HashSet(const uint8_t* ptr, bool make_copy_of_data, size_t* read_count) noexcept {
315     uint64_t temp;
316     size_t offset = 0;
317     offset = ReadFromBytes(ptr, offset, &temp);
318     num_elements_ = static_cast<uint64_t>(temp);
319     offset = ReadFromBytes(ptr, offset, &temp);
320     num_buckets_ = static_cast<uint64_t>(temp);
321     CHECK_LE(num_elements_, num_buckets_);
322     offset = ReadFromBytes(ptr, offset, &temp);
323     elements_until_expand_ = static_cast<uint64_t>(temp);
324     offset = ReadFromBytes(ptr, offset, &min_load_factor_);
325     offset = ReadFromBytes(ptr, offset, &max_load_factor_);
326     if (!make_copy_of_data) {
327       owns_data_ = false;
328       data_ = const_cast<T*>(reinterpret_cast<const T*>(ptr + offset));
329       offset += sizeof(*data_) * num_buckets_;
330     } else {
331       AllocateStorage(num_buckets_);
332       // Write elements, not that this may not be safe for cross compilation if the elements are
333       // pointer sized.
334       for (size_t i = 0; i < num_buckets_; ++i) {
335         offset = ReadFromBytes(ptr, offset, &data_[i]);
336       }
337     }
338     // Caller responsible for aligning.
339     *read_count = offset;
340   }
341 
342   // Returns how large the table is after being written. If target is null, then no writing happens
343   // but the size is still returned. Target must be 8 byte aligned.
WriteToMemory(uint8_t * ptr)344   size_t WriteToMemory(uint8_t* ptr) const {
345     size_t offset = 0;
346     offset = WriteToBytes(ptr, offset, static_cast<uint64_t>(num_elements_));
347     offset = WriteToBytes(ptr, offset, static_cast<uint64_t>(num_buckets_));
348     offset = WriteToBytes(ptr, offset, static_cast<uint64_t>(elements_until_expand_));
349     offset = WriteToBytes(ptr, offset, min_load_factor_);
350     offset = WriteToBytes(ptr, offset, max_load_factor_);
351     // Write elements, not that this may not be safe for cross compilation if the elements are
352     // pointer sized.
353     for (size_t i = 0; i < num_buckets_; ++i) {
354       offset = WriteToBytes(ptr, offset, data_[i]);
355     }
356     // Caller responsible for aligning.
357     return offset;
358   }
359 
~HashSet()360   ~HashSet() {
361     DeallocateStorage();
362   }
363 
364   HashSet& operator=(HashSet&& other) noexcept {
365     HashSet(std::move(other)).swap(*this);  // NOLINT [runtime/explicit] [5]
366     return *this;
367   }
368 
369   HashSet& operator=(const HashSet& other) {
370     HashSet(other).swap(*this);  // NOLINT(runtime/explicit) - a case of lint gone mad.
371     return *this;
372   }
373 
374   // Lower case for c++11 for each.
begin()375   iterator begin() {
376     iterator ret(this, 0);
377     if (num_buckets_ != 0 && IsFreeSlot(ret.index_)) {
378       ++ret;  // Skip all the empty slots.
379     }
380     return ret;
381   }
382 
383   // Lower case for c++11 for each. const version.
begin()384   const_iterator begin() const {
385     const_iterator ret(this, 0);
386     if (num_buckets_ != 0 && IsFreeSlot(ret.index_)) {
387       ++ret;  // Skip all the empty slots.
388     }
389     return ret;
390   }
391 
392   // Lower case for c++11 for each.
end()393   iterator end() {
394     return iterator(this, NumBuckets());
395   }
396 
397   // Lower case for c++11 for each. const version.
end()398   const_iterator end() const {
399     return const_iterator(this, NumBuckets());
400   }
401 
size()402   size_t size() const {
403     return num_elements_;
404   }
405 
empty()406   bool empty() const {
407     return size() == 0;
408   }
409 
410   // Erase algorithm:
411   // Make an empty slot where the iterator is pointing.
412   // Scan forwards until we hit another empty slot.
413   // If an element in between doesn't rehash to the range from the current empty slot to the
414   // iterator. It must be before the empty slot, in that case we can move it to the empty slot
415   // and set the empty slot to be the location we just moved from.
416   // Relies on maintaining the invariant that there's no empty slots from the 'ideal' index of an
417   // element to its actual location/index.
418   // Note that since erase shuffles back elements, it may result in the same element being visited
419   // twice during HashSet iteration. This happens when an element already visited during iteration
420   // gets shuffled to the end of the bucket array.
erase(iterator it)421   iterator erase(iterator it) {
422     // empty_index is the index that will become empty.
423     size_t empty_index = it.index_;
424     DCHECK(!IsFreeSlot(empty_index));
425     size_t next_index = empty_index;
426     bool filled = false;  // True if we filled the empty index.
427     while (true) {
428       next_index = NextIndex(next_index);
429       T& next_element = ElementForIndex(next_index);
430       // If the next element is empty, we are done. Make sure to clear the current empty index.
431       if (emptyfn_.IsEmpty(next_element)) {
432         emptyfn_.MakeEmpty(ElementForIndex(empty_index));
433         break;
434       }
435       // Otherwise try to see if the next element can fill the current empty index.
436       const size_t next_hash = hashfn_(next_element);
437       // Calculate the ideal index, if it is within empty_index + 1 to next_index then there is
438       // nothing we can do.
439       size_t next_ideal_index = IndexForHash(next_hash);
440       // Loop around if needed for our check.
441       size_t unwrapped_next_index = next_index;
442       if (unwrapped_next_index < empty_index) {
443         unwrapped_next_index += NumBuckets();
444       }
445       // Loop around if needed for our check.
446       size_t unwrapped_next_ideal_index = next_ideal_index;
447       if (unwrapped_next_ideal_index < empty_index) {
448         unwrapped_next_ideal_index += NumBuckets();
449       }
450       if (unwrapped_next_ideal_index <= empty_index ||
451           unwrapped_next_ideal_index > unwrapped_next_index) {
452         // If the target index isn't within our current range it must have been probed from before
453         // the empty index.
454         ElementForIndex(empty_index) = std::move(next_element);
455         filled = true;  // TODO: Optimize
456         empty_index = next_index;
457       }
458     }
459     --num_elements_;
460     // If we didn't fill the slot then we need go to the next non free slot.
461     if (!filled) {
462       ++it;
463     }
464     return it;
465   }
466 
467   // Find an element, returns end() if not found.
468   // Allows custom key (K) types, example of when this is useful:
469   // Set of Class* indexed by name, want to find a class with a name but can't allocate
470   // a temporary Class object in the heap for performance solution.
471   template <typename K>
find(const K & key)472   iterator find(const K& key) {
473     return FindWithHash(key, hashfn_(key));
474   }
475 
476   template <typename K>
find(const K & key)477   const_iterator find(const K& key) const {
478     return FindWithHash(key, hashfn_(key));
479   }
480 
481   template <typename K>
FindWithHash(const K & key,size_t hash)482   iterator FindWithHash(const K& key, size_t hash) {
483     return iterator(this, FindIndex(key, hash));
484   }
485 
486   template <typename K>
FindWithHash(const K & key,size_t hash)487   const_iterator FindWithHash(const K& key, size_t hash) const {
488     return const_iterator(this, FindIndex(key, hash));
489   }
490 
491   // Insert an element with hint.
492   // Note: The hint is not very useful for a HashSet<> unless there are many hash conflicts
493   // and in that case the use of HashSet<> itself should be reconsidered.
insert(const_iterator hint ATTRIBUTE_UNUSED,const T & element)494   std::pair<iterator, bool> insert(const_iterator hint ATTRIBUTE_UNUSED, const T& element) {
495     return insert(element);
496   }
insert(const_iterator hint ATTRIBUTE_UNUSED,T && element)497   std::pair<iterator, bool> insert(const_iterator hint ATTRIBUTE_UNUSED, T&& element) {
498     return insert(std::move(element));
499   }
500 
501   // Insert an element.
insert(const T & element)502   std::pair<iterator, bool> insert(const T& element) {
503     return InsertWithHash(element, hashfn_(element));
504   }
insert(T && element)505   std::pair<iterator, bool> insert(T&& element) {
506     return InsertWithHash(std::move(element), hashfn_(element));
507   }
508 
509   template <typename U, typename = std::enable_if_t<std::is_convertible_v<U, T>>>
InsertWithHash(U && element,size_t hash)510   std::pair<iterator, bool> InsertWithHash(U&& element, size_t hash) {
511     DCHECK_EQ(hash, hashfn_(element));
512     if (num_elements_ >= elements_until_expand_) {
513       Expand();
514       DCHECK_LT(num_elements_, elements_until_expand_);
515     }
516     bool find_failed = false;
517     auto find_fail_fn = [&](size_t index) ALWAYS_INLINE {
518       find_failed = true;
519       return index;
520     };
521     size_t index = FindIndexImpl(element, hash, find_fail_fn);
522     if (find_failed) {
523       data_[index] = std::forward<U>(element);
524       ++num_elements_;
525     }
526     return std::make_pair(iterator(this, index), find_failed);
527   }
528 
529   // Insert an element known not to be in the `HashSet<>`.
Put(const T & element)530   void Put(const T& element) {
531     return PutWithHash(element, hashfn_(element));
532   }
Put(T && element)533   void Put(T&& element) {
534     return PutWithHash(std::move(element), hashfn_(element));
535   }
536 
537   template <typename U, typename = std::enable_if_t<std::is_convertible_v<U, T>>>
PutWithHash(U && element,size_t hash)538   void PutWithHash(U&& element, size_t hash) {
539     DCHECK_EQ(hash, hashfn_(element));
540     if (num_elements_ >= elements_until_expand_) {
541       Expand();
542       DCHECK_LT(num_elements_, elements_until_expand_);
543     }
544     auto find_fail_fn = [](size_t index) ALWAYS_INLINE { return index; };
545     size_t index = FindIndexImpl</*kCanFind=*/ false>(element, hash, find_fail_fn);
546     data_[index] = std::forward<U>(element);
547     ++num_elements_;
548   }
549 
swap(HashSet & other)550   void swap(HashSet& other) {
551     // Use argument-dependent lookup with fall-back to std::swap() for function objects.
552     using std::swap;
553     swap(allocfn_, other.allocfn_);
554     swap(hashfn_, other.hashfn_);
555     swap(emptyfn_, other.emptyfn_);
556     swap(pred_, other.pred_);
557     std::swap(data_, other.data_);
558     std::swap(num_buckets_, other.num_buckets_);
559     std::swap(num_elements_, other.num_elements_);
560     std::swap(elements_until_expand_, other.elements_until_expand_);
561     std::swap(min_load_factor_, other.min_load_factor_);
562     std::swap(max_load_factor_, other.max_load_factor_);
563     std::swap(owns_data_, other.owns_data_);
564   }
565 
get_allocator()566   allocator_type get_allocator() const {
567     return allocfn_;
568   }
569 
ShrinkToMaximumLoad()570   void ShrinkToMaximumLoad() {
571     Resize(size() / max_load_factor_);
572   }
573 
574   // Reserve enough room to insert until Size() == num_elements without requiring to grow the hash
575   // set. No-op if the hash set is already large enough to do this.
reserve(size_t num_elements)576   void reserve(size_t num_elements) {
577     size_t num_buckets = num_elements / max_load_factor_;
578     // Deal with rounding errors. Add one for rounding.
579     while (static_cast<size_t>(num_buckets * max_load_factor_) <= num_elements + 1u) {
580       ++num_buckets;
581     }
582     if (num_buckets > NumBuckets()) {
583       Resize(num_buckets);
584     }
585   }
586 
587   // To distance that inserted elements were probed. Used for measuring how good hash functions
588   // are.
TotalProbeDistance()589   size_t TotalProbeDistance() const {
590     size_t total = 0;
591     for (size_t i = 0; i < NumBuckets(); ++i) {
592       const T& element = ElementForIndex(i);
593       if (!emptyfn_.IsEmpty(element)) {
594         size_t ideal_location = IndexForHash(hashfn_(element));
595         if (ideal_location > i) {
596           total += i + NumBuckets() - ideal_location;
597         } else {
598           total += i - ideal_location;
599         }
600       }
601     }
602     return total;
603   }
604 
605   // Calculate the current load factor and return it.
CalculateLoadFactor()606   double CalculateLoadFactor() const {
607     return static_cast<double>(size()) / static_cast<double>(NumBuckets());
608   }
609 
610   // Make sure that everything reinserts in the right spot. Returns the number of errors.
Verify()611   size_t Verify() NO_THREAD_SAFETY_ANALYSIS {
612     size_t errors = 0;
613     for (size_t i = 0; i < num_buckets_; ++i) {
614       T& element = data_[i];
615       if (!emptyfn_.IsEmpty(element)) {
616         T temp;
617         emptyfn_.MakeEmpty(temp);
618         std::swap(temp, element);
619         size_t first_slot = FirstAvailableSlot(IndexForHash(hashfn_(temp)));
620         if (i != first_slot) {
621           LOG(ERROR) << "Element " << i << " should be in slot " << first_slot;
622           ++errors;
623         }
624         std::swap(temp, element);
625       }
626     }
627     return errors;
628   }
629 
GetMinLoadFactor()630   double GetMinLoadFactor() const {
631     return min_load_factor_;
632   }
633 
GetMaxLoadFactor()634   double GetMaxLoadFactor() const {
635     return max_load_factor_;
636   }
637 
638   // Change the load factor of the hash set. If the current load factor is greater than the max
639   // specified, then we resize the hash table storage.
SetLoadFactor(double min_load_factor,double max_load_factor)640   void SetLoadFactor(double min_load_factor, double max_load_factor) {
641     DCHECK_LT(min_load_factor, max_load_factor);
642     DCHECK_GT(min_load_factor, 0.0);
643     DCHECK_LT(max_load_factor, 1.0);
644     min_load_factor_ = min_load_factor;
645     max_load_factor_ = max_load_factor;
646     elements_until_expand_ = NumBuckets() * max_load_factor_;
647     // If the current load factor isn't in the range, then resize to the mean of the minimum and
648     // maximum load factor.
649     const double load_factor = CalculateLoadFactor();
650     if (load_factor > max_load_factor_) {
651       Resize(size() / ((min_load_factor_ + max_load_factor_) * 0.5));
652     }
653   }
654 
655   // The hash set expands when Size() reaches ElementsUntilExpand().
ElementsUntilExpand()656   size_t ElementsUntilExpand() const {
657     return elements_until_expand_;
658   }
659 
NumBuckets()660   size_t NumBuckets() const {
661     return num_buckets_;
662   }
663 
664  private:
ElementForIndex(size_t index)665   T& ElementForIndex(size_t index) {
666     DCHECK_LT(index, NumBuckets());
667     DCHECK(data_ != nullptr);
668     return data_[index];
669   }
670 
ElementForIndex(size_t index)671   const T& ElementForIndex(size_t index) const {
672     DCHECK_LT(index, NumBuckets());
673     DCHECK(data_ != nullptr);
674     return data_[index];
675   }
676 
IndexForHash(size_t hash)677   size_t IndexForHash(size_t hash) const {
678     // Protect against undefined behavior (division by zero).
679     if (UNLIKELY(num_buckets_ == 0)) {
680       return 0;
681     }
682     return hash % num_buckets_;
683   }
684 
NextIndex(size_t index)685   size_t NextIndex(size_t index) const {
686     if (UNLIKELY(++index >= num_buckets_)) {
687       DCHECK_EQ(index, NumBuckets());
688       return 0;
689     }
690     return index;
691   }
692 
693   // Find the hash table slot for an element, or return NumBuckets() if not found.
694   // This value for not found is important so that iterator(this, FindIndex(...)) == end().
695   template <typename K>
696   ALWAYS_INLINE
FindIndex(const K & element,size_t hash)697   size_t FindIndex(const K& element, size_t hash) const {
698     // Guard against failing to get an element for a non-existing index.
699     if (UNLIKELY(NumBuckets() == 0)) {
700       return 0;
701     }
702     auto fail_fn = [&](size_t index ATTRIBUTE_UNUSED) ALWAYS_INLINE { return NumBuckets(); };
703     return FindIndexImpl(element, hash, fail_fn);
704   }
705 
706   // Find the hash table slot for an element, or return an empty slot index if not found.
707   template <bool kCanFind = true, typename K, typename FailFn>
708   ALWAYS_INLINE
FindIndexImpl(const K & element,size_t hash,FailFn fail_fn)709   size_t FindIndexImpl(const K& element, size_t hash, FailFn fail_fn) const {
710     DCHECK_NE(NumBuckets(), 0u);
711     DCHECK_EQ(hashfn_(element), hash);
712     size_t index = IndexForHash(hash);
713     while (true) {
714       const T& slot = ElementForIndex(index);
715       if (emptyfn_.IsEmpty(slot)) {
716         return fail_fn(index);
717       }
718       if (!kCanFind) {
719         DCHECK(!pred_(slot, element));
720       } else if (pred_(slot, element)) {
721         return index;
722       }
723       index = NextIndex(index);
724     }
725   }
726 
IsFreeSlot(size_t index)727   bool IsFreeSlot(size_t index) const {
728     return emptyfn_.IsEmpty(ElementForIndex(index));
729   }
730 
731   // Allocate a number of buckets.
AllocateStorage(size_t num_buckets)732   void AllocateStorage(size_t num_buckets) {
733     num_buckets_ = num_buckets;
734     data_ = allocfn_.allocate(num_buckets_);
735     owns_data_ = true;
736     for (size_t i = 0; i < num_buckets_; ++i) {
737       allocfn_.construct(allocfn_.address(data_[i]));
738       emptyfn_.MakeEmpty(data_[i]);
739     }
740   }
741 
DeallocateStorage()742   void DeallocateStorage() {
743     if (owns_data_) {
744       for (size_t i = 0; i < NumBuckets(); ++i) {
745         allocfn_.destroy(allocfn_.address(data_[i]));
746       }
747       if (data_ != nullptr) {
748         allocfn_.deallocate(data_, NumBuckets());
749       }
750       owns_data_ = false;
751     }
752     data_ = nullptr;
753     num_buckets_ = 0;
754   }
755 
756   // Expand the set based on the load factors.
Expand()757   void Expand() {
758     size_t min_index = static_cast<size_t>(size() / min_load_factor_);
759     // Resize based on the minimum load factor.
760     Resize(min_index);
761   }
762 
763   // Expand / shrink the table to the new specified size.
Resize(size_t new_size)764   void Resize(size_t new_size) {
765     if (new_size < kMinBuckets) {
766       new_size = kMinBuckets;
767     }
768     DCHECK_GE(new_size, size());
769     T* const old_data = data_;
770     size_t old_num_buckets = num_buckets_;
771     // Reinsert all of the old elements.
772     const bool owned_data = owns_data_;
773     AllocateStorage(new_size);
774     for (size_t i = 0; i < old_num_buckets; ++i) {
775       T& element = old_data[i];
776       if (!emptyfn_.IsEmpty(element)) {
777         data_[FirstAvailableSlot(IndexForHash(hashfn_(element)))] = std::move(element);
778       }
779       if (owned_data) {
780         allocfn_.destroy(allocfn_.address(element));
781       }
782     }
783     if (owned_data) {
784       allocfn_.deallocate(old_data, old_num_buckets);
785     }
786 
787     // When we hit elements_until_expand_, we are at the max load factor and must expand again.
788     elements_until_expand_ = NumBuckets() * max_load_factor_;
789   }
790 
FirstAvailableSlot(size_t index)791   ALWAYS_INLINE size_t FirstAvailableSlot(size_t index) const {
792     DCHECK_LT(index, NumBuckets());  // Don't try to get a slot out of range.
793     size_t non_empty_count = 0;
794     while (!emptyfn_.IsEmpty(data_[index])) {
795       index = NextIndex(index);
796       non_empty_count++;
797       DCHECK_LE(non_empty_count, NumBuckets());  // Don't loop forever.
798     }
799     return index;
800   }
801 
NextNonEmptySlot(size_t index)802   size_t NextNonEmptySlot(size_t index) const {
803     const size_t num_buckets = NumBuckets();
804     DCHECK_LT(index, num_buckets);
805     do {
806       ++index;
807     } while (index < num_buckets && IsFreeSlot(index));
808     return index;
809   }
810 
811   // Return new offset.
812   template <typename Elem>
WriteToBytes(uint8_t * ptr,size_t offset,Elem n)813   static size_t WriteToBytes(uint8_t* ptr, size_t offset, Elem n) {
814     DCHECK_ALIGNED(ptr + offset, sizeof(n));
815     if (ptr != nullptr) {
816       *reinterpret_cast<Elem*>(ptr + offset) = n;
817     }
818     return offset + sizeof(n);
819   }
820 
821   template <typename Elem>
ReadFromBytes(const uint8_t * ptr,size_t offset,Elem * out)822   static size_t ReadFromBytes(const uint8_t* ptr, size_t offset, Elem* out) {
823     DCHECK(ptr != nullptr);
824     DCHECK_ALIGNED(ptr + offset, sizeof(*out));
825     *out = *reinterpret_cast<const Elem*>(ptr + offset);
826     return offset + sizeof(*out);
827   }
828 
829   Alloc allocfn_;  // Allocator function.
830   HashFn hashfn_;  // Hashing function.
831   EmptyFn emptyfn_;  // IsEmpty/SetEmpty function.
832   Pred pred_;  // Equals function.
833   size_t num_elements_;  // Number of inserted elements.
834   size_t num_buckets_;  // Number of hash table buckets.
835   size_t elements_until_expand_;  // Maximum number of elements until we expand the table.
836   bool owns_data_;  // If we own data_ and are responsible for freeing it.
837   T* data_;  // Backing storage.
838   double min_load_factor_;
839   double max_load_factor_;
840 
841   template <class Elem, class HashSetType>
842   friend class HashSetIterator;
843 
844   ART_FRIEND_TEST(InternTableTest, CrossHash);
845   ART_FRIEND_TEST(HashSetTest, Preallocated);
846 };
847 
848 template <class T, class EmptyFn, class HashFn, class Pred, class Alloc>
swap(HashSet<T,EmptyFn,HashFn,Pred,Alloc> & lhs,HashSet<T,EmptyFn,HashFn,Pred,Alloc> & rhs)849 void swap(HashSet<T, EmptyFn, HashFn, Pred, Alloc>& lhs,
850           HashSet<T, EmptyFn, HashFn, Pred, Alloc>& rhs) {
851   lhs.swap(rhs);
852 }
853 
854 }  // namespace art
855 
856 #endif  // ART_LIBARTBASE_BASE_HASH_SET_H_
857