1 /* 2 * Copyright (C) 2021 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #pragma once 18 19 #include <atomic> 20 #include <condition_variable> 21 #include <deque> 22 #include <functional> 23 #include <map> 24 #include <mutex> 25 #include <string> 26 #include <thread> 27 28 #include <android-base/thread_annotations.h> 29 30 #include <mediautils/FixedString.h> 31 32 namespace android::mediautils { 33 34 /** 35 * A thread for deferred execution of tasks, with cancellation. 36 */ 37 class TimerThread { 38 public: 39 // A Handle is a time_point that serves as a unique key to access a queued 40 // request to the TimerThread. 41 using Handle = std::chrono::steady_clock::time_point; 42 43 // Duration is based on steady_clock (typically nanoseconds) 44 // vs the system_clock duration (typically microseconds). 45 using Duration = std::chrono::steady_clock::duration; 46 47 static inline constexpr Handle INVALID_HANDLE = 48 std::chrono::steady_clock::time_point::min(); 49 50 // Handle implementation details: 51 // A Handle represents the timer expiration time based on std::chrono::steady_clock 52 // (clock monotonic). This Handle is computed as now() + timeout. 53 // 54 // The lsb of the Handle time_point is adjusted to indicate whether there is 55 // a timeout action (1) or not (0). 56 // 57 58 template <size_t COUNT> 59 static constexpr bool is_power_of_2_v = COUNT > 0 && (COUNT & (COUNT - 1)) == 0; 60 61 template <size_t COUNT> 62 static constexpr size_t mask_from_count_v = COUNT - 1; 63 64 static constexpr size_t HANDLE_TYPES = 2; 65 // HANDLE_TYPES must be a power of 2. 66 static_assert(is_power_of_2_v<HANDLE_TYPES>); 67 68 // The handle types 69 enum class HANDLE_TYPE : size_t { 70 NO_TIMEOUT = 0, 71 TIMEOUT = 1, 72 }; 73 74 static constexpr size_t HANDLE_TYPE_MASK = mask_from_count_v<HANDLE_TYPES>; 75 76 template <typename T> enum_as_value(T x)77 static constexpr auto enum_as_value(T x) { 78 return static_cast<std::underlying_type_t<T>>(x); 79 } 80 isNoTimeoutHandle(Handle handle)81 static inline bool isNoTimeoutHandle(Handle handle) { 82 return (handle.time_since_epoch().count() & HANDLE_TYPE_MASK) == 83 enum_as_value(HANDLE_TYPE::NO_TIMEOUT); 84 } 85 isTimeoutHandle(Handle handle)86 static inline bool isTimeoutHandle(Handle handle) { 87 return (handle.time_since_epoch().count() & HANDLE_TYPE_MASK) == 88 enum_as_value(HANDLE_TYPE::TIMEOUT); 89 } 90 91 // Returns a unique Handle that doesn't exist in the container. 92 template <size_t MAX_TYPED_HANDLES, size_t HANDLE_TYPE_AS_VALUE, typename C, typename T> getUniqueHandleForHandleType_l(C container,T timeout)93 static Handle getUniqueHandleForHandleType_l(C container, T timeout) { 94 static_assert(MAX_TYPED_HANDLES > 0 && HANDLE_TYPE_AS_VALUE < MAX_TYPED_HANDLES 95 && is_power_of_2_v<MAX_TYPED_HANDLES>, 96 " handles must be power of two"); 97 98 // Our initial handle is the deadline as computed from steady_clock. 99 auto deadline = std::chrono::steady_clock::now() + timeout; 100 101 // We adjust the lsbs by the minimum increment to have the correct 102 // HANDLE_TYPE in the least significant bits. 103 auto remainder = deadline.time_since_epoch().count() & HANDLE_TYPE_MASK; 104 size_t offset = HANDLE_TYPE_AS_VALUE > remainder ? HANDLE_TYPE_AS_VALUE - remainder : 105 MAX_TYPED_HANDLES + HANDLE_TYPE_AS_VALUE - remainder; 106 deadline += std::chrono::steady_clock::duration(offset); 107 108 // To avoid key collisions, advance the handle by MAX_TYPED_HANDLES (the modulus factor) 109 // until the key is unique. 110 while (container.find(deadline) != container.end()) { 111 deadline += std::chrono::steady_clock::duration(MAX_TYPED_HANDLES); 112 } 113 return deadline; 114 } 115 116 // TimerCallback invoked on timeout or cancel. 117 using TimerCallback = std::function<void(Handle)>; 118 119 /** 120 * Schedules a task to be executed in the future (`timeout` duration from now). 121 * 122 * \param tag string associated with the task. This need not be unique, 123 * as the Handle returned is used for cancelling. 124 * \param func callback function that is invoked at the timeout. 125 * \param timeoutDuration timeout duration which is converted to milliseconds with at 126 * least 45 integer bits. 127 * A timeout of 0 (or negative) means the timer never expires 128 * so func() is never called. These tasks are stored internally 129 * and reported in the toString() until manually cancelled. 130 * \returns a handle that can be used for cancellation. 131 */ 132 Handle scheduleTask( 133 std::string_view tag, TimerCallback&& func, 134 Duration timeoutDuration, Duration secondChanceDuration); 135 136 /** 137 * Tracks a task that shows up on toString() until cancelled. 138 * 139 * \param tag string associated with the task. 140 * \returns a handle that can be used for cancellation. 141 */ 142 Handle trackTask(std::string_view tag); 143 144 /** 145 * Cancels a task previously scheduled with scheduleTask() 146 * or trackTask(). 147 * 148 * \returns true if cancelled. If the task has already executed 149 * or if the handle doesn't exist, this is a no-op 150 * and returns false. 151 */ 152 bool cancelTask(Handle handle); 153 154 std::string toString(size_t retiredCount = SIZE_MAX) const; 155 156 /** 157 * Returns a string representation of the TimerThread queue. 158 * 159 * The queue is dumped in order of scheduling (not deadline). 160 */ 161 std::string pendingToString() const; 162 163 /** 164 * Returns a string representation of the last retired tasks. 165 * 166 * These tasks from trackTask() or scheduleTask() are 167 * cancelled. 168 * 169 * These are ordered when the task was retired. 170 * 171 * \param n is maximum number of tasks to dump. 172 */ 173 std::string retiredToString(size_t n = SIZE_MAX) const; 174 175 176 /** 177 * Returns a string representation of the last timeout tasks. 178 * 179 * These tasks from scheduleTask() which have timed-out. 180 * 181 * These are ordered when the task had timed-out. 182 * 183 * \param n is maximum number of tasks to dump. 184 */ 185 std::string timeoutToString(size_t n = SIZE_MAX) const; 186 187 /** 188 * Dumps a container with SmartPointer<Request> to a string. 189 * 190 * "{ Request1 } { Request2} ...{ RequestN }" 191 */ 192 template <typename T> requestsToString(const T & containerRequests)193 static std::string requestsToString(const T& containerRequests) { 194 std::string s; 195 // append seems to be faster than stringstream. 196 // https://stackoverflow.com/questions/18892281/most-optimized-way-of-concatenation-in-strings 197 for (const auto& request : containerRequests) { 198 s.append("{ ").append(request->toString()).append(" } "); 199 } 200 // If not empty, there's an extra space at the end, so we trim it off. 201 if (!s.empty()) s.pop_back(); 202 return s; 203 } 204 205 private: 206 // To minimize movement of data, we pass around shared_ptrs to Requests. 207 // These are allocated and deallocated outside of the lock. 208 // TODO(b/243839867) consider options to merge Request with the 209 // TimeCheck::TimeCheckHandler struct. 210 struct Request { RequestRequest211 Request(std::chrono::system_clock::time_point _scheduled, 212 std::chrono::system_clock::time_point _deadline, 213 Duration _secondChanceDuration, 214 pid_t _tid, 215 std::string_view _tag) 216 : scheduled(_scheduled) 217 , deadline(_deadline) 218 , secondChanceDuration(_secondChanceDuration) 219 , tid(_tid) 220 , tag(_tag) 221 {} 222 223 const std::chrono::system_clock::time_point scheduled; 224 const std::chrono::system_clock::time_point deadline; // deadline := scheduled 225 // + timeoutDuration 226 // + secondChanceDuration 227 // if deadline == scheduled, no 228 // timeout, task not executed. 229 Duration secondChanceDuration; 230 const pid_t tid; 231 const FixedString62 tag; 232 std::string toString() const; 233 }; 234 235 // Deque of requests, in order of add(). 236 // This class is thread-safe. 237 class RequestQueue { 238 public: RequestQueue(size_t maxSize)239 explicit RequestQueue(size_t maxSize) 240 : mRequestQueueMax(maxSize) {} 241 242 void add(std::shared_ptr<const Request>); 243 244 // return up to the last "n" requests retired. 245 void copyRequests(std::vector<std::shared_ptr<const Request>>& requests, 246 size_t n = SIZE_MAX) const; 247 248 private: 249 const size_t mRequestQueueMax; 250 mutable std::mutex mRQMutex; 251 std::deque<std::pair<std::chrono::system_clock::time_point, 252 std::shared_ptr<const Request>>> 253 mRequestQueue GUARDED_BY(mRQMutex); 254 }; 255 256 // A storage map of tasks without timeouts. There is no TimerCallback 257 // required, it just tracks the tasks with the tag, scheduled time and the tid. 258 // These tasks show up on a pendingToString() until manually cancelled. 259 class NoTimeoutMap { 260 mutable std::mutex mNTMutex; 261 std::map<Handle, std::shared_ptr<const Request>> mMap GUARDED_BY(mNTMutex); getUniqueHandle_l()262 Handle getUniqueHandle_l() REQUIRES(mNTMutex) { 263 return getUniqueHandleForHandleType_l< 264 HANDLE_TYPES, enum_as_value(HANDLE_TYPE::NO_TIMEOUT)>( 265 mMap, Duration{} /* timeout */); 266 } 267 268 public: 269 bool isValidHandle(Handle handle) const; // lock free 270 Handle add(std::shared_ptr<const Request> request); 271 std::shared_ptr<const Request> remove(Handle handle); 272 void copyRequests(std::vector<std::shared_ptr<const Request>>& requests) const; 273 }; 274 275 // Monitor thread. 276 // This thread manages shared pointers to Requests and a function to 277 // call on timeout. 278 // This class is thread-safe. 279 class MonitorThread { 280 std::atomic<size_t> mSecondChanceCount{}; 281 mutable std::mutex mMutex; 282 mutable std::condition_variable mCond GUARDED_BY(mMutex); 283 284 // Ordered map of requests based on time of deadline. 285 // 286 std::map<Handle, std::pair<std::shared_ptr<const Request>, TimerCallback>> 287 mMonitorRequests GUARDED_BY(mMutex); 288 289 // Due to monotonic/steady clock inaccuracies during suspend, 290 // we allow an additional second chance waiting time to prevent 291 // false removal. 292 293 // This mSecondChanceRequests queue is almost always empty. 294 // Using a pair with the original handle allows lookup and keeps 295 // the Key unique. 296 std::map<std::pair<Handle /* new */, Handle /* original */>, 297 std::pair<std::shared_ptr<const Request>, TimerCallback>> 298 mSecondChanceRequests GUARDED_BY(mMutex); 299 300 RequestQueue& mTimeoutQueue; // locked internally, added to when request times out. 301 302 // Worker thread variables 303 bool mShouldExit GUARDED_BY(mMutex) = false; 304 305 // To avoid race with initialization, 306 // mThread should be initialized last as the thread is launched immediately. 307 std::thread mThread; 308 309 void threadFunc(); getUniqueHandle_l(Duration timeout)310 Handle getUniqueHandle_l(Duration timeout) REQUIRES(mMutex) { 311 return getUniqueHandleForHandleType_l< 312 HANDLE_TYPES, enum_as_value(HANDLE_TYPE::TIMEOUT)>( 313 mMonitorRequests, timeout); 314 } 315 316 public: 317 MonitorThread(RequestQueue &timeoutQueue); 318 ~MonitorThread(); 319 320 Handle add(std::shared_ptr<const Request> request, TimerCallback&& func, 321 Duration timeout); 322 std::shared_ptr<const Request> remove(Handle handle); 323 void copyRequests(std::vector<std::shared_ptr<const Request>>& requests) const; getSecondChanceCount()324 size_t getSecondChanceCount() const { 325 return mSecondChanceCount.load(std::memory_order_relaxed); 326 } 327 }; 328 329 // Analysis contains info deduced by analysisTimeout(). 330 // 331 // Summary is the result string from checking timeoutRequests to see if 332 // any might be caused by blocked calls in pendingRequests. 333 // 334 // Summary string is empty if there is no automatic actionable info. 335 // 336 // timeoutTid is the tid selected from timeoutRequests (if any). 337 // 338 // HALBlockedTid is the tid that is blocked from pendingRequests believed 339 // to cause the timeout. 340 // HALBlockedTid may be INVALID_PID if no suspected tid is found, 341 // and if HALBlockedTid is valid, it will not be the same as timeoutTid. 342 // 343 static constexpr pid_t INVALID_PID = -1; 344 struct Analysis { 345 std::string summary; 346 pid_t timeoutTid = INVALID_PID; 347 pid_t HALBlockedTid = INVALID_PID; 348 }; 349 350 // A HAL method is where the substring "Hidl" is in the class name. 351 // The tag should look like: ... Hidl ... :: ... 352 static bool isRequestFromHal(const std::shared_ptr<const Request>& request); 353 354 // Returns analysis from the requests. 355 static Analysis analyzeTimeout( 356 const std::vector<std::shared_ptr<const Request>>& timeoutRequests, 357 const std::vector<std::shared_ptr<const Request>>& pendingRequests); 358 359 std::vector<std::shared_ptr<const Request>> getPendingRequests() const; 360 361 static constexpr size_t kRetiredQueueMax = 16; 362 RequestQueue mRetiredQueue{kRetiredQueueMax}; // locked internally 363 364 static constexpr size_t kTimeoutQueueMax = 16; 365 RequestQueue mTimeoutQueue{kTimeoutQueueMax}; // locked internally 366 367 NoTimeoutMap mNoTimeoutMap; // locked internally 368 369 MonitorThread mMonitorThread{mTimeoutQueue}; // This should be initialized last because 370 // the thread is launched immediately. 371 // Locked internally. 372 }; 373 374 } // namespace android::mediautils 375