1 /* 2 * Copyright (C) 2009 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #ifndef ART_RUNTIME_INDIRECT_REFERENCE_TABLE_H_ 18 #define ART_RUNTIME_INDIRECT_REFERENCE_TABLE_H_ 19 20 #include <stdint.h> 21 22 #include <iosfwd> 23 #include <limits> 24 #include <string> 25 26 #include <android-base/logging.h> 27 28 #include "base/bit_utils.h" 29 #include "base/locks.h" 30 #include "base/macros.h" 31 #include "base/mem_map.h" 32 #include "base/mutex.h" 33 #include "gc_root.h" 34 #include "obj_ptr.h" 35 #include "offsets.h" 36 #include "read_barrier_option.h" 37 38 namespace art { 39 40 class RootInfo; 41 42 namespace mirror { 43 class Object; 44 } // namespace mirror 45 46 // Maintain a table of indirect references. Used for local/global JNI references. 47 // 48 // The table contains object references, where the strong (local/global) references are part of the 49 // GC root set (but not the weak global references). When an object is added we return an 50 // IndirectRef that is not a valid pointer but can be used to find the original value in O(1) time. 51 // Conversions to and from indirect references are performed on upcalls and downcalls, so they need 52 // to be very fast. 53 // 54 // To be efficient for JNI local variable storage, we need to provide operations that allow us to 55 // operate on segments of the table, where segments are pushed and popped as if on a stack. For 56 // example, deletion of an entry should only succeed if it appears in the current segment, and we 57 // want to be able to strip off the current segment quickly when a method returns. Additions to the 58 // table must be made in the current segment even if space is available in an earlier area. 59 // 60 // A new segment is created when we call into native code from interpreted code, or when we handle 61 // the JNI PushLocalFrame function. 62 // 63 // The GC must be able to scan the entire table quickly. 64 // 65 // In summary, these must be very fast: 66 // - adding or removing a segment 67 // - adding references to a new segment 68 // - converting an indirect reference back to an Object 69 // These can be a little slower, but must still be pretty quick: 70 // - adding references to a "mature" segment 71 // - removing individual references 72 // - scanning the entire table straight through 73 // 74 // If there's more than one segment, we don't guarantee that the table will fill completely before 75 // we fail due to lack of space. We do ensure that the current segment will pack tightly, which 76 // should satisfy JNI requirements (e.g. EnsureLocalCapacity). 77 // 78 // Only SynchronizedGet is synchronized. 79 80 // Indirect reference definition. This must be interchangeable with JNI's jobject, and it's 81 // convenient to let null be null, so we use void*. 82 // 83 // We need a (potentially) large table index and a 2-bit reference type (global, local, weak 84 // global). We also reserve some bits to be used to detect stale indirect references: we put a 85 // serial number in the extra bits, and keep a copy of the serial number in the table. This requires 86 // more memory and additional memory accesses on add/get, but is moving-GC safe. It will catch 87 // additional problems, e.g.: create iref1 for obj, delete iref1, create iref2 for same obj, 88 // lookup iref1. A pattern based on object bits will miss this. 89 using IndirectRef = void*; 90 91 // Indirect reference kind, used as the two low bits of IndirectRef. 92 // 93 // For convenience these match up with enum jobjectRefType from jni.h. 94 enum IndirectRefKind { 95 kJniTransitionOrInvalid = 0, // <<JNI transition frame reference or invalid reference>> 96 kLocal = 1, // <<local reference>> 97 kGlobal = 2, // <<global reference>> 98 kWeakGlobal = 3, // <<weak global reference>> 99 kLastKind = kWeakGlobal 100 }; 101 std::ostream& operator<<(std::ostream& os, IndirectRefKind rhs); 102 const char* GetIndirectRefKindString(const IndirectRefKind& kind); 103 104 // Table definition. 105 // 106 // For the global reference table, the expected common operations are adding a new entry and 107 // removing a recently-added entry (usually the most-recently-added entry). For JNI local 108 // references, the common operations are adding a new entry and removing an entire table segment. 109 // 110 // If we delete entries from the middle of the list, we will be left with "holes". We track the 111 // number of holes so that, when adding new elements, we can quickly decide to do a trivial append 112 // or go slot-hunting. 113 // 114 // When the top-most entry is removed, any holes immediately below it are also removed. Thus, 115 // deletion of an entry may reduce "top_index" by more than one. 116 // 117 // To get the desired behavior for JNI locals, we need to know the bottom and top of the current 118 // "segment". The top is managed internally, and the bottom is passed in as a function argument. 119 // When we call a native method or push a local frame, the current top index gets pushed on, and 120 // serves as the new bottom. When we pop a frame off, the value from the stack becomes the new top 121 // index, and the value stored in the previous frame becomes the new bottom. 122 // 123 // Holes are being locally cached for the segment. Otherwise we'd have to pass bottom index and 124 // number of holes, which restricts us to 16 bits for the top index. The value is cached within the 125 // table. To avoid code in generated JNI transitions, which implicitly form segments, the code for 126 // adding and removing references needs to detect the change of a segment. Helper fields are used 127 // for this detection. 128 // 129 // Common alternative implementation: make IndirectRef a pointer to the actual reference slot. 130 // Instead of getting a table and doing a lookup, the lookup can be done instantly. Operations like 131 // determining the type and deleting the reference are more expensive because the table must be 132 // hunted for (i.e. you have to do a pointer comparison to see which table it's in), you can't move 133 // the table when expanding it (so realloc() is out), and tricks like serial number checking to 134 // detect stale references aren't possible (though we may be able to get similar benefits with other 135 // approaches). 136 // 137 // TODO: consider a "lastDeleteIndex" for quick hole-filling when an add immediately follows a 138 // delete; must invalidate after segment pop might be worth only using it for JNI globals. 139 // 140 // TODO: may want completely different add/remove algorithms for global and local refs to improve 141 // performance. A large circular buffer might reduce the amortized cost of adding global 142 // references. 143 144 // The state of the current segment. We only store the index. Splitting it for index and hole 145 // count restricts the range too much. 146 struct IRTSegmentState { 147 uint32_t top_index; 148 }; 149 150 // Use as initial value for "cookie", and when table has only one segment. 151 static constexpr IRTSegmentState kIRTFirstSegment = { 0 }; 152 153 // We associate a few bits of serial number with each reference, for error checking. 154 static constexpr unsigned int kIRTSerialBits = 3; 155 static constexpr uint32_t kIRTMaxSerial = ((1 << kIRTSerialBits) - 1); 156 157 class IrtEntry { 158 public: 159 void Add(ObjPtr<mirror::Object> obj) REQUIRES_SHARED(Locks::mutator_lock_); 160 GetReference()161 GcRoot<mirror::Object>* GetReference() { 162 DCHECK_LE(serial_, kIRTMaxSerial); 163 return &reference_; 164 } 165 GetReference()166 const GcRoot<mirror::Object>* GetReference() const { 167 DCHECK_LE(serial_, kIRTMaxSerial); 168 return &reference_; 169 } 170 GetSerial()171 uint32_t GetSerial() const { 172 return serial_; 173 } 174 175 void SetReference(ObjPtr<mirror::Object> obj) REQUIRES_SHARED(Locks::mutator_lock_); 176 177 private: 178 uint32_t serial_; // Incremented for each reuse; checked against reference. 179 GcRoot<mirror::Object> reference_; 180 }; 181 static_assert(sizeof(IrtEntry) == 2 * sizeof(uint32_t), "Unexpected sizeof(IrtEntry)"); 182 static_assert(IsPowerOfTwo(sizeof(IrtEntry)), "Unexpected sizeof(IrtEntry)"); 183 184 class IrtIterator { 185 public: IrtIterator(IrtEntry * table,size_t i,size_t capacity)186 IrtIterator(IrtEntry* table, size_t i, size_t capacity) REQUIRES_SHARED(Locks::mutator_lock_) 187 : table_(table), i_(i), capacity_(capacity) { 188 // capacity_ is used in some target; has warning with unused attribute. 189 UNUSED(capacity_); 190 } 191 192 IrtIterator& operator++() REQUIRES_SHARED(Locks::mutator_lock_) { 193 ++i_; 194 return *this; 195 } 196 REQUIRES_SHARED(Locks::mutator_lock_)197 GcRoot<mirror::Object>* operator*() REQUIRES_SHARED(Locks::mutator_lock_) { 198 // This does not have a read barrier as this is used to visit roots. 199 return table_[i_].GetReference(); 200 } 201 equals(const IrtIterator & rhs)202 bool equals(const IrtIterator& rhs) const { 203 return (i_ == rhs.i_ && table_ == rhs.table_); 204 } 205 206 private: 207 IrtEntry* const table_; 208 size_t i_; 209 const size_t capacity_; 210 }; 211 212 bool inline operator==(const IrtIterator& lhs, const IrtIterator& rhs) { 213 return lhs.equals(rhs); 214 } 215 216 bool inline operator!=(const IrtIterator& lhs, const IrtIterator& rhs) { 217 return !lhs.equals(rhs); 218 } 219 220 // We initially allocate local reference tables with a very small number of entries, packing 221 // multiple tables into a single page. If we need to expand one, we allocate them in units of 222 // pages. 223 // TODO: We should allocate all IRT tables as nonmovable Java objects, That in turn works better 224 // if we break up each table into 2 parallel arrays, one for the Java reference, and one for the 225 // serial number. The current scheme page-aligns regions containing IRT tables, and so allows them 226 // to be identified and page-protected in the future. 227 constexpr size_t kInitialIrtBytes = 512; // Number of bytes in an initial local table. 228 constexpr size_t kSmallIrtEntries = kInitialIrtBytes / sizeof(IrtEntry); 229 static_assert(kPageSize % kInitialIrtBytes == 0); 230 static_assert(kInitialIrtBytes % sizeof(IrtEntry) == 0); 231 static_assert(kInitialIrtBytes % sizeof(void *) == 0); 232 233 // A minimal stopgap allocator for initial small local IRT tables. 234 class SmallIrtAllocator { 235 public: 236 SmallIrtAllocator(); 237 238 // Allocate an IRT table for kSmallIrtEntries. 239 IrtEntry* Allocate(std::string* error_msg) REQUIRES(!lock_); 240 241 void Deallocate(IrtEntry* unneeded) REQUIRES(!lock_); 242 243 private: 244 // A free list of kInitialIrtBytes chunks linked through the first word. 245 IrtEntry* small_irt_freelist_; 246 247 // Repository of MemMaps used for small IRT tables. 248 std::vector<MemMap> shared_irt_maps_; 249 250 Mutex lock_; // Level kGenericBottomLock; acquired before mem_map_lock_, which is a C++ mutex. 251 }; 252 253 class IndirectReferenceTable { 254 public: 255 enum class ResizableCapacity { 256 kNo, 257 kYes 258 }; 259 260 // WARNING: Construction of the IndirectReferenceTable may fail. 261 // error_msg must not be null. If error_msg is set by the constructor, then 262 // construction has failed and the IndirectReferenceTable will be in an 263 // invalid state. Use IsValid to check whether the object is in an invalid 264 // state. 265 // Max_count is the minimum initial capacity (resizable), or minimum total capacity 266 // (not resizable). A value of 1 indicates an implementation-convenient small size. 267 IndirectReferenceTable(size_t max_count, 268 IndirectRefKind kind, 269 ResizableCapacity resizable, 270 std::string* error_msg); 271 272 ~IndirectReferenceTable(); 273 274 /* 275 * Checks whether construction of the IndirectReferenceTable succeeded. 276 * 277 * This object must only be used if IsValid() returns true. It is safe to 278 * call IsValid from multiple threads without locking or other explicit 279 * synchronization. 280 */ 281 bool IsValid() const; 282 283 // Add a new entry. "obj" must be a valid non-null object reference. This function will 284 // return null if an error happened (with an appropriate error message set). 285 IndirectRef Add(IRTSegmentState previous_state, 286 ObjPtr<mirror::Object> obj, 287 std::string* error_msg) 288 REQUIRES_SHARED(Locks::mutator_lock_); 289 290 // Given an IndirectRef in the table, return the Object it refers to. 291 // 292 // This function may abort under error conditions. 293 template<ReadBarrierOption kReadBarrierOption = kWithReadBarrier> 294 ObjPtr<mirror::Object> Get(IndirectRef iref) const REQUIRES_SHARED(Locks::mutator_lock_) 295 ALWAYS_INLINE; 296 297 // Synchronized get which reads a reference, acquiring a lock if necessary. 298 template<ReadBarrierOption kReadBarrierOption = kWithReadBarrier> SynchronizedGet(IndirectRef iref)299 ObjPtr<mirror::Object> SynchronizedGet(IndirectRef iref) const 300 REQUIRES_SHARED(Locks::mutator_lock_) { 301 return Get<kReadBarrierOption>(iref); 302 } 303 304 // Updates an existing indirect reference to point to a new object. 305 void Update(IndirectRef iref, ObjPtr<mirror::Object> obj) REQUIRES_SHARED(Locks::mutator_lock_); 306 307 // Remove an existing entry. 308 // 309 // If the entry is not between the current top index and the bottom index 310 // specified by the cookie, we don't remove anything. This is the behavior 311 // required by JNI's DeleteLocalRef function. 312 // 313 // Returns "false" if nothing was removed. 314 bool Remove(IRTSegmentState previous_state, IndirectRef iref); 315 316 void AssertEmpty() REQUIRES_SHARED(Locks::mutator_lock_); 317 318 void Dump(std::ostream& os) const 319 REQUIRES_SHARED(Locks::mutator_lock_) 320 REQUIRES(!Locks::alloc_tracker_lock_); 321 GetKind()322 IndirectRefKind GetKind() const { 323 return kind_; 324 } 325 326 // Return the #of entries in the entire table. This includes holes, and 327 // so may be larger than the actual number of "live" entries. Capacity()328 size_t Capacity() const { 329 return segment_state_.top_index; 330 } 331 332 // Return the number of non-null entries in the table. Only reliable for a 333 // single segment table. NEntriesForGlobal()334 int32_t NEntriesForGlobal() { 335 return segment_state_.top_index - current_num_holes_; 336 } 337 338 // Ensure that at least free_capacity elements are available, or return false. 339 // Caller ensures free_capacity > 0. 340 bool EnsureFreeCapacity(size_t free_capacity, std::string* error_msg) 341 REQUIRES_SHARED(Locks::mutator_lock_); 342 // See implementation of EnsureFreeCapacity. We'll only state here how much is trivially free, 343 // without recovering holes. Thus this is a conservative estimate. 344 size_t FreeCapacity() const; 345 346 // Note IrtIterator does not have a read barrier as it's used to visit roots. begin()347 IrtIterator begin() { 348 return IrtIterator(table_, 0, Capacity()); 349 } 350 end()351 IrtIterator end() { 352 return IrtIterator(table_, Capacity(), Capacity()); 353 } 354 355 void VisitRoots(RootVisitor* visitor, const RootInfo& root_info) 356 REQUIRES_SHARED(Locks::mutator_lock_); 357 GetSegmentState()358 IRTSegmentState GetSegmentState() const { 359 return segment_state_; 360 } 361 362 void SetSegmentState(IRTSegmentState new_state); 363 SegmentStateOffset(size_t pointer_size ATTRIBUTE_UNUSED)364 static Offset SegmentStateOffset(size_t pointer_size ATTRIBUTE_UNUSED) { 365 // Note: Currently segment_state_ is at offset 0. We're testing the expected value in 366 // jni_internal_test to make sure it stays correct. It is not OFFSETOF_MEMBER, as that 367 // is not pointer-size-safe. 368 return Offset(0); 369 } 370 371 // Release pages past the end of the table that may have previously held references. 372 void Trim() REQUIRES_SHARED(Locks::mutator_lock_); 373 374 // Determine what kind of indirect reference this is. Opposite of EncodeIndirectRefKind. GetIndirectRefKind(IndirectRef iref)375 ALWAYS_INLINE static inline IndirectRefKind GetIndirectRefKind(IndirectRef iref) { 376 return DecodeIndirectRefKind(reinterpret_cast<uintptr_t>(iref)); 377 } 378 379 /* Reference validation for CheckJNI. */ 380 bool IsValidReference(IndirectRef, /*out*/std::string* error_msg) const 381 REQUIRES_SHARED(Locks::mutator_lock_); 382 383 private: 384 static constexpr uint32_t kShiftedSerialMask = (1u << kIRTSerialBits) - 1; 385 386 static constexpr size_t kKindBits = MinimumBitsToStore( 387 static_cast<uint32_t>(IndirectRefKind::kLastKind)); 388 static constexpr uint32_t kKindMask = (1u << kKindBits) - 1; 389 EncodeIndex(uint32_t table_index)390 static constexpr uintptr_t EncodeIndex(uint32_t table_index) { 391 static_assert(sizeof(IndirectRef) == sizeof(uintptr_t), "Unexpected IndirectRef size"); 392 DCHECK_LE(MinimumBitsToStore(table_index), BitSizeOf<uintptr_t>() - kIRTSerialBits - kKindBits); 393 return (static_cast<uintptr_t>(table_index) << kKindBits << kIRTSerialBits); 394 } DecodeIndex(uintptr_t uref)395 static constexpr uint32_t DecodeIndex(uintptr_t uref) { 396 return static_cast<uint32_t>((uref >> kKindBits) >> kIRTSerialBits); 397 } 398 EncodeIndirectRefKind(IndirectRefKind kind)399 static constexpr uintptr_t EncodeIndirectRefKind(IndirectRefKind kind) { 400 return static_cast<uintptr_t>(kind); 401 } DecodeIndirectRefKind(uintptr_t uref)402 static constexpr IndirectRefKind DecodeIndirectRefKind(uintptr_t uref) { 403 return static_cast<IndirectRefKind>(uref & kKindMask); 404 } 405 EncodeSerial(uint32_t serial)406 static constexpr uintptr_t EncodeSerial(uint32_t serial) { 407 DCHECK_LE(MinimumBitsToStore(serial), kIRTSerialBits); 408 return serial << kKindBits; 409 } DecodeSerial(uintptr_t uref)410 static constexpr uint32_t DecodeSerial(uintptr_t uref) { 411 return static_cast<uint32_t>(uref >> kKindBits) & kShiftedSerialMask; 412 } 413 EncodeIndirectRef(uint32_t table_index,uint32_t serial)414 constexpr uintptr_t EncodeIndirectRef(uint32_t table_index, uint32_t serial) const { 415 DCHECK_LT(table_index, max_entries_); 416 return EncodeIndex(table_index) | EncodeSerial(serial) | EncodeIndirectRefKind(kind_); 417 } 418 419 static void ConstexprChecks(); 420 421 // Extract the table index from an indirect reference. ExtractIndex(IndirectRef iref)422 ALWAYS_INLINE static uint32_t ExtractIndex(IndirectRef iref) { 423 return DecodeIndex(reinterpret_cast<uintptr_t>(iref)); 424 } 425 ToIndirectRef(uint32_t table_index)426 IndirectRef ToIndirectRef(uint32_t table_index) const { 427 DCHECK_LT(table_index, max_entries_); 428 uint32_t serial = table_[table_index].GetSerial(); 429 return reinterpret_cast<IndirectRef>(EncodeIndirectRef(table_index, serial)); 430 } 431 432 // Resize the backing table to be at least new_size elements long. Currently 433 // must be larger than the current size. After return max_entries_ >= new_size. 434 bool Resize(size_t new_size, std::string* error_msg); 435 436 void RecoverHoles(IRTSegmentState from); 437 438 // Abort if check_jni is not enabled. Otherwise, just log as an error. 439 static void AbortIfNoCheckJNI(const std::string& msg); 440 441 /* extra debugging checks */ 442 bool CheckEntry(const char*, IndirectRef, uint32_t) const; 443 444 /// semi-public - read/write by jni down calls. 445 IRTSegmentState segment_state_; 446 447 // Mem map where we store the indirect refs. If it's invalid, and table_ is non-null, then 448 // table_ is valid, but was allocated via allocSmallIRT(); 449 MemMap table_mem_map_; 450 // bottom of the stack. Do not directly access the object references 451 // in this as they are roots. Use Get() that has a read barrier. 452 IrtEntry* table_; 453 // bit mask, ORed into all irefs. 454 const IndirectRefKind kind_; 455 456 // max #of entries allowed (modulo resizing). 457 size_t max_entries_; 458 459 // Some values to retain old behavior with holes. Description of the algorithm is in the .cc 460 // file. 461 // TODO: Consider other data structures for compact tables, e.g., free lists. 462 size_t current_num_holes_; // Number of holes in the current / top segment. 463 IRTSegmentState last_known_previous_state_; 464 465 // Whether the table's capacity may be resized. As there are no locks used, it is the caller's 466 // responsibility to ensure thread-safety. 467 ResizableCapacity resizable_; 468 }; 469 470 } // namespace art 471 472 #endif // ART_RUNTIME_INDIRECT_REFERENCE_TABLE_H_ 473