• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2020 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5 
6 #include <xnnpack.h>
7 
8 #include <array>
9 #include <algorithm>
10 #include <functional>
11 #include <iostream>
12 #include <limits>
13 #include <random>
14 
15 #include "models/models.h"
16 
17 namespace models {
18 
FP32SparseMobileNetV3Large(float sparsity,pthreadpool_t threadpool)19 ExecutionPlan FP32SparseMobileNetV3Large(float sparsity, pthreadpool_t threadpool) {
20   alignas(16) static std::array<float, 150528> v0;
21   alignas(16) static std::array<float, 200704> v1;
22   alignas(16) static std::array<float, 200704> v2;
23   alignas(16) static std::array<float, 200704> v3;
24   alignas(16) static std::array<float, 200704> v4;
25   alignas(16) static std::array<float, 200704> v5;
26   alignas(16) static std::array<float, 802816> v6;
27   alignas(16) static std::array<float, 200704> v7;
28   alignas(16) static std::array<float, 75264> v8;
29   alignas(16) static std::array<float, 225792> v9;
30   alignas(16) static std::array<float, 225792> v10;
31   alignas(16) static std::array<float, 75264> v11;
32   alignas(16) static std::array<float, 75264> v12;
33   alignas(16) static std::array<float, 225792> v13;
34   alignas(16) static std::array<float, 56448> v14;
35   alignas(16) static std::array<float, 72> v15;
36   alignas(16) static std::array<float, 24> v16;
37   alignas(16) static std::array<float, 72> v17;
38   alignas(16) static std::array<float, 56448> v18;
39   alignas(16) static std::array<float, 31360> v19;
40   alignas(16) static std::array<float, 94080> v20;
41   alignas(16) static std::array<float, 94080> v21;
42   alignas(16) static std::array<float, 120> v22;
43   alignas(16) static std::array<float, 32> v23;
44   alignas(16) static std::array<float, 120> v24;
45   alignas(16) static std::array<float, 94080> v25;
46   alignas(16) static std::array<float, 31360> v26;
47   alignas(16) static std::array<float, 31360> v27;
48   alignas(16) static std::array<float, 94080> v28;
49   alignas(16) static std::array<float, 94080> v29;
50   alignas(16) static std::array<float, 120> v30;
51   alignas(16) static std::array<float, 32> v31;
52   alignas(16) static std::array<float, 120> v32;
53   alignas(16) static std::array<float, 94080> v33;
54   alignas(16) static std::array<float, 31360> v34;
55   alignas(16) static std::array<float, 31360> v35;
56   alignas(16) static std::array<float, 188160> v36;
57   alignas(16) static std::array<float, 188160> v37;
58   alignas(16) static std::array<float, 47040> v38;
59   alignas(16) static std::array<float, 47040> v39;
60   alignas(16) static std::array<float, 15680> v40;
61   alignas(16) static std::array<float, 39200> v41;
62   alignas(16) static std::array<float, 39200> v42;
63   alignas(16) static std::array<float, 39200> v43;
64   alignas(16) static std::array<float, 39200> v44;
65   alignas(16) static std::array<float, 15680> v45;
66   alignas(16) static std::array<float, 15680> v46;
67   alignas(16) static std::array<float, 36064> v47;
68   alignas(16) static std::array<float, 36064> v48;
69   alignas(16) static std::array<float, 36064> v49;
70   alignas(16) static std::array<float, 36064> v50;
71   alignas(16) static std::array<float, 15680> v51;
72   alignas(16) static std::array<float, 15680> v52;
73   alignas(16) static std::array<float, 36064> v53;
74   alignas(16) static std::array<float, 36064> v54;
75   alignas(16) static std::array<float, 36064> v55;
76   alignas(16) static std::array<float, 36064> v56;
77   alignas(16) static std::array<float, 15680> v57;
78   alignas(16) static std::array<float, 15680> v58;
79   alignas(16) static std::array<float, 94080> v59;
80   alignas(16) static std::array<float, 94080> v60;
81   alignas(16) static std::array<float, 94080> v61;
82   alignas(16) static std::array<float, 94080> v62;
83   alignas(16) static std::array<float, 480> v63;
84   alignas(16) static std::array<float, 120> v64;
85   alignas(16) static std::array<float, 480> v65;
86   alignas(16) static std::array<float, 94080> v66;
87   alignas(16) static std::array<float, 21952> v67;
88   alignas(16) static std::array<float, 131712> v68;
89   alignas(16) static std::array<float, 131712> v69;
90   alignas(16) static std::array<float, 131712> v70;
91   alignas(16) static std::array<float, 131712> v71;
92   alignas(16) static std::array<float, 672> v72;
93   alignas(16) static std::array<float, 168> v73;
94   alignas(16) static std::array<float, 672> v74;
95   alignas(16) static std::array<float, 131712> v75;
96   alignas(16) static std::array<float, 21952> v76;
97   alignas(16) static std::array<float, 21952> v77;
98   alignas(16) static std::array<float, 131712> v78;
99   alignas(16) static std::array<float, 131712> v79;
100   alignas(16) static std::array<float, 32928> v80;
101   alignas(16) static std::array<float, 32928> v81;
102   alignas(16) static std::array<float, 672> v82;
103   alignas(16) static std::array<float, 168> v83;
104   alignas(16) static std::array<float, 672> v84;
105   alignas(16) static std::array<float, 32928> v85;
106   alignas(16) static std::array<float, 7840> v86;
107   alignas(16) static std::array<float, 47040> v87;
108   alignas(16) static std::array<float, 47040> v88;
109   alignas(16) static std::array<float, 47040> v89;
110   alignas(16) static std::array<float, 47040> v90;
111   alignas(16) static std::array<float, 960> v91;
112   alignas(16) static std::array<float, 240> v92;
113   alignas(16) static std::array<float, 960> v93;
114   alignas(16) static std::array<float, 47040> v94;
115   alignas(16) static std::array<float, 7840> v95;
116   alignas(16) static std::array<float, 7840> v96;
117   alignas(16) static std::array<float, 47040> v97;
118   alignas(16) static std::array<float, 47040> v98;
119   alignas(16) static std::array<float, 47040> v99;
120   alignas(16) static std::array<float, 47040> v100;
121   alignas(16) static std::array<float, 960> v101;
122   alignas(16) static std::array<float, 240> v102;
123   alignas(16) static std::array<float, 960> v103;
124   alignas(16) static std::array<float, 47040> v104;
125   alignas(16) static std::array<float, 7840> v105;
126   alignas(16) static std::array<float, 7840> v106;
127   alignas(16) static std::array<float, 47040> v107;
128   alignas(16) static std::array<float, 47040> v108;
129   alignas(16) static std::array<float, 960> v109;
130   alignas(16) static std::array<float, 1280> v110;
131   alignas(16) static std::array<float, 1280> v111;
132   alignas(16) static std::array<float, 1280> v112;
133   alignas(16) static std::array<float, 1001> v113;
134   alignas(16) static std::array<float, 432> w114;
135   alignas(16) static std::array<float, 16> w115;
136   alignas(16) static std::array<float, 144> w116;
137   alignas(16) static std::array<float, 16> w117;
138   alignas(16) static std::array<float, 256> w118;
139   alignas(16) static std::array<float, 16> w119;
140   alignas(16) static std::array<float, 1024> w120;
141   alignas(16) static std::array<float, 64> w121;
142   alignas(16) static std::array<float, 576> w122;
143   alignas(16) static std::array<float, 64> w123;
144   alignas(16) static std::array<float, 1536> w124;
145   alignas(16) static std::array<float, 24> w125;
146   alignas(16) static std::array<float, 1728> w126;
147   alignas(16) static std::array<float, 72> w127;
148   alignas(16) static std::array<float, 648> w128;
149   alignas(16) static std::array<float, 72> w129;
150   alignas(16) static std::array<float, 1728> w130;
151   alignas(16) static std::array<float, 24> w131;
152   alignas(16) static std::array<float, 1728> w132;
153   alignas(16) static std::array<float, 72> w133;
154   alignas(16) static std::array<float, 1800> w134;
155   alignas(16) static std::array<float, 72> w135;
156   alignas(16) static std::array<float, 1728> w136;
157   alignas(16) static std::array<float, 24> w137;
158   alignas(16) static std::array<float, 1728> w138;
159   alignas(16) static std::array<float, 72> w139;
160   alignas(16) static std::array<float, 2880> w140;
161   alignas(16) static std::array<float, 40> w141;
162   alignas(16) static std::array<float, 4800> w142;
163   alignas(16) static std::array<float, 120> w143;
164   alignas(16) static std::array<float, 3000> w144;
165   alignas(16) static std::array<float, 120> w145;
166   alignas(16) static std::array<float, 3840> w146;
167   alignas(16) static std::array<float, 32> w147;
168   alignas(16) static std::array<float, 3840> w148;
169   alignas(16) static std::array<float, 120> w149;
170   alignas(16) static std::array<float, 4800> w150;
171   alignas(16) static std::array<float, 40> w151;
172   alignas(16) static std::array<float, 4800> w152;
173   alignas(16) static std::array<float, 120> w153;
174   alignas(16) static std::array<float, 3000> w154;
175   alignas(16) static std::array<float, 120> w155;
176   alignas(16) static std::array<float, 3840> w156;
177   alignas(16) static std::array<float, 32> w157;
178   alignas(16) static std::array<float, 3840> w158;
179   alignas(16) static std::array<float, 120> w159;
180   alignas(16) static std::array<float, 4800> w160;
181   alignas(16) static std::array<float, 40> w161;
182   alignas(16) static std::array<float, 9600> w162;
183   alignas(16) static std::array<float, 240> w163;
184   alignas(16) static std::array<float, 2160> w164;
185   alignas(16) static std::array<float, 240> w165;
186   alignas(16) static std::array<float, 19200> w166;
187   alignas(16) static std::array<float, 80> w167;
188   alignas(16) static std::array<float, 16000> w168;
189   alignas(16) static std::array<float, 200> w169;
190   alignas(16) static std::array<float, 1800> w170;
191   alignas(16) static std::array<float, 200> w171;
192   alignas(16) static std::array<float, 16000> w172;
193   alignas(16) static std::array<float, 80> w173;
194   alignas(16) static std::array<float, 14720> w174;
195   alignas(16) static std::array<float, 184> w175;
196   alignas(16) static std::array<float, 1656> w176;
197   alignas(16) static std::array<float, 184> w177;
198   alignas(16) static std::array<float, 14720> w178;
199   alignas(16) static std::array<float, 80> w179;
200   alignas(16) static std::array<float, 14720> w180;
201   alignas(16) static std::array<float, 184> w181;
202   alignas(16) static std::array<float, 1656> w182;
203   alignas(16) static std::array<float, 184> w183;
204   alignas(16) static std::array<float, 14720> w184;
205   alignas(16) static std::array<float, 80> w185;
206   alignas(16) static std::array<float, 38400> w186;
207   alignas(16) static std::array<float, 480> w187;
208   alignas(16) static std::array<float, 4320> w188;
209   alignas(16) static std::array<float, 480> w189;
210   alignas(16) static std::array<float, 57600> w190;
211   alignas(16) static std::array<float, 120> w191;
212   alignas(16) static std::array<float, 57600> w192;
213   alignas(16) static std::array<float, 480> w193;
214   alignas(16) static std::array<float, 53760> w194;
215   alignas(16) static std::array<float, 112> w195;
216   alignas(16) static std::array<float, 75264> w196;
217   alignas(16) static std::array<float, 672> w197;
218   alignas(16) static std::array<float, 6048> w198;
219   alignas(16) static std::array<float, 672> w199;
220   alignas(16) static std::array<float, 112896> w200;
221   alignas(16) static std::array<float, 168> w201;
222   alignas(16) static std::array<float, 112896> w202;
223   alignas(16) static std::array<float, 672> w203;
224   alignas(16) static std::array<float, 75264> w204;
225   alignas(16) static std::array<float, 112> w205;
226   alignas(16) static std::array<float, 75264> w206;
227   alignas(16) static std::array<float, 672> w207;
228   alignas(16) static std::array<float, 16800> w208;
229   alignas(16) static std::array<float, 672> w209;
230   alignas(16) static std::array<float, 112896> w210;
231   alignas(16) static std::array<float, 168> w211;
232   alignas(16) static std::array<float, 112896> w212;
233   alignas(16) static std::array<float, 672> w213;
234   alignas(16) static std::array<float, 107520> w214;
235   alignas(16) static std::array<float, 160> w215;
236   alignas(16) static std::array<float, 153600> w216;
237   alignas(16) static std::array<float, 960> w217;
238   alignas(16) static std::array<float, 24000> w218;
239   alignas(16) static std::array<float, 960> w219;
240   alignas(16) static std::array<float, 230400> w220;
241   alignas(16) static std::array<float, 240> w221;
242   alignas(16) static std::array<float, 230400> w222;
243   alignas(16) static std::array<float, 960> w223;
244   alignas(16) static std::array<float, 153600> w224;
245   alignas(16) static std::array<float, 160> w225;
246   alignas(16) static std::array<float, 153600> w226;
247   alignas(16) static std::array<float, 960> w227;
248   alignas(16) static std::array<float, 24000> w228;
249   alignas(16) static std::array<float, 960> w229;
250   alignas(16) static std::array<float, 230400> w230;
251   alignas(16) static std::array<float, 240> w231;
252   alignas(16) static std::array<float, 230400> w232;
253   alignas(16) static std::array<float, 960> w233;
254   alignas(16) static std::array<float, 153600> w234;
255   alignas(16) static std::array<float, 160> w235;
256   alignas(16) static std::array<float, 153600> w236;
257   alignas(16) static std::array<float, 960> w237;
258   alignas(16) static std::array<float, 1228800> w238;
259   alignas(16) static std::array<float, 1280> w239;
260   alignas(16) static std::array<float, 1281280> w240;
261   alignas(16) static std::array<float, 1001> w241;
262 
263   std::random_device random_device;
264   auto rng = std::mt19937(random_device());
265   auto f32rng = std::bind(std::uniform_real_distribution<float>(-1.0f, +1.0f), std::ref(rng));
266   std::generate(v0.begin(), v0.end(), std::ref(f32rng));
267   std::generate(v1.begin(), v1.end(), std::ref(f32rng));
268   std::generate(v2.begin(), v2.end(), std::ref(f32rng));
269   std::generate(v3.begin(), v3.end(), std::ref(f32rng));
270   std::generate(v4.begin(), v4.end(), std::ref(f32rng));
271   std::generate(v5.begin(), v5.end(), std::ref(f32rng));
272   std::generate(v6.begin(), v6.end(), std::ref(f32rng));
273   std::generate(v7.begin(), v7.end(), std::ref(f32rng));
274   std::generate(v8.begin(), v8.end(), std::ref(f32rng));
275   std::generate(v9.begin(), v9.end(), std::ref(f32rng));
276   std::generate(v10.begin(), v10.end(), std::ref(f32rng));
277   std::generate(v11.begin(), v11.end(), std::ref(f32rng));
278   std::generate(v12.begin(), v12.end(), std::ref(f32rng));
279   std::generate(v13.begin(), v13.end(), std::ref(f32rng));
280   std::generate(v14.begin(), v14.end(), std::ref(f32rng));
281   std::generate(v15.begin(), v15.end(), std::ref(f32rng));
282   std::generate(v16.begin(), v16.end(), std::ref(f32rng));
283   std::generate(v17.begin(), v17.end(), std::ref(f32rng));
284   std::generate(v18.begin(), v18.end(), std::ref(f32rng));
285   std::generate(v19.begin(), v19.end(), std::ref(f32rng));
286   std::generate(v20.begin(), v20.end(), std::ref(f32rng));
287   std::generate(v21.begin(), v21.end(), std::ref(f32rng));
288   std::generate(v22.begin(), v22.end(), std::ref(f32rng));
289   std::generate(v23.begin(), v23.end(), std::ref(f32rng));
290   std::generate(v24.begin(), v24.end(), std::ref(f32rng));
291   std::generate(v25.begin(), v25.end(), std::ref(f32rng));
292   std::generate(v26.begin(), v26.end(), std::ref(f32rng));
293   std::generate(v27.begin(), v27.end(), std::ref(f32rng));
294   std::generate(v28.begin(), v28.end(), std::ref(f32rng));
295   std::generate(v29.begin(), v29.end(), std::ref(f32rng));
296   std::generate(v30.begin(), v30.end(), std::ref(f32rng));
297   std::generate(v31.begin(), v31.end(), std::ref(f32rng));
298   std::generate(v32.begin(), v32.end(), std::ref(f32rng));
299   std::generate(v33.begin(), v33.end(), std::ref(f32rng));
300   std::generate(v34.begin(), v34.end(), std::ref(f32rng));
301   std::generate(v35.begin(), v35.end(), std::ref(f32rng));
302   std::generate(v36.begin(), v36.end(), std::ref(f32rng));
303   std::generate(v37.begin(), v37.end(), std::ref(f32rng));
304   std::generate(v38.begin(), v38.end(), std::ref(f32rng));
305   std::generate(v39.begin(), v39.end(), std::ref(f32rng));
306   std::generate(v40.begin(), v40.end(), std::ref(f32rng));
307   std::generate(v41.begin(), v41.end(), std::ref(f32rng));
308   std::generate(v42.begin(), v42.end(), std::ref(f32rng));
309   std::generate(v43.begin(), v43.end(), std::ref(f32rng));
310   std::generate(v44.begin(), v44.end(), std::ref(f32rng));
311   std::generate(v45.begin(), v45.end(), std::ref(f32rng));
312   std::generate(v46.begin(), v46.end(), std::ref(f32rng));
313   std::generate(v47.begin(), v47.end(), std::ref(f32rng));
314   std::generate(v48.begin(), v48.end(), std::ref(f32rng));
315   std::generate(v49.begin(), v49.end(), std::ref(f32rng));
316   std::generate(v50.begin(), v50.end(), std::ref(f32rng));
317   std::generate(v51.begin(), v51.end(), std::ref(f32rng));
318   std::generate(v52.begin(), v52.end(), std::ref(f32rng));
319   std::generate(v53.begin(), v53.end(), std::ref(f32rng));
320   std::generate(v54.begin(), v54.end(), std::ref(f32rng));
321   std::generate(v55.begin(), v55.end(), std::ref(f32rng));
322   std::generate(v56.begin(), v56.end(), std::ref(f32rng));
323   std::generate(v57.begin(), v57.end(), std::ref(f32rng));
324   std::generate(v58.begin(), v58.end(), std::ref(f32rng));
325   std::generate(v59.begin(), v59.end(), std::ref(f32rng));
326   std::generate(v60.begin(), v60.end(), std::ref(f32rng));
327   std::generate(v61.begin(), v61.end(), std::ref(f32rng));
328   std::generate(v62.begin(), v62.end(), std::ref(f32rng));
329   std::generate(v63.begin(), v63.end(), std::ref(f32rng));
330   std::generate(v64.begin(), v64.end(), std::ref(f32rng));
331   std::generate(v65.begin(), v65.end(), std::ref(f32rng));
332   std::generate(v66.begin(), v66.end(), std::ref(f32rng));
333   std::generate(v67.begin(), v67.end(), std::ref(f32rng));
334   std::generate(v68.begin(), v68.end(), std::ref(f32rng));
335   std::generate(v69.begin(), v69.end(), std::ref(f32rng));
336   std::generate(v70.begin(), v70.end(), std::ref(f32rng));
337   std::generate(v71.begin(), v71.end(), std::ref(f32rng));
338   std::generate(v72.begin(), v72.end(), std::ref(f32rng));
339   std::generate(v73.begin(), v73.end(), std::ref(f32rng));
340   std::generate(v74.begin(), v74.end(), std::ref(f32rng));
341   std::generate(v75.begin(), v75.end(), std::ref(f32rng));
342   std::generate(v76.begin(), v76.end(), std::ref(f32rng));
343   std::generate(v77.begin(), v77.end(), std::ref(f32rng));
344   std::generate(v78.begin(), v78.end(), std::ref(f32rng));
345   std::generate(v79.begin(), v79.end(), std::ref(f32rng));
346   std::generate(v80.begin(), v80.end(), std::ref(f32rng));
347   std::generate(v81.begin(), v81.end(), std::ref(f32rng));
348   std::generate(v82.begin(), v82.end(), std::ref(f32rng));
349   std::generate(v83.begin(), v83.end(), std::ref(f32rng));
350   std::generate(v84.begin(), v84.end(), std::ref(f32rng));
351   std::generate(v85.begin(), v85.end(), std::ref(f32rng));
352   std::generate(v86.begin(), v86.end(), std::ref(f32rng));
353   std::generate(v87.begin(), v87.end(), std::ref(f32rng));
354   std::generate(v88.begin(), v88.end(), std::ref(f32rng));
355   std::generate(v89.begin(), v89.end(), std::ref(f32rng));
356   std::generate(v90.begin(), v90.end(), std::ref(f32rng));
357   std::generate(v91.begin(), v91.end(), std::ref(f32rng));
358   std::generate(v92.begin(), v92.end(), std::ref(f32rng));
359   std::generate(v93.begin(), v93.end(), std::ref(f32rng));
360   std::generate(v94.begin(), v94.end(), std::ref(f32rng));
361   std::generate(v95.begin(), v95.end(), std::ref(f32rng));
362   std::generate(v96.begin(), v96.end(), std::ref(f32rng));
363   std::generate(v97.begin(), v97.end(), std::ref(f32rng));
364   std::generate(v98.begin(), v98.end(), std::ref(f32rng));
365   std::generate(v99.begin(), v99.end(), std::ref(f32rng));
366   std::generate(v100.begin(), v100.end(), std::ref(f32rng));
367   std::generate(v101.begin(), v101.end(), std::ref(f32rng));
368   std::generate(v102.begin(), v102.end(), std::ref(f32rng));
369   std::generate(v103.begin(), v103.end(), std::ref(f32rng));
370   std::generate(v104.begin(), v104.end(), std::ref(f32rng));
371   std::generate(v105.begin(), v105.end(), std::ref(f32rng));
372   std::generate(v106.begin(), v106.end(), std::ref(f32rng));
373   std::generate(v107.begin(), v107.end(), std::ref(f32rng));
374   std::generate(v108.begin(), v108.end(), std::ref(f32rng));
375   std::generate(v109.begin(), v109.end(), std::ref(f32rng));
376   std::generate(v110.begin(), v110.end(), std::ref(f32rng));
377   std::generate(v111.begin(), v111.end(), std::ref(f32rng));
378   std::generate(v112.begin(), v112.end(), std::ref(f32rng));
379   std::generate(v113.begin(), v113.end(), std::ref(f32rng));
380   std::generate(w114.begin(), w114.end(), std::ref(f32rng));
381   std::generate(w115.begin(), w115.end(), std::ref(f32rng));
382   std::generate(w116.begin(), w116.end(), std::ref(f32rng));
383   std::generate(w117.begin(), w117.end(), std::ref(f32rng));
384   std::fill(w118.begin(), w118.end(), 0.0f);
385   std::generate(w118.begin(), w118.end() - size_t(sparsity * w118.size()), std::ref(f32rng));
386   std::shuffle(w118.begin(), w118.end(), rng);
387   std::generate(w119.begin(), w119.end(), std::ref(f32rng));
388   std::fill(w120.begin(), w120.end(), 0.0f);
389   std::generate(w120.begin(), w120.end() - size_t(sparsity * w120.size()), std::ref(f32rng));
390   std::shuffle(w120.begin(), w120.end(), rng);
391   std::generate(w121.begin(), w121.end(), std::ref(f32rng));
392   std::generate(w122.begin(), w122.end(), std::ref(f32rng));
393   std::generate(w123.begin(), w123.end(), std::ref(f32rng));
394   std::fill(w124.begin(), w124.end(), 0.0f);
395   std::generate(w124.begin(), w124.end() - size_t(sparsity * w124.size()), std::ref(f32rng));
396   std::shuffle(w124.begin(), w124.end(), rng);
397   std::generate(w125.begin(), w125.end(), std::ref(f32rng));
398   std::fill(w126.begin(), w126.end(), 0.0f);
399   std::generate(w126.begin(), w126.end() - size_t(sparsity * w126.size()), std::ref(f32rng));
400   std::shuffle(w126.begin(), w126.end(), rng);
401   std::generate(w127.begin(), w127.end(), std::ref(f32rng));
402   std::generate(w128.begin(), w128.end(), std::ref(f32rng));
403   std::generate(w129.begin(), w129.end(), std::ref(f32rng));
404   std::fill(w130.begin(), w130.end(), 0.0f);
405   std::generate(w130.begin(), w130.end() - size_t(sparsity * w130.size()), std::ref(f32rng));
406   std::shuffle(w130.begin(), w130.end(), rng);
407   std::generate(w131.begin(), w131.end(), std::ref(f32rng));
408   std::fill(w132.begin(), w132.end(), 0.0f);
409   std::generate(w132.begin(), w132.end() - size_t(sparsity * w132.size()), std::ref(f32rng));
410   std::shuffle(w132.begin(), w132.end(), rng);
411   std::generate(w133.begin(), w133.end(), std::ref(f32rng));
412   std::generate(w134.begin(), w134.end(), std::ref(f32rng));
413   std::generate(w135.begin(), w135.end(), std::ref(f32rng));
414   std::fill(w136.begin(), w136.end(), 0.0f);
415   std::generate(w136.begin(), w136.end() - size_t(sparsity * w136.size()), std::ref(f32rng));
416   std::shuffle(w136.begin(), w136.end(), rng);
417   std::generate(w137.begin(), w137.end(), std::ref(f32rng));
418   std::fill(w138.begin(), w138.end(), 0.0f);
419   std::generate(w138.begin(), w138.end() - size_t(sparsity * w138.size()), std::ref(f32rng));
420   std::shuffle(w138.begin(), w138.end(), rng);
421   std::generate(w139.begin(), w139.end(), std::ref(f32rng));
422   std::fill(w140.begin(), w140.end(), 0.0f);
423   std::generate(w140.begin(), w140.end() - size_t(sparsity * w140.size()), std::ref(f32rng));
424   std::shuffle(w140.begin(), w140.end(), rng);
425   std::generate(w141.begin(), w141.end(), std::ref(f32rng));
426   std::fill(w142.begin(), w142.end(), 0.0f);
427   std::generate(w142.begin(), w142.end() - size_t(sparsity * w142.size()), std::ref(f32rng));
428   std::shuffle(w142.begin(), w142.end(), rng);
429   std::generate(w143.begin(), w143.end(), std::ref(f32rng));
430   std::generate(w144.begin(), w144.end(), std::ref(f32rng));
431   std::generate(w145.begin(), w145.end(), std::ref(f32rng));
432   std::fill(w146.begin(), w146.end(), 0.0f);
433   std::generate(w146.begin(), w146.end() - size_t(sparsity * w146.size()), std::ref(f32rng));
434   std::shuffle(w146.begin(), w146.end(), rng);
435   std::generate(w147.begin(), w147.end(), std::ref(f32rng));
436   std::fill(w148.begin(), w148.end(), 0.0f);
437   std::generate(w148.begin(), w148.end() - size_t(sparsity * w148.size()), std::ref(f32rng));
438   std::shuffle(w148.begin(), w148.end(), rng);
439   std::generate(w149.begin(), w149.end(), std::ref(f32rng));
440   std::fill(w150.begin(), w150.end(), 0.0f);
441   std::generate(w150.begin(), w150.end() - size_t(sparsity * w150.size()), std::ref(f32rng));
442   std::shuffle(w150.begin(), w150.end(), rng);
443   std::generate(w151.begin(), w151.end(), std::ref(f32rng));
444   std::fill(w152.begin(), w152.end(), 0.0f);
445   std::generate(w152.begin(), w152.end() - size_t(sparsity * w152.size()), std::ref(f32rng));
446   std::shuffle(w152.begin(), w152.end(), rng);
447   std::generate(w153.begin(), w153.end(), std::ref(f32rng));
448   std::generate(w154.begin(), w154.end(), std::ref(f32rng));
449   std::generate(w155.begin(), w155.end(), std::ref(f32rng));
450   std::fill(w156.begin(), w156.end(), 0.0f);
451   std::generate(w156.begin(), w156.end() - size_t(sparsity * w156.size()), std::ref(f32rng));
452   std::shuffle(w156.begin(), w156.end(), rng);
453   std::generate(w157.begin(), w157.end(), std::ref(f32rng));
454   std::fill(w158.begin(), w158.end(), 0.0f);
455   std::generate(w158.begin(), w158.end() - size_t(sparsity * w158.size()), std::ref(f32rng));
456   std::shuffle(w158.begin(), w158.end(), rng);
457   std::generate(w159.begin(), w159.end(), std::ref(f32rng));
458   std::fill(w160.begin(), w160.end(), 0.0f);
459   std::generate(w160.begin(), w160.end() - size_t(sparsity * w160.size()), std::ref(f32rng));
460   std::shuffle(w160.begin(), w160.end(), rng);
461   std::generate(w161.begin(), w161.end(), std::ref(f32rng));
462   std::fill(w162.begin(), w162.end(), 0.0f);
463   std::generate(w162.begin(), w162.end() - size_t(sparsity * w162.size()), std::ref(f32rng));
464   std::shuffle(w162.begin(), w162.end(), rng);
465   std::generate(w163.begin(), w163.end(), std::ref(f32rng));
466   std::generate(w164.begin(), w164.end(), std::ref(f32rng));
467   std::generate(w165.begin(), w165.end(), std::ref(f32rng));
468   std::fill(w166.begin(), w166.end(), 0.0f);
469   std::generate(w166.begin(), w166.end() - size_t(sparsity * w166.size()), std::ref(f32rng));
470   std::shuffle(w166.begin(), w166.end(), rng);
471   std::generate(w167.begin(), w167.end(), std::ref(f32rng));
472   std::fill(w168.begin(), w168.end(), 0.0f);
473   std::generate(w168.begin(), w168.end() - size_t(sparsity * w168.size()), std::ref(f32rng));
474   std::shuffle(w168.begin(), w168.end(), rng);
475   std::generate(w169.begin(), w169.end(), std::ref(f32rng));
476   std::generate(w170.begin(), w170.end(), std::ref(f32rng));
477   std::generate(w171.begin(), w171.end(), std::ref(f32rng));
478   std::fill(w172.begin(), w172.end(), 0.0f);
479   std::generate(w172.begin(), w172.end() - size_t(sparsity * w172.size()), std::ref(f32rng));
480   std::shuffle(w172.begin(), w172.end(), rng);
481   std::generate(w173.begin(), w173.end(), std::ref(f32rng));
482   std::fill(w174.begin(), w174.end(), 0.0f);
483   std::generate(w174.begin(), w174.end() - size_t(sparsity * w174.size()), std::ref(f32rng));
484   std::shuffle(w174.begin(), w174.end(), rng);
485   std::generate(w175.begin(), w175.end(), std::ref(f32rng));
486   std::generate(w176.begin(), w176.end(), std::ref(f32rng));
487   std::generate(w177.begin(), w177.end(), std::ref(f32rng));
488   std::fill(w178.begin(), w178.end(), 0.0f);
489   std::generate(w178.begin(), w178.end() - size_t(sparsity * w178.size()), std::ref(f32rng));
490   std::shuffle(w178.begin(), w178.end(), rng);
491   std::generate(w179.begin(), w179.end(), std::ref(f32rng));
492   std::fill(w180.begin(), w180.end(), 0.0f);
493   std::generate(w180.begin(), w180.end() - size_t(sparsity * w180.size()), std::ref(f32rng));
494   std::shuffle(w180.begin(), w180.end(), rng);
495   std::generate(w181.begin(), w181.end(), std::ref(f32rng));
496   std::generate(w182.begin(), w182.end(), std::ref(f32rng));
497   std::generate(w183.begin(), w183.end(), std::ref(f32rng));
498   std::fill(w184.begin(), w184.end(), 0.0f);
499   std::generate(w184.begin(), w184.end() - size_t(sparsity * w184.size()), std::ref(f32rng));
500   std::shuffle(w184.begin(), w184.end(), rng);
501   std::generate(w185.begin(), w185.end(), std::ref(f32rng));
502   std::fill(w186.begin(), w186.end(), 0.0f);
503   std::generate(w186.begin(), w186.end() - size_t(sparsity * w186.size()), std::ref(f32rng));
504   std::shuffle(w186.begin(), w186.end(), rng);
505   std::generate(w187.begin(), w187.end(), std::ref(f32rng));
506   std::generate(w188.begin(), w188.end(), std::ref(f32rng));
507   std::generate(w189.begin(), w189.end(), std::ref(f32rng));
508   std::fill(w190.begin(), w190.end(), 0.0f);
509   std::generate(w190.begin(), w190.end() - size_t(sparsity * w190.size()), std::ref(f32rng));
510   std::shuffle(w190.begin(), w190.end(), rng);
511   std::generate(w191.begin(), w191.end(), std::ref(f32rng));
512   std::fill(w192.begin(), w192.end(), 0.0f);
513   std::generate(w192.begin(), w192.end() - size_t(sparsity * w192.size()), std::ref(f32rng));
514   std::shuffle(w192.begin(), w192.end(), rng);
515   std::generate(w193.begin(), w193.end(), std::ref(f32rng));
516   std::fill(w194.begin(), w194.end(), 0.0f);
517   std::generate(w194.begin(), w194.end() - size_t(sparsity * w194.size()), std::ref(f32rng));
518   std::shuffle(w194.begin(), w194.end(), rng);
519   std::generate(w195.begin(), w195.end(), std::ref(f32rng));
520   std::fill(w196.begin(), w196.end(), 0.0f);
521   std::generate(w196.begin(), w196.end() - size_t(sparsity * w196.size()), std::ref(f32rng));
522   std::shuffle(w196.begin(), w196.end(), rng);
523   std::generate(w197.begin(), w197.end(), std::ref(f32rng));
524   std::generate(w198.begin(), w198.end(), std::ref(f32rng));
525   std::generate(w199.begin(), w199.end(), std::ref(f32rng));
526   std::fill(w200.begin(), w200.end(), 0.0f);
527   std::generate(w200.begin(), w200.end() - size_t(sparsity * w200.size()), std::ref(f32rng));
528   std::shuffle(w200.begin(), w200.end(), rng);
529   std::generate(w201.begin(), w201.end(), std::ref(f32rng));
530   std::fill(w202.begin(), w202.end(), 0.0f);
531   std::generate(w202.begin(), w202.end() - size_t(sparsity * w202.size()), std::ref(f32rng));
532   std::shuffle(w202.begin(), w202.end(), rng);
533   std::generate(w203.begin(), w203.end(), std::ref(f32rng));
534   std::fill(w204.begin(), w204.end(), 0.0f);
535   std::generate(w204.begin(), w204.end() - size_t(sparsity * w204.size()), std::ref(f32rng));
536   std::shuffle(w204.begin(), w204.end(), rng);
537   std::generate(w205.begin(), w205.end(), std::ref(f32rng));
538   std::fill(w206.begin(), w206.end(), 0.0f);
539   std::generate(w206.begin(), w206.end() - size_t(sparsity * w206.size()), std::ref(f32rng));
540   std::shuffle(w206.begin(), w206.end(), rng);
541   std::generate(w207.begin(), w207.end(), std::ref(f32rng));
542   std::generate(w208.begin(), w208.end(), std::ref(f32rng));
543   std::generate(w209.begin(), w209.end(), std::ref(f32rng));
544   std::fill(w210.begin(), w210.end(), 0.0f);
545   std::generate(w210.begin(), w210.end() - size_t(sparsity * w210.size()), std::ref(f32rng));
546   std::shuffle(w210.begin(), w210.end(), rng);
547   std::generate(w211.begin(), w211.end(), std::ref(f32rng));
548   std::fill(w212.begin(), w212.end(), 0.0f);
549   std::generate(w212.begin(), w212.end() - size_t(sparsity * w212.size()), std::ref(f32rng));
550   std::shuffle(w212.begin(), w212.end(), rng);
551   std::generate(w213.begin(), w213.end(), std::ref(f32rng));
552   std::fill(w214.begin(), w214.end(), 0.0f);
553   std::generate(w214.begin(), w214.end() - size_t(sparsity * w214.size()), std::ref(f32rng));
554   std::shuffle(w214.begin(), w214.end(), rng);
555   std::generate(w215.begin(), w215.end(), std::ref(f32rng));
556   std::fill(w216.begin(), w216.end(), 0.0f);
557   std::generate(w216.begin(), w216.end() - size_t(sparsity * w216.size()), std::ref(f32rng));
558   std::shuffle(w216.begin(), w216.end(), rng);
559   std::generate(w217.begin(), w217.end(), std::ref(f32rng));
560   std::generate(w218.begin(), w218.end(), std::ref(f32rng));
561   std::generate(w219.begin(), w219.end(), std::ref(f32rng));
562   std::fill(w220.begin(), w220.end(), 0.0f);
563   std::generate(w220.begin(), w220.end() - size_t(sparsity * w220.size()), std::ref(f32rng));
564   std::shuffle(w220.begin(), w220.end(), rng);
565   std::generate(w221.begin(), w221.end(), std::ref(f32rng));
566   std::fill(w222.begin(), w222.end(), 0.0f);
567   std::generate(w222.begin(), w222.end() - size_t(sparsity * w222.size()), std::ref(f32rng));
568   std::shuffle(w222.begin(), w222.end(), rng);
569   std::generate(w223.begin(), w223.end(), std::ref(f32rng));
570   std::fill(w224.begin(), w224.end(), 0.0f);
571   std::generate(w224.begin(), w224.end() - size_t(sparsity * w224.size()), std::ref(f32rng));
572   std::shuffle(w224.begin(), w224.end(), rng);
573   std::generate(w225.begin(), w225.end(), std::ref(f32rng));
574   std::fill(w226.begin(), w226.end(), 0.0f);
575   std::generate(w226.begin(), w226.end() - size_t(sparsity * w226.size()), std::ref(f32rng));
576   std::shuffle(w226.begin(), w226.end(), rng);
577   std::generate(w227.begin(), w227.end(), std::ref(f32rng));
578   std::generate(w228.begin(), w228.end(), std::ref(f32rng));
579   std::generate(w229.begin(), w229.end(), std::ref(f32rng));
580   std::fill(w230.begin(), w230.end(), 0.0f);
581   std::generate(w230.begin(), w230.end() - size_t(sparsity * w230.size()), std::ref(f32rng));
582   std::shuffle(w230.begin(), w230.end(), rng);
583   std::generate(w231.begin(), w231.end(), std::ref(f32rng));
584   std::fill(w232.begin(), w232.end(), 0.0f);
585   std::generate(w232.begin(), w232.end() - size_t(sparsity * w232.size()), std::ref(f32rng));
586   std::shuffle(w232.begin(), w232.end(), rng);
587   std::generate(w233.begin(), w233.end(), std::ref(f32rng));
588   std::fill(w234.begin(), w234.end(), 0.0f);
589   std::generate(w234.begin(), w234.end() - size_t(sparsity * w234.size()), std::ref(f32rng));
590   std::shuffle(w234.begin(), w234.end(), rng);
591   std::generate(w235.begin(), w235.end(), std::ref(f32rng));
592   std::fill(w236.begin(), w236.end(), 0.0f);
593   std::generate(w236.begin(), w236.end() - size_t(sparsity * w236.size()), std::ref(f32rng));
594   std::shuffle(w236.begin(), w236.end(), rng);
595   std::generate(w237.begin(), w237.end(), std::ref(f32rng));
596   std::generate(w238.begin(), w238.end(), std::ref(f32rng));
597   std::generate(w239.begin(), w239.end(), std::ref(f32rng));
598   std::generate(w240.begin(), w240.end(), std::ref(f32rng));
599   std::generate(w241.begin(), w241.end(), std::ref(f32rng));
600 
601   ExecutionPlan operators;
602   xnn_status status;
603 
604   xnn_operator_t op0 = nullptr;
605   status = xnn_create_convolution2d_nchw_f32(
606     1 /* top padding */, 1 /* right padding */,
607     1 /* bottom padding */, 1 /* left padding */,
608     3 /* kernel height */, 3 /* kernel width */,
609     2 /* subsampling height */, 2 /* subsampling width */,
610     1 /* dilation_height */, 1 /* dilation_width */,
611     1 /* groups */,
612     3 /* input channels per group */,
613     16 /* output_channels_per_group */,
614     3 /* input pixel stride */,
615     16 /* output pixel stride */,
616     w114.data(), w115.data(),
617     -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
618     XNN_FLAG_INPUT_NHWC /* flags */,
619     &op0);
620   if (status != xnn_status_success) {
621     std::cerr << "failed to create operation #0" << std::endl;
622     return ExecutionPlan();
623   }
624   operators.emplace_back(op0, xnn_delete_operator);
625 
626   xnn_operator_t op1 = nullptr;
627   status = xnn_create_hardswish_nc_f32(
628     16 /* channels */,
629     16 /* input stride */,
630     16 /* output stride */,
631     0 /* flags */,
632     &op1);
633   if (status != xnn_status_success) {
634     std::cerr << "failed to create operation #1" << std::endl;
635     return ExecutionPlan();
636   }
637   operators.emplace_back(op1, xnn_delete_operator);
638 
639   xnn_operator_t op2 = nullptr;
640   status = xnn_create_convolution2d_nchw_f32(
641     1 /* top padding */, 1 /* right padding */,
642     1 /* bottom padding */, 1 /* left padding */,
643     3 /* kernel height */, 3 /* kernel width */,
644     1 /* subsampling height */, 1 /* subsampling width */,
645     1 /* dilation_height */, 1 /* dilation_width */,
646     16 /* groups */,
647     1 /* input channels per group */,
648     1 /* output_channels_per_group */,
649     16 /* input pixel stride */,
650     16 /* output pixel stride */,
651     w116.data(), w117.data(),
652     0.0f /* output min */, std::numeric_limits<float>::infinity() /* output max */,
653     0 /* flags */,
654     &op2);
655   if (status != xnn_status_success) {
656     std::cerr << "failed to create operation #2" << std::endl;
657     return ExecutionPlan();
658   }
659   operators.emplace_back(op2, xnn_delete_operator);
660 
661   xnn_operator_t op3 = nullptr;
662   status = xnn_create_convolution2d_nchw_f32(
663     0 /* top padding */, 0 /* right padding */,
664     0 /* bottom padding */, 0 /* left padding */,
665     1 /* kernel height */, 1 /* kernel width */,
666     1 /* subsampling height */, 1 /* subsampling width */,
667     1 /* dilation_height */, 1 /* dilation_width */,
668     1 /* groups */,
669     16 /* input channels per group */,
670     16 /* output_channels_per_group */,
671     16 /* input pixel stride */,
672     16 /* output pixel stride */,
673     w118.data(), w119.data(),
674     -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
675     0 /* flags */,
676     &op3);
677   if (status != xnn_status_success) {
678     std::cerr << "failed to create operation #3" << std::endl;
679     return ExecutionPlan();
680   }
681   operators.emplace_back(op3, xnn_delete_operator);
682 
683   xnn_operator_t op4 = nullptr;
684   status = xnn_create_add_nd_f32(
685     -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
686     0 /* flags */,
687     &op4);
688   if (status != xnn_status_success) {
689     std::cerr << "failed to create operation #4" << std::endl;
690     return ExecutionPlan();
691   }
692   operators.emplace_back(op4, xnn_delete_operator);
693 
694   xnn_operator_t op5 = nullptr;
695   status = xnn_create_convolution2d_nchw_f32(
696     0 /* top padding */, 0 /* right padding */,
697     0 /* bottom padding */, 0 /* left padding */,
698     1 /* kernel height */, 1 /* kernel width */,
699     1 /* subsampling height */, 1 /* subsampling width */,
700     1 /* dilation_height */, 1 /* dilation_width */,
701     1 /* groups */,
702     16 /* input channels per group */,
703     64 /* output_channels_per_group */,
704     16 /* input pixel stride */,
705     64 /* output pixel stride */,
706     w120.data(), w121.data(),
707     0.0f /* output min */, std::numeric_limits<float>::infinity() /* output max */,
708     0 /* flags */,
709     &op5);
710   if (status != xnn_status_success) {
711     std::cerr << "failed to create operation #5" << std::endl;
712     return ExecutionPlan();
713   }
714   operators.emplace_back(op5, xnn_delete_operator);
715 
716   xnn_operator_t op6 = nullptr;
717   status = xnn_create_convolution2d_nchw_f32(
718     1 /* top padding */, 1 /* right padding */,
719     1 /* bottom padding */, 1 /* left padding */,
720     3 /* kernel height */, 3 /* kernel width */,
721     2 /* subsampling height */, 2 /* subsampling width */,
722     1 /* dilation_height */, 1 /* dilation_width */,
723     64 /* groups */,
724     1 /* input channels per group */,
725     1 /* output_channels_per_group */,
726     64 /* input pixel stride */,
727     64 /* output pixel stride */,
728     w122.data(), w123.data(),
729     0.0f /* output min */, std::numeric_limits<float>::infinity() /* output max */,
730     0 /* flags */,
731     &op6);
732   if (status != xnn_status_success) {
733     std::cerr << "failed to create operation #6" << std::endl;
734     return ExecutionPlan();
735   }
736   operators.emplace_back(op6, xnn_delete_operator);
737 
738   xnn_operator_t op7 = nullptr;
739   status = xnn_create_convolution2d_nchw_f32(
740     0 /* top padding */, 0 /* right padding */,
741     0 /* bottom padding */, 0 /* left padding */,
742     1 /* kernel height */, 1 /* kernel width */,
743     1 /* subsampling height */, 1 /* subsampling width */,
744     1 /* dilation_height */, 1 /* dilation_width */,
745     1 /* groups */,
746     64 /* input channels per group */,
747     24 /* output_channels_per_group */,
748     64 /* input pixel stride */,
749     24 /* output pixel stride */,
750     w124.data(), w125.data(),
751     -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
752     0 /* flags */,
753     &op7);
754   if (status != xnn_status_success) {
755     std::cerr << "failed to create operation #7" << std::endl;
756     return ExecutionPlan();
757   }
758   operators.emplace_back(op7, xnn_delete_operator);
759 
760   xnn_operator_t op8 = nullptr;
761   status = xnn_create_convolution2d_nchw_f32(
762     0 /* top padding */, 0 /* right padding */,
763     0 /* bottom padding */, 0 /* left padding */,
764     1 /* kernel height */, 1 /* kernel width */,
765     1 /* subsampling height */, 1 /* subsampling width */,
766     1 /* dilation_height */, 1 /* dilation_width */,
767     1 /* groups */,
768     24 /* input channels per group */,
769     72 /* output_channels_per_group */,
770     24 /* input pixel stride */,
771     72 /* output pixel stride */,
772     w126.data(), w127.data(),
773     0.0f /* output min */, std::numeric_limits<float>::infinity() /* output max */,
774     0 /* flags */,
775     &op8);
776   if (status != xnn_status_success) {
777     std::cerr << "failed to create operation #8" << std::endl;
778     return ExecutionPlan();
779   }
780   operators.emplace_back(op8, xnn_delete_operator);
781 
782   xnn_operator_t op9 = nullptr;
783   status = xnn_create_convolution2d_nchw_f32(
784     1 /* top padding */, 1 /* right padding */,
785     1 /* bottom padding */, 1 /* left padding */,
786     3 /* kernel height */, 3 /* kernel width */,
787     1 /* subsampling height */, 1 /* subsampling width */,
788     1 /* dilation_height */, 1 /* dilation_width */,
789     72 /* groups */,
790     1 /* input channels per group */,
791     1 /* output_channels_per_group */,
792     72 /* input pixel stride */,
793     72 /* output pixel stride */,
794     w128.data(), w129.data(),
795     0.0f /* output min */, std::numeric_limits<float>::infinity() /* output max */,
796     0 /* flags */,
797     &op9);
798   if (status != xnn_status_success) {
799     std::cerr << "failed to create operation #9" << std::endl;
800     return ExecutionPlan();
801   }
802   operators.emplace_back(op9, xnn_delete_operator);
803 
804   xnn_operator_t op10 = nullptr;
805   status = xnn_create_convolution2d_nchw_f32(
806     0 /* top padding */, 0 /* right padding */,
807     0 /* bottom padding */, 0 /* left padding */,
808     1 /* kernel height */, 1 /* kernel width */,
809     1 /* subsampling height */, 1 /* subsampling width */,
810     1 /* dilation_height */, 1 /* dilation_width */,
811     1 /* groups */,
812     72 /* input channels per group */,
813     24 /* output_channels_per_group */,
814     72 /* input pixel stride */,
815     24 /* output pixel stride */,
816     w130.data(), w131.data(),
817     -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
818     0 /* flags */,
819     &op10);
820   if (status != xnn_status_success) {
821     std::cerr << "failed to create operation #10" << std::endl;
822     return ExecutionPlan();
823   }
824   operators.emplace_back(op10, xnn_delete_operator);
825 
826   xnn_operator_t op11 = nullptr;
827   status = xnn_create_add_nd_f32(
828     -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
829     0 /* flags */,
830     &op11);
831   if (status != xnn_status_success) {
832     std::cerr << "failed to create operation #11" << std::endl;
833     return ExecutionPlan();
834   }
835   operators.emplace_back(op11, xnn_delete_operator);
836 
837   xnn_operator_t op12 = nullptr;
838   status = xnn_create_convolution2d_nchw_f32(
839     0 /* top padding */, 0 /* right padding */,
840     0 /* bottom padding */, 0 /* left padding */,
841     1 /* kernel height */, 1 /* kernel width */,
842     1 /* subsampling height */, 1 /* subsampling width */,
843     1 /* dilation_height */, 1 /* dilation_width */,
844     1 /* groups */,
845     24 /* input channels per group */,
846     72 /* output_channels_per_group */,
847     24 /* input pixel stride */,
848     72 /* output pixel stride */,
849     w132.data(), w133.data(),
850     0.0f /* output min */, std::numeric_limits<float>::infinity() /* output max */,
851     0 /* flags */,
852     &op12);
853   if (status != xnn_status_success) {
854     std::cerr << "failed to create operation #12" << std::endl;
855     return ExecutionPlan();
856   }
857   operators.emplace_back(op12, xnn_delete_operator);
858 
859   xnn_operator_t op13 = nullptr;
860   status = xnn_create_convolution2d_nchw_f32(
861     2 /* top padding */, 2 /* right padding */,
862     2 /* bottom padding */, 2 /* left padding */,
863     5 /* kernel height */, 5 /* kernel width */,
864     2 /* subsampling height */, 2 /* subsampling width */,
865     1 /* dilation_height */, 1 /* dilation_width */,
866     72 /* groups */,
867     1 /* input channels per group */,
868     1 /* output_channels_per_group */,
869     72 /* input pixel stride */,
870     72 /* output pixel stride */,
871     w134.data(), w135.data(),
872     0.0f /* output min */, std::numeric_limits<float>::infinity() /* output max */,
873     0 /* flags */,
874     &op13);
875   if (status != xnn_status_success) {
876     std::cerr << "failed to create operation #13" << std::endl;
877     return ExecutionPlan();
878   }
879   operators.emplace_back(op13, xnn_delete_operator);
880 
881   xnn_operator_t op14 = nullptr;
882   status = xnn_create_global_average_pooling_ncw_f32(
883     72 /* channels */,
884     -std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity(),
885     0 /* flags */,
886     &op14);
887   if (status != xnn_status_success) {
888     std::cerr << "failed to create operation #14" << std::endl;
889     return ExecutionPlan();
890   }
891   operators.emplace_back(op14, xnn_delete_operator);
892 
893   xnn_operator_t op15 = nullptr;
894   status = xnn_create_convolution2d_nchw_f32(
895     0 /* top padding */, 0 /* right padding */,
896     0 /* bottom padding */, 0 /* left padding */,
897     1 /* kernel height */, 1 /* kernel width */,
898     1 /* subsampling height */, 1 /* subsampling width */,
899     1 /* dilation_height */, 1 /* dilation_width */,
900     1 /* groups */,
901     72 /* input channels per group */,
902     24 /* output_channels_per_group */,
903     72 /* input pixel stride */,
904     24 /* output pixel stride */,
905     w136.data(), w137.data(),
906     0.0f /* output min */, std::numeric_limits<float>::infinity() /* output max */,
907     0 /* flags */,
908     &op15);
909   if (status != xnn_status_success) {
910     std::cerr << "failed to create operation #15" << std::endl;
911     return ExecutionPlan();
912   }
913   operators.emplace_back(op15, xnn_delete_operator);
914 
915   xnn_operator_t op16 = nullptr;
916   status = xnn_create_convolution2d_nchw_f32(
917     0 /* top padding */, 0 /* right padding */,
918     0 /* bottom padding */, 0 /* left padding */,
919     1 /* kernel height */, 1 /* kernel width */,
920     1 /* subsampling height */, 1 /* subsampling width */,
921     1 /* dilation_height */, 1 /* dilation_width */,
922     1 /* groups */,
923     24 /* input channels per group */,
924     72 /* output_channels_per_group */,
925     24 /* input pixel stride */,
926     72 /* output pixel stride */,
927     w138.data(), w139.data(),
928     0.0f /* output min */, +0x1.00014Fp+0 /* output max */,
929     0 /* flags */,
930     &op16);
931   if (status != xnn_status_success) {
932     std::cerr << "failed to create operation #16" << std::endl;
933     return ExecutionPlan();
934   }
935   operators.emplace_back(op16, xnn_delete_operator);
936 
937   xnn_operator_t op17 = nullptr;
938   status = xnn_create_multiply_nd_f32(
939     -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
940     0 /* flags */,
941     &op17);
942   if (status != xnn_status_success) {
943     std::cerr << "failed to create operation #17" << std::endl;
944     return ExecutionPlan();
945   }
946   operators.emplace_back(op17, xnn_delete_operator);
947 
948   xnn_operator_t op18 = nullptr;
949   status = xnn_create_convolution2d_nchw_f32(
950     0 /* top padding */, 0 /* right padding */,
951     0 /* bottom padding */, 0 /* left padding */,
952     1 /* kernel height */, 1 /* kernel width */,
953     1 /* subsampling height */, 1 /* subsampling width */,
954     1 /* dilation_height */, 1 /* dilation_width */,
955     1 /* groups */,
956     72 /* input channels per group */,
957     40 /* output_channels_per_group */,
958     72 /* input pixel stride */,
959     40 /* output pixel stride */,
960     w140.data(), w141.data(),
961     -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
962     0 /* flags */,
963     &op18);
964   if (status != xnn_status_success) {
965     std::cerr << "failed to create operation #18" << std::endl;
966     return ExecutionPlan();
967   }
968   operators.emplace_back(op18, xnn_delete_operator);
969 
970   xnn_operator_t op19 = nullptr;
971   status = xnn_create_convolution2d_nchw_f32(
972     0 /* top padding */, 0 /* right padding */,
973     0 /* bottom padding */, 0 /* left padding */,
974     1 /* kernel height */, 1 /* kernel width */,
975     1 /* subsampling height */, 1 /* subsampling width */,
976     1 /* dilation_height */, 1 /* dilation_width */,
977     1 /* groups */,
978     40 /* input channels per group */,
979     120 /* output_channels_per_group */,
980     40 /* input pixel stride */,
981     120 /* output pixel stride */,
982     w142.data(), w143.data(),
983     0.0f /* output min */, std::numeric_limits<float>::infinity() /* output max */,
984     0 /* flags */,
985     &op19);
986   if (status != xnn_status_success) {
987     std::cerr << "failed to create operation #19" << std::endl;
988     return ExecutionPlan();
989   }
990   operators.emplace_back(op19, xnn_delete_operator);
991 
992   xnn_operator_t op20 = nullptr;
993   status = xnn_create_convolution2d_nchw_f32(
994     2 /* top padding */, 2 /* right padding */,
995     2 /* bottom padding */, 2 /* left padding */,
996     5 /* kernel height */, 5 /* kernel width */,
997     1 /* subsampling height */, 1 /* subsampling width */,
998     1 /* dilation_height */, 1 /* dilation_width */,
999     120 /* groups */,
1000     1 /* input channels per group */,
1001     1 /* output_channels_per_group */,
1002     120 /* input pixel stride */,
1003     120 /* output pixel stride */,
1004     w144.data(), w145.data(),
1005     0.0f /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1006     0 /* flags */,
1007     &op20);
1008   if (status != xnn_status_success) {
1009     std::cerr << "failed to create operation #20" << std::endl;
1010     return ExecutionPlan();
1011   }
1012   operators.emplace_back(op20, xnn_delete_operator);
1013 
1014   xnn_operator_t op21 = nullptr;
1015   status = xnn_create_global_average_pooling_ncw_f32(
1016     120 /* channels */,
1017     -std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity(),
1018     0 /* flags */,
1019     &op21);
1020   if (status != xnn_status_success) {
1021     std::cerr << "failed to create operation #21" << std::endl;
1022     return ExecutionPlan();
1023   }
1024   operators.emplace_back(op21, xnn_delete_operator);
1025 
1026   xnn_operator_t op22 = nullptr;
1027   status = xnn_create_convolution2d_nchw_f32(
1028     0 /* top padding */, 0 /* right padding */,
1029     0 /* bottom padding */, 0 /* left padding */,
1030     1 /* kernel height */, 1 /* kernel width */,
1031     1 /* subsampling height */, 1 /* subsampling width */,
1032     1 /* dilation_height */, 1 /* dilation_width */,
1033     1 /* groups */,
1034     120 /* input channels per group */,
1035     32 /* output_channels_per_group */,
1036     120 /* input pixel stride */,
1037     32 /* output pixel stride */,
1038     w146.data(), w147.data(),
1039     0.0f /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1040     0 /* flags */,
1041     &op22);
1042   if (status != xnn_status_success) {
1043     std::cerr << "failed to create operation #22" << std::endl;
1044     return ExecutionPlan();
1045   }
1046   operators.emplace_back(op22, xnn_delete_operator);
1047 
1048   xnn_operator_t op23 = nullptr;
1049   status = xnn_create_convolution2d_nchw_f32(
1050     0 /* top padding */, 0 /* right padding */,
1051     0 /* bottom padding */, 0 /* left padding */,
1052     1 /* kernel height */, 1 /* kernel width */,
1053     1 /* subsampling height */, 1 /* subsampling width */,
1054     1 /* dilation_height */, 1 /* dilation_width */,
1055     1 /* groups */,
1056     32 /* input channels per group */,
1057     120 /* output_channels_per_group */,
1058     32 /* input pixel stride */,
1059     120 /* output pixel stride */,
1060     w148.data(), w149.data(),
1061     0.0f /* output min */, +0x1.00014Fp+0 /* output max */,
1062     0 /* flags */,
1063     &op23);
1064   if (status != xnn_status_success) {
1065     std::cerr << "failed to create operation #23" << std::endl;
1066     return ExecutionPlan();
1067   }
1068   operators.emplace_back(op23, xnn_delete_operator);
1069 
1070   xnn_operator_t op24 = nullptr;
1071   status = xnn_create_multiply_nd_f32(
1072     -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1073     0 /* flags */,
1074     &op24);
1075   if (status != xnn_status_success) {
1076     std::cerr << "failed to create operation #24" << std::endl;
1077     return ExecutionPlan();
1078   }
1079   operators.emplace_back(op24, xnn_delete_operator);
1080 
1081   xnn_operator_t op25 = nullptr;
1082   status = xnn_create_convolution2d_nchw_f32(
1083     0 /* top padding */, 0 /* right padding */,
1084     0 /* bottom padding */, 0 /* left padding */,
1085     1 /* kernel height */, 1 /* kernel width */,
1086     1 /* subsampling height */, 1 /* subsampling width */,
1087     1 /* dilation_height */, 1 /* dilation_width */,
1088     1 /* groups */,
1089     120 /* input channels per group */,
1090     40 /* output_channels_per_group */,
1091     120 /* input pixel stride */,
1092     40 /* output pixel stride */,
1093     w150.data(), w151.data(),
1094     -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1095     0 /* flags */,
1096     &op25);
1097   if (status != xnn_status_success) {
1098     std::cerr << "failed to create operation #25" << std::endl;
1099     return ExecutionPlan();
1100   }
1101   operators.emplace_back(op25, xnn_delete_operator);
1102 
1103   xnn_operator_t op26 = nullptr;
1104   status = xnn_create_add_nd_f32(
1105     -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1106     0 /* flags */,
1107     &op26);
1108   if (status != xnn_status_success) {
1109     std::cerr << "failed to create operation #26" << std::endl;
1110     return ExecutionPlan();
1111   }
1112   operators.emplace_back(op26, xnn_delete_operator);
1113 
1114   xnn_operator_t op27 = nullptr;
1115   status = xnn_create_convolution2d_nchw_f32(
1116     0 /* top padding */, 0 /* right padding */,
1117     0 /* bottom padding */, 0 /* left padding */,
1118     1 /* kernel height */, 1 /* kernel width */,
1119     1 /* subsampling height */, 1 /* subsampling width */,
1120     1 /* dilation_height */, 1 /* dilation_width */,
1121     1 /* groups */,
1122     40 /* input channels per group */,
1123     120 /* output_channels_per_group */,
1124     40 /* input pixel stride */,
1125     120 /* output pixel stride */,
1126     w152.data(), w153.data(),
1127     0.0f /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1128     0 /* flags */,
1129     &op27);
1130   if (status != xnn_status_success) {
1131     std::cerr << "failed to create operation #27" << std::endl;
1132     return ExecutionPlan();
1133   }
1134   operators.emplace_back(op27, xnn_delete_operator);
1135 
1136   xnn_operator_t op28 = nullptr;
1137   status = xnn_create_convolution2d_nchw_f32(
1138     2 /* top padding */, 2 /* right padding */,
1139     2 /* bottom padding */, 2 /* left padding */,
1140     5 /* kernel height */, 5 /* kernel width */,
1141     1 /* subsampling height */, 1 /* subsampling width */,
1142     1 /* dilation_height */, 1 /* dilation_width */,
1143     120 /* groups */,
1144     1 /* input channels per group */,
1145     1 /* output_channels_per_group */,
1146     120 /* input pixel stride */,
1147     120 /* output pixel stride */,
1148     w154.data(), w155.data(),
1149     0.0f /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1150     0 /* flags */,
1151     &op28);
1152   if (status != xnn_status_success) {
1153     std::cerr << "failed to create operation #28" << std::endl;
1154     return ExecutionPlan();
1155   }
1156   operators.emplace_back(op28, xnn_delete_operator);
1157 
1158   xnn_operator_t op29 = nullptr;
1159   status = xnn_create_global_average_pooling_ncw_f32(
1160     120 /* channels */,
1161     -std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity(),
1162     0 /* flags */,
1163     &op29);
1164   if (status != xnn_status_success) {
1165     std::cerr << "failed to create operation #29" << std::endl;
1166     return ExecutionPlan();
1167   }
1168   operators.emplace_back(op29, xnn_delete_operator);
1169 
1170   xnn_operator_t op30 = nullptr;
1171   status = xnn_create_convolution2d_nchw_f32(
1172     0 /* top padding */, 0 /* right padding */,
1173     0 /* bottom padding */, 0 /* left padding */,
1174     1 /* kernel height */, 1 /* kernel width */,
1175     1 /* subsampling height */, 1 /* subsampling width */,
1176     1 /* dilation_height */, 1 /* dilation_width */,
1177     1 /* groups */,
1178     120 /* input channels per group */,
1179     32 /* output_channels_per_group */,
1180     120 /* input pixel stride */,
1181     32 /* output pixel stride */,
1182     w156.data(), w157.data(),
1183     0.0f /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1184     0 /* flags */,
1185     &op30);
1186   if (status != xnn_status_success) {
1187     std::cerr << "failed to create operation #30" << std::endl;
1188     return ExecutionPlan();
1189   }
1190   operators.emplace_back(op30, xnn_delete_operator);
1191 
1192   xnn_operator_t op31 = nullptr;
1193   status = xnn_create_convolution2d_nchw_f32(
1194     0 /* top padding */, 0 /* right padding */,
1195     0 /* bottom padding */, 0 /* left padding */,
1196     1 /* kernel height */, 1 /* kernel width */,
1197     1 /* subsampling height */, 1 /* subsampling width */,
1198     1 /* dilation_height */, 1 /* dilation_width */,
1199     1 /* groups */,
1200     32 /* input channels per group */,
1201     120 /* output_channels_per_group */,
1202     32 /* input pixel stride */,
1203     120 /* output pixel stride */,
1204     w158.data(), w159.data(),
1205     0.0f /* output min */, +0x1.00014Fp+0 /* output max */,
1206     0 /* flags */,
1207     &op31);
1208   if (status != xnn_status_success) {
1209     std::cerr << "failed to create operation #31" << std::endl;
1210     return ExecutionPlan();
1211   }
1212   operators.emplace_back(op31, xnn_delete_operator);
1213 
1214   xnn_operator_t op32 = nullptr;
1215   status = xnn_create_multiply_nd_f32(
1216     -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1217     0 /* flags */,
1218     &op32);
1219   if (status != xnn_status_success) {
1220     std::cerr << "failed to create operation #32" << std::endl;
1221     return ExecutionPlan();
1222   }
1223   operators.emplace_back(op32, xnn_delete_operator);
1224 
1225   xnn_operator_t op33 = nullptr;
1226   status = xnn_create_convolution2d_nchw_f32(
1227     0 /* top padding */, 0 /* right padding */,
1228     0 /* bottom padding */, 0 /* left padding */,
1229     1 /* kernel height */, 1 /* kernel width */,
1230     1 /* subsampling height */, 1 /* subsampling width */,
1231     1 /* dilation_height */, 1 /* dilation_width */,
1232     1 /* groups */,
1233     120 /* input channels per group */,
1234     40 /* output_channels_per_group */,
1235     120 /* input pixel stride */,
1236     40 /* output pixel stride */,
1237     w160.data(), w161.data(),
1238     -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1239     0 /* flags */,
1240     &op33);
1241   if (status != xnn_status_success) {
1242     std::cerr << "failed to create operation #33" << std::endl;
1243     return ExecutionPlan();
1244   }
1245   operators.emplace_back(op33, xnn_delete_operator);
1246 
1247   xnn_operator_t op34 = nullptr;
1248   status = xnn_create_add_nd_f32(
1249     -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1250     0 /* flags */,
1251     &op34);
1252   if (status != xnn_status_success) {
1253     std::cerr << "failed to create operation #34" << std::endl;
1254     return ExecutionPlan();
1255   }
1256   operators.emplace_back(op34, xnn_delete_operator);
1257 
1258   xnn_operator_t op35 = nullptr;
1259   status = xnn_create_convolution2d_nchw_f32(
1260     0 /* top padding */, 0 /* right padding */,
1261     0 /* bottom padding */, 0 /* left padding */,
1262     1 /* kernel height */, 1 /* kernel width */,
1263     1 /* subsampling height */, 1 /* subsampling width */,
1264     1 /* dilation_height */, 1 /* dilation_width */,
1265     1 /* groups */,
1266     40 /* input channels per group */,
1267     240 /* output_channels_per_group */,
1268     40 /* input pixel stride */,
1269     240 /* output pixel stride */,
1270     w162.data(), w163.data(),
1271     -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1272     0 /* flags */,
1273     &op35);
1274   if (status != xnn_status_success) {
1275     std::cerr << "failed to create operation #35" << std::endl;
1276     return ExecutionPlan();
1277   }
1278   operators.emplace_back(op35, xnn_delete_operator);
1279 
1280   xnn_operator_t op36 = nullptr;
1281   status = xnn_create_hardswish_nc_f32(
1282     240 /* channels */,
1283     240 /* input stride */,
1284     240 /* output stride */,
1285     0 /* flags */,
1286     &op36);
1287   if (status != xnn_status_success) {
1288     std::cerr << "failed to create operation #36" << std::endl;
1289     return ExecutionPlan();
1290   }
1291   operators.emplace_back(op36, xnn_delete_operator);
1292 
1293   xnn_operator_t op37 = nullptr;
1294   status = xnn_create_convolution2d_nchw_f32(
1295     1 /* top padding */, 1 /* right padding */,
1296     1 /* bottom padding */, 1 /* left padding */,
1297     3 /* kernel height */, 3 /* kernel width */,
1298     2 /* subsampling height */, 2 /* subsampling width */,
1299     1 /* dilation_height */, 1 /* dilation_width */,
1300     240 /* groups */,
1301     1 /* input channels per group */,
1302     1 /* output_channels_per_group */,
1303     240 /* input pixel stride */,
1304     240 /* output pixel stride */,
1305     w164.data(), w165.data(),
1306     -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1307     0 /* flags */,
1308     &op37);
1309   if (status != xnn_status_success) {
1310     std::cerr << "failed to create operation #37" << std::endl;
1311     return ExecutionPlan();
1312   }
1313   operators.emplace_back(op37, xnn_delete_operator);
1314 
1315   xnn_operator_t op38 = nullptr;
1316   status = xnn_create_hardswish_nc_f32(
1317     240 /* channels */,
1318     240 /* input stride */,
1319     240 /* output stride */,
1320     0 /* flags */,
1321     &op38);
1322   if (status != xnn_status_success) {
1323     std::cerr << "failed to create operation #38" << std::endl;
1324     return ExecutionPlan();
1325   }
1326   operators.emplace_back(op38, xnn_delete_operator);
1327 
1328   xnn_operator_t op39 = nullptr;
1329   status = xnn_create_convolution2d_nchw_f32(
1330     0 /* top padding */, 0 /* right padding */,
1331     0 /* bottom padding */, 0 /* left padding */,
1332     1 /* kernel height */, 1 /* kernel width */,
1333     1 /* subsampling height */, 1 /* subsampling width */,
1334     1 /* dilation_height */, 1 /* dilation_width */,
1335     1 /* groups */,
1336     240 /* input channels per group */,
1337     80 /* output_channels_per_group */,
1338     240 /* input pixel stride */,
1339     80 /* output pixel stride */,
1340     w166.data(), w167.data(),
1341     -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1342     0 /* flags */,
1343     &op39);
1344   if (status != xnn_status_success) {
1345     std::cerr << "failed to create operation #39" << std::endl;
1346     return ExecutionPlan();
1347   }
1348   operators.emplace_back(op39, xnn_delete_operator);
1349 
1350   xnn_operator_t op40 = nullptr;
1351   status = xnn_create_convolution2d_nchw_f32(
1352     0 /* top padding */, 0 /* right padding */,
1353     0 /* bottom padding */, 0 /* left padding */,
1354     1 /* kernel height */, 1 /* kernel width */,
1355     1 /* subsampling height */, 1 /* subsampling width */,
1356     1 /* dilation_height */, 1 /* dilation_width */,
1357     1 /* groups */,
1358     80 /* input channels per group */,
1359     200 /* output_channels_per_group */,
1360     80 /* input pixel stride */,
1361     200 /* output pixel stride */,
1362     w168.data(), w169.data(),
1363     -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1364     0 /* flags */,
1365     &op40);
1366   if (status != xnn_status_success) {
1367     std::cerr << "failed to create operation #40" << std::endl;
1368     return ExecutionPlan();
1369   }
1370   operators.emplace_back(op40, xnn_delete_operator);
1371 
1372   xnn_operator_t op41 = nullptr;
1373   status = xnn_create_hardswish_nc_f32(
1374     200 /* channels */,
1375     200 /* input stride */,
1376     200 /* output stride */,
1377     0 /* flags */,
1378     &op41);
1379   if (status != xnn_status_success) {
1380     std::cerr << "failed to create operation #41" << std::endl;
1381     return ExecutionPlan();
1382   }
1383   operators.emplace_back(op41, xnn_delete_operator);
1384 
1385   xnn_operator_t op42 = nullptr;
1386   status = xnn_create_convolution2d_nchw_f32(
1387     1 /* top padding */, 1 /* right padding */,
1388     1 /* bottom padding */, 1 /* left padding */,
1389     3 /* kernel height */, 3 /* kernel width */,
1390     1 /* subsampling height */, 1 /* subsampling width */,
1391     1 /* dilation_height */, 1 /* dilation_width */,
1392     200 /* groups */,
1393     1 /* input channels per group */,
1394     1 /* output_channels_per_group */,
1395     200 /* input pixel stride */,
1396     200 /* output pixel stride */,
1397     w170.data(), w171.data(),
1398     -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1399     0 /* flags */,
1400     &op42);
1401   if (status != xnn_status_success) {
1402     std::cerr << "failed to create operation #42" << std::endl;
1403     return ExecutionPlan();
1404   }
1405   operators.emplace_back(op42, xnn_delete_operator);
1406 
1407   xnn_operator_t op43 = nullptr;
1408   status = xnn_create_hardswish_nc_f32(
1409     200 /* channels */,
1410     200 /* input stride */,
1411     200 /* output stride */,
1412     0 /* flags */,
1413     &op43);
1414   if (status != xnn_status_success) {
1415     std::cerr << "failed to create operation #43" << std::endl;
1416     return ExecutionPlan();
1417   }
1418   operators.emplace_back(op43, xnn_delete_operator);
1419 
1420   xnn_operator_t op44 = nullptr;
1421   status = xnn_create_convolution2d_nchw_f32(
1422     0 /* top padding */, 0 /* right padding */,
1423     0 /* bottom padding */, 0 /* left padding */,
1424     1 /* kernel height */, 1 /* kernel width */,
1425     1 /* subsampling height */, 1 /* subsampling width */,
1426     1 /* dilation_height */, 1 /* dilation_width */,
1427     1 /* groups */,
1428     200 /* input channels per group */,
1429     80 /* output_channels_per_group */,
1430     200 /* input pixel stride */,
1431     80 /* output pixel stride */,
1432     w172.data(), w173.data(),
1433     -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1434     0 /* flags */,
1435     &op44);
1436   if (status != xnn_status_success) {
1437     std::cerr << "failed to create operation #44" << std::endl;
1438     return ExecutionPlan();
1439   }
1440   operators.emplace_back(op44, xnn_delete_operator);
1441 
1442   xnn_operator_t op45 = nullptr;
1443   status = xnn_create_add_nd_f32(
1444     -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1445     0 /* flags */,
1446     &op45);
1447   if (status != xnn_status_success) {
1448     std::cerr << "failed to create operation #45" << std::endl;
1449     return ExecutionPlan();
1450   }
1451   operators.emplace_back(op45, xnn_delete_operator);
1452 
1453   xnn_operator_t op46 = nullptr;
1454   status = xnn_create_convolution2d_nchw_f32(
1455     0 /* top padding */, 0 /* right padding */,
1456     0 /* bottom padding */, 0 /* left padding */,
1457     1 /* kernel height */, 1 /* kernel width */,
1458     1 /* subsampling height */, 1 /* subsampling width */,
1459     1 /* dilation_height */, 1 /* dilation_width */,
1460     1 /* groups */,
1461     80 /* input channels per group */,
1462     184 /* output_channels_per_group */,
1463     80 /* input pixel stride */,
1464     184 /* output pixel stride */,
1465     w174.data(), w175.data(),
1466     -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1467     0 /* flags */,
1468     &op46);
1469   if (status != xnn_status_success) {
1470     std::cerr << "failed to create operation #46" << std::endl;
1471     return ExecutionPlan();
1472   }
1473   operators.emplace_back(op46, xnn_delete_operator);
1474 
1475   xnn_operator_t op47 = nullptr;
1476   status = xnn_create_hardswish_nc_f32(
1477     184 /* channels */,
1478     184 /* input stride */,
1479     184 /* output stride */,
1480     0 /* flags */,
1481     &op47);
1482   if (status != xnn_status_success) {
1483     std::cerr << "failed to create operation #47" << std::endl;
1484     return ExecutionPlan();
1485   }
1486   operators.emplace_back(op47, xnn_delete_operator);
1487 
1488   xnn_operator_t op48 = nullptr;
1489   status = xnn_create_convolution2d_nchw_f32(
1490     1 /* top padding */, 1 /* right padding */,
1491     1 /* bottom padding */, 1 /* left padding */,
1492     3 /* kernel height */, 3 /* kernel width */,
1493     1 /* subsampling height */, 1 /* subsampling width */,
1494     1 /* dilation_height */, 1 /* dilation_width */,
1495     184 /* groups */,
1496     1 /* input channels per group */,
1497     1 /* output_channels_per_group */,
1498     184 /* input pixel stride */,
1499     184 /* output pixel stride */,
1500     w176.data(), w177.data(),
1501     -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1502     0 /* flags */,
1503     &op48);
1504   if (status != xnn_status_success) {
1505     std::cerr << "failed to create operation #48" << std::endl;
1506     return ExecutionPlan();
1507   }
1508   operators.emplace_back(op48, xnn_delete_operator);
1509 
1510   xnn_operator_t op49 = nullptr;
1511   status = xnn_create_hardswish_nc_f32(
1512     184 /* channels */,
1513     184 /* input stride */,
1514     184 /* output stride */,
1515     0 /* flags */,
1516     &op49);
1517   if (status != xnn_status_success) {
1518     std::cerr << "failed to create operation #49" << std::endl;
1519     return ExecutionPlan();
1520   }
1521   operators.emplace_back(op49, xnn_delete_operator);
1522 
1523   xnn_operator_t op50 = nullptr;
1524   status = xnn_create_convolution2d_nchw_f32(
1525     0 /* top padding */, 0 /* right padding */,
1526     0 /* bottom padding */, 0 /* left padding */,
1527     1 /* kernel height */, 1 /* kernel width */,
1528     1 /* subsampling height */, 1 /* subsampling width */,
1529     1 /* dilation_height */, 1 /* dilation_width */,
1530     1 /* groups */,
1531     184 /* input channels per group */,
1532     80 /* output_channels_per_group */,
1533     184 /* input pixel stride */,
1534     80 /* output pixel stride */,
1535     w178.data(), w179.data(),
1536     -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1537     0 /* flags */,
1538     &op50);
1539   if (status != xnn_status_success) {
1540     std::cerr << "failed to create operation #50" << std::endl;
1541     return ExecutionPlan();
1542   }
1543   operators.emplace_back(op50, xnn_delete_operator);
1544 
1545   xnn_operator_t op51 = nullptr;
1546   status = xnn_create_add_nd_f32(
1547     -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1548     0 /* flags */,
1549     &op51);
1550   if (status != xnn_status_success) {
1551     std::cerr << "failed to create operation #51" << std::endl;
1552     return ExecutionPlan();
1553   }
1554   operators.emplace_back(op51, xnn_delete_operator);
1555 
1556   xnn_operator_t op52 = nullptr;
1557   status = xnn_create_convolution2d_nchw_f32(
1558     0 /* top padding */, 0 /* right padding */,
1559     0 /* bottom padding */, 0 /* left padding */,
1560     1 /* kernel height */, 1 /* kernel width */,
1561     1 /* subsampling height */, 1 /* subsampling width */,
1562     1 /* dilation_height */, 1 /* dilation_width */,
1563     1 /* groups */,
1564     80 /* input channels per group */,
1565     184 /* output_channels_per_group */,
1566     80 /* input pixel stride */,
1567     184 /* output pixel stride */,
1568     w180.data(), w181.data(),
1569     -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1570     0 /* flags */,
1571     &op52);
1572   if (status != xnn_status_success) {
1573     std::cerr << "failed to create operation #52" << std::endl;
1574     return ExecutionPlan();
1575   }
1576   operators.emplace_back(op52, xnn_delete_operator);
1577 
1578   xnn_operator_t op53 = nullptr;
1579   status = xnn_create_hardswish_nc_f32(
1580     184 /* channels */,
1581     184 /* input stride */,
1582     184 /* output stride */,
1583     0 /* flags */,
1584     &op53);
1585   if (status != xnn_status_success) {
1586     std::cerr << "failed to create operation #53" << std::endl;
1587     return ExecutionPlan();
1588   }
1589   operators.emplace_back(op53, xnn_delete_operator);
1590 
1591   xnn_operator_t op54 = nullptr;
1592   status = xnn_create_convolution2d_nchw_f32(
1593     1 /* top padding */, 1 /* right padding */,
1594     1 /* bottom padding */, 1 /* left padding */,
1595     3 /* kernel height */, 3 /* kernel width */,
1596     1 /* subsampling height */, 1 /* subsampling width */,
1597     1 /* dilation_height */, 1 /* dilation_width */,
1598     184 /* groups */,
1599     1 /* input channels per group */,
1600     1 /* output_channels_per_group */,
1601     184 /* input pixel stride */,
1602     184 /* output pixel stride */,
1603     w182.data(), w183.data(),
1604     -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1605     0 /* flags */,
1606     &op54);
1607   if (status != xnn_status_success) {
1608     std::cerr << "failed to create operation #54" << std::endl;
1609     return ExecutionPlan();
1610   }
1611   operators.emplace_back(op54, xnn_delete_operator);
1612 
1613   xnn_operator_t op55 = nullptr;
1614   status = xnn_create_hardswish_nc_f32(
1615     184 /* channels */,
1616     184 /* input stride */,
1617     184 /* output stride */,
1618     0 /* flags */,
1619     &op55);
1620   if (status != xnn_status_success) {
1621     std::cerr << "failed to create operation #55" << std::endl;
1622     return ExecutionPlan();
1623   }
1624   operators.emplace_back(op55, xnn_delete_operator);
1625 
1626   xnn_operator_t op56 = nullptr;
1627   status = xnn_create_convolution2d_nchw_f32(
1628     0 /* top padding */, 0 /* right padding */,
1629     0 /* bottom padding */, 0 /* left padding */,
1630     1 /* kernel height */, 1 /* kernel width */,
1631     1 /* subsampling height */, 1 /* subsampling width */,
1632     1 /* dilation_height */, 1 /* dilation_width */,
1633     1 /* groups */,
1634     184 /* input channels per group */,
1635     80 /* output_channels_per_group */,
1636     184 /* input pixel stride */,
1637     80 /* output pixel stride */,
1638     w184.data(), w185.data(),
1639     -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1640     0 /* flags */,
1641     &op56);
1642   if (status != xnn_status_success) {
1643     std::cerr << "failed to create operation #56" << std::endl;
1644     return ExecutionPlan();
1645   }
1646   operators.emplace_back(op56, xnn_delete_operator);
1647 
1648   xnn_operator_t op57 = nullptr;
1649   status = xnn_create_add_nd_f32(
1650     -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1651     0 /* flags */,
1652     &op57);
1653   if (status != xnn_status_success) {
1654     std::cerr << "failed to create operation #57" << std::endl;
1655     return ExecutionPlan();
1656   }
1657   operators.emplace_back(op57, xnn_delete_operator);
1658 
1659   xnn_operator_t op58 = nullptr;
1660   status = xnn_create_convolution2d_nchw_f32(
1661     0 /* top padding */, 0 /* right padding */,
1662     0 /* bottom padding */, 0 /* left padding */,
1663     1 /* kernel height */, 1 /* kernel width */,
1664     1 /* subsampling height */, 1 /* subsampling width */,
1665     1 /* dilation_height */, 1 /* dilation_width */,
1666     1 /* groups */,
1667     80 /* input channels per group */,
1668     480 /* output_channels_per_group */,
1669     80 /* input pixel stride */,
1670     480 /* output pixel stride */,
1671     w186.data(), w187.data(),
1672     -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1673     0 /* flags */,
1674     &op58);
1675   if (status != xnn_status_success) {
1676     std::cerr << "failed to create operation #58" << std::endl;
1677     return ExecutionPlan();
1678   }
1679   operators.emplace_back(op58, xnn_delete_operator);
1680 
1681   xnn_operator_t op59 = nullptr;
1682   status = xnn_create_hardswish_nc_f32(
1683     480 /* channels */,
1684     480 /* input stride */,
1685     480 /* output stride */,
1686     0 /* flags */,
1687     &op59);
1688   if (status != xnn_status_success) {
1689     std::cerr << "failed to create operation #59" << std::endl;
1690     return ExecutionPlan();
1691   }
1692   operators.emplace_back(op59, xnn_delete_operator);
1693 
1694   xnn_operator_t op60 = nullptr;
1695   status = xnn_create_convolution2d_nchw_f32(
1696     1 /* top padding */, 1 /* right padding */,
1697     1 /* bottom padding */, 1 /* left padding */,
1698     3 /* kernel height */, 3 /* kernel width */,
1699     1 /* subsampling height */, 1 /* subsampling width */,
1700     1 /* dilation_height */, 1 /* dilation_width */,
1701     480 /* groups */,
1702     1 /* input channels per group */,
1703     1 /* output_channels_per_group */,
1704     480 /* input pixel stride */,
1705     480 /* output pixel stride */,
1706     w188.data(), w189.data(),
1707     -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1708     0 /* flags */,
1709     &op60);
1710   if (status != xnn_status_success) {
1711     std::cerr << "failed to create operation #60" << std::endl;
1712     return ExecutionPlan();
1713   }
1714   operators.emplace_back(op60, xnn_delete_operator);
1715 
1716   xnn_operator_t op61 = nullptr;
1717   status = xnn_create_hardswish_nc_f32(
1718     480 /* channels */,
1719     480 /* input stride */,
1720     480 /* output stride */,
1721     0 /* flags */,
1722     &op61);
1723   if (status != xnn_status_success) {
1724     std::cerr << "failed to create operation #61" << std::endl;
1725     return ExecutionPlan();
1726   }
1727   operators.emplace_back(op61, xnn_delete_operator);
1728 
1729   xnn_operator_t op62 = nullptr;
1730   status = xnn_create_global_average_pooling_ncw_f32(
1731     480 /* channels */,
1732     -std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity(),
1733     0 /* flags */,
1734     &op62);
1735   if (status != xnn_status_success) {
1736     std::cerr << "failed to create operation #62" << std::endl;
1737     return ExecutionPlan();
1738   }
1739   operators.emplace_back(op62, xnn_delete_operator);
1740 
1741   xnn_operator_t op63 = nullptr;
1742   status = xnn_create_convolution2d_nchw_f32(
1743     0 /* top padding */, 0 /* right padding */,
1744     0 /* bottom padding */, 0 /* left padding */,
1745     1 /* kernel height */, 1 /* kernel width */,
1746     1 /* subsampling height */, 1 /* subsampling width */,
1747     1 /* dilation_height */, 1 /* dilation_width */,
1748     1 /* groups */,
1749     480 /* input channels per group */,
1750     120 /* output_channels_per_group */,
1751     480 /* input pixel stride */,
1752     120 /* output pixel stride */,
1753     w190.data(), w191.data(),
1754     0.0f /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1755     0 /* flags */,
1756     &op63);
1757   if (status != xnn_status_success) {
1758     std::cerr << "failed to create operation #63" << std::endl;
1759     return ExecutionPlan();
1760   }
1761   operators.emplace_back(op63, xnn_delete_operator);
1762 
1763   xnn_operator_t op64 = nullptr;
1764   status = xnn_create_convolution2d_nchw_f32(
1765     0 /* top padding */, 0 /* right padding */,
1766     0 /* bottom padding */, 0 /* left padding */,
1767     1 /* kernel height */, 1 /* kernel width */,
1768     1 /* subsampling height */, 1 /* subsampling width */,
1769     1 /* dilation_height */, 1 /* dilation_width */,
1770     1 /* groups */,
1771     120 /* input channels per group */,
1772     480 /* output_channels_per_group */,
1773     120 /* input pixel stride */,
1774     480 /* output pixel stride */,
1775     w192.data(), w193.data(),
1776     0.0f /* output min */, +0x1.00014Fp+0 /* output max */,
1777     0 /* flags */,
1778     &op64);
1779   if (status != xnn_status_success) {
1780     std::cerr << "failed to create operation #64" << std::endl;
1781     return ExecutionPlan();
1782   }
1783   operators.emplace_back(op64, xnn_delete_operator);
1784 
1785   xnn_operator_t op65 = nullptr;
1786   status = xnn_create_multiply_nd_f32(
1787     -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1788     0 /* flags */,
1789     &op65);
1790   if (status != xnn_status_success) {
1791     std::cerr << "failed to create operation #65" << std::endl;
1792     return ExecutionPlan();
1793   }
1794   operators.emplace_back(op65, xnn_delete_operator);
1795 
1796   xnn_operator_t op66 = nullptr;
1797   status = xnn_create_convolution2d_nchw_f32(
1798     0 /* top padding */, 0 /* right padding */,
1799     0 /* bottom padding */, 0 /* left padding */,
1800     1 /* kernel height */, 1 /* kernel width */,
1801     1 /* subsampling height */, 1 /* subsampling width */,
1802     1 /* dilation_height */, 1 /* dilation_width */,
1803     1 /* groups */,
1804     480 /* input channels per group */,
1805     112 /* output_channels_per_group */,
1806     480 /* input pixel stride */,
1807     112 /* output pixel stride */,
1808     w194.data(), w195.data(),
1809     -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1810     0 /* flags */,
1811     &op66);
1812   if (status != xnn_status_success) {
1813     std::cerr << "failed to create operation #66" << std::endl;
1814     return ExecutionPlan();
1815   }
1816   operators.emplace_back(op66, xnn_delete_operator);
1817 
1818   xnn_operator_t op67 = nullptr;
1819   status = xnn_create_convolution2d_nchw_f32(
1820     0 /* top padding */, 0 /* right padding */,
1821     0 /* bottom padding */, 0 /* left padding */,
1822     1 /* kernel height */, 1 /* kernel width */,
1823     1 /* subsampling height */, 1 /* subsampling width */,
1824     1 /* dilation_height */, 1 /* dilation_width */,
1825     1 /* groups */,
1826     112 /* input channels per group */,
1827     672 /* output_channels_per_group */,
1828     112 /* input pixel stride */,
1829     672 /* output pixel stride */,
1830     w196.data(), w197.data(),
1831     -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1832     0 /* flags */,
1833     &op67);
1834   if (status != xnn_status_success) {
1835     std::cerr << "failed to create operation #67" << std::endl;
1836     return ExecutionPlan();
1837   }
1838   operators.emplace_back(op67, xnn_delete_operator);
1839 
1840   xnn_operator_t op68 = nullptr;
1841   status = xnn_create_hardswish_nc_f32(
1842     672 /* channels */,
1843     672 /* input stride */,
1844     672 /* output stride */,
1845     0 /* flags */,
1846     &op68);
1847   if (status != xnn_status_success) {
1848     std::cerr << "failed to create operation #68" << std::endl;
1849     return ExecutionPlan();
1850   }
1851   operators.emplace_back(op68, xnn_delete_operator);
1852 
1853   xnn_operator_t op69 = nullptr;
1854   status = xnn_create_convolution2d_nchw_f32(
1855     1 /* top padding */, 1 /* right padding */,
1856     1 /* bottom padding */, 1 /* left padding */,
1857     3 /* kernel height */, 3 /* kernel width */,
1858     1 /* subsampling height */, 1 /* subsampling width */,
1859     1 /* dilation_height */, 1 /* dilation_width */,
1860     672 /* groups */,
1861     1 /* input channels per group */,
1862     1 /* output_channels_per_group */,
1863     672 /* input pixel stride */,
1864     672 /* output pixel stride */,
1865     w198.data(), w199.data(),
1866     -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1867     0 /* flags */,
1868     &op69);
1869   if (status != xnn_status_success) {
1870     std::cerr << "failed to create operation #69" << std::endl;
1871     return ExecutionPlan();
1872   }
1873   operators.emplace_back(op69, xnn_delete_operator);
1874 
1875   xnn_operator_t op70 = nullptr;
1876   status = xnn_create_hardswish_nc_f32(
1877     672 /* channels */,
1878     672 /* input stride */,
1879     672 /* output stride */,
1880     0 /* flags */,
1881     &op70);
1882   if (status != xnn_status_success) {
1883     std::cerr << "failed to create operation #70" << std::endl;
1884     return ExecutionPlan();
1885   }
1886   operators.emplace_back(op70, xnn_delete_operator);
1887 
1888   xnn_operator_t op71 = nullptr;
1889   status = xnn_create_global_average_pooling_ncw_f32(
1890     672 /* channels */,
1891     -std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity(),
1892     0 /* flags */,
1893     &op71);
1894   if (status != xnn_status_success) {
1895     std::cerr << "failed to create operation #71" << std::endl;
1896     return ExecutionPlan();
1897   }
1898   operators.emplace_back(op71, xnn_delete_operator);
1899 
1900   xnn_operator_t op72 = nullptr;
1901   status = xnn_create_convolution2d_nchw_f32(
1902     0 /* top padding */, 0 /* right padding */,
1903     0 /* bottom padding */, 0 /* left padding */,
1904     1 /* kernel height */, 1 /* kernel width */,
1905     1 /* subsampling height */, 1 /* subsampling width */,
1906     1 /* dilation_height */, 1 /* dilation_width */,
1907     1 /* groups */,
1908     672 /* input channels per group */,
1909     168 /* output_channels_per_group */,
1910     672 /* input pixel stride */,
1911     168 /* output pixel stride */,
1912     w200.data(), w201.data(),
1913     0.0f /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1914     0 /* flags */,
1915     &op72);
1916   if (status != xnn_status_success) {
1917     std::cerr << "failed to create operation #72" << std::endl;
1918     return ExecutionPlan();
1919   }
1920   operators.emplace_back(op72, xnn_delete_operator);
1921 
1922   xnn_operator_t op73 = nullptr;
1923   status = xnn_create_convolution2d_nchw_f32(
1924     0 /* top padding */, 0 /* right padding */,
1925     0 /* bottom padding */, 0 /* left padding */,
1926     1 /* kernel height */, 1 /* kernel width */,
1927     1 /* subsampling height */, 1 /* subsampling width */,
1928     1 /* dilation_height */, 1 /* dilation_width */,
1929     1 /* groups */,
1930     168 /* input channels per group */,
1931     672 /* output_channels_per_group */,
1932     168 /* input pixel stride */,
1933     672 /* output pixel stride */,
1934     w202.data(), w203.data(),
1935     0.0f /* output min */, +0x1.00014Fp+0 /* output max */,
1936     0 /* flags */,
1937     &op73);
1938   if (status != xnn_status_success) {
1939     std::cerr << "failed to create operation #73" << std::endl;
1940     return ExecutionPlan();
1941   }
1942   operators.emplace_back(op73, xnn_delete_operator);
1943 
1944   xnn_operator_t op74 = nullptr;
1945   status = xnn_create_multiply_nd_f32(
1946     -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1947     0 /* flags */,
1948     &op74);
1949   if (status != xnn_status_success) {
1950     std::cerr << "failed to create operation #74" << std::endl;
1951     return ExecutionPlan();
1952   }
1953   operators.emplace_back(op74, xnn_delete_operator);
1954 
1955   xnn_operator_t op75 = nullptr;
1956   status = xnn_create_convolution2d_nchw_f32(
1957     0 /* top padding */, 0 /* right padding */,
1958     0 /* bottom padding */, 0 /* left padding */,
1959     1 /* kernel height */, 1 /* kernel width */,
1960     1 /* subsampling height */, 1 /* subsampling width */,
1961     1 /* dilation_height */, 1 /* dilation_width */,
1962     1 /* groups */,
1963     672 /* input channels per group */,
1964     112 /* output_channels_per_group */,
1965     672 /* input pixel stride */,
1966     112 /* output pixel stride */,
1967     w204.data(), w205.data(),
1968     -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1969     0 /* flags */,
1970     &op75);
1971   if (status != xnn_status_success) {
1972     std::cerr << "failed to create operation #75" << std::endl;
1973     return ExecutionPlan();
1974   }
1975   operators.emplace_back(op75, xnn_delete_operator);
1976 
1977   xnn_operator_t op76 = nullptr;
1978   status = xnn_create_add_nd_f32(
1979     -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1980     0 /* flags */,
1981     &op76);
1982   if (status != xnn_status_success) {
1983     std::cerr << "failed to create operation #76" << std::endl;
1984     return ExecutionPlan();
1985   }
1986   operators.emplace_back(op76, xnn_delete_operator);
1987 
1988   xnn_operator_t op77 = nullptr;
1989   status = xnn_create_convolution2d_nchw_f32(
1990     0 /* top padding */, 0 /* right padding */,
1991     0 /* bottom padding */, 0 /* left padding */,
1992     1 /* kernel height */, 1 /* kernel width */,
1993     1 /* subsampling height */, 1 /* subsampling width */,
1994     1 /* dilation_height */, 1 /* dilation_width */,
1995     1 /* groups */,
1996     112 /* input channels per group */,
1997     672 /* output_channels_per_group */,
1998     112 /* input pixel stride */,
1999     672 /* output pixel stride */,
2000     w206.data(), w207.data(),
2001     -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
2002     0 /* flags */,
2003     &op77);
2004   if (status != xnn_status_success) {
2005     std::cerr << "failed to create operation #77" << std::endl;
2006     return ExecutionPlan();
2007   }
2008   operators.emplace_back(op77, xnn_delete_operator);
2009 
2010   xnn_operator_t op78 = nullptr;
2011   status = xnn_create_hardswish_nc_f32(
2012     672 /* channels */,
2013     672 /* input stride */,
2014     672 /* output stride */,
2015     0 /* flags */,
2016     &op78);
2017   if (status != xnn_status_success) {
2018     std::cerr << "failed to create operation #78" << std::endl;
2019     return ExecutionPlan();
2020   }
2021   operators.emplace_back(op78, xnn_delete_operator);
2022 
2023   xnn_operator_t op79 = nullptr;
2024   status = xnn_create_convolution2d_nchw_f32(
2025     2 /* top padding */, 2 /* right padding */,
2026     2 /* bottom padding */, 2 /* left padding */,
2027     5 /* kernel height */, 5 /* kernel width */,
2028     2 /* subsampling height */, 2 /* subsampling width */,
2029     1 /* dilation_height */, 1 /* dilation_width */,
2030     672 /* groups */,
2031     1 /* input channels per group */,
2032     1 /* output_channels_per_group */,
2033     672 /* input pixel stride */,
2034     672 /* output pixel stride */,
2035     w208.data(), w209.data(),
2036     -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
2037     0 /* flags */,
2038     &op79);
2039   if (status != xnn_status_success) {
2040     std::cerr << "failed to create operation #79" << std::endl;
2041     return ExecutionPlan();
2042   }
2043   operators.emplace_back(op79, xnn_delete_operator);
2044 
2045   xnn_operator_t op80 = nullptr;
2046   status = xnn_create_hardswish_nc_f32(
2047     672 /* channels */,
2048     672 /* input stride */,
2049     672 /* output stride */,
2050     0 /* flags */,
2051     &op80);
2052   if (status != xnn_status_success) {
2053     std::cerr << "failed to create operation #80" << std::endl;
2054     return ExecutionPlan();
2055   }
2056   operators.emplace_back(op80, xnn_delete_operator);
2057 
2058   xnn_operator_t op81 = nullptr;
2059   status = xnn_create_global_average_pooling_ncw_f32(
2060     672 /* channels */,
2061     -std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity(),
2062     0 /* flags */,
2063     &op81);
2064   if (status != xnn_status_success) {
2065     std::cerr << "failed to create operation #81" << std::endl;
2066     return ExecutionPlan();
2067   }
2068   operators.emplace_back(op81, xnn_delete_operator);
2069 
2070   xnn_operator_t op82 = nullptr;
2071   status = xnn_create_convolution2d_nchw_f32(
2072     0 /* top padding */, 0 /* right padding */,
2073     0 /* bottom padding */, 0 /* left padding */,
2074     1 /* kernel height */, 1 /* kernel width */,
2075     1 /* subsampling height */, 1 /* subsampling width */,
2076     1 /* dilation_height */, 1 /* dilation_width */,
2077     1 /* groups */,
2078     672 /* input channels per group */,
2079     168 /* output_channels_per_group */,
2080     672 /* input pixel stride */,
2081     168 /* output pixel stride */,
2082     w210.data(), w211.data(),
2083     0.0f /* output min */, std::numeric_limits<float>::infinity() /* output max */,
2084     0 /* flags */,
2085     &op82);
2086   if (status != xnn_status_success) {
2087     std::cerr << "failed to create operation #82" << std::endl;
2088     return ExecutionPlan();
2089   }
2090   operators.emplace_back(op82, xnn_delete_operator);
2091 
2092   xnn_operator_t op83 = nullptr;
2093   status = xnn_create_convolution2d_nchw_f32(
2094     0 /* top padding */, 0 /* right padding */,
2095     0 /* bottom padding */, 0 /* left padding */,
2096     1 /* kernel height */, 1 /* kernel width */,
2097     1 /* subsampling height */, 1 /* subsampling width */,
2098     1 /* dilation_height */, 1 /* dilation_width */,
2099     1 /* groups */,
2100     168 /* input channels per group */,
2101     672 /* output_channels_per_group */,
2102     168 /* input pixel stride */,
2103     672 /* output pixel stride */,
2104     w212.data(), w213.data(),
2105     0.0f /* output min */, +0x1.00014Fp+0 /* output max */,
2106     0 /* flags */,
2107     &op83);
2108   if (status != xnn_status_success) {
2109     std::cerr << "failed to create operation #83" << std::endl;
2110     return ExecutionPlan();
2111   }
2112   operators.emplace_back(op83, xnn_delete_operator);
2113 
2114   xnn_operator_t op84 = nullptr;
2115   status = xnn_create_multiply_nd_f32(
2116     -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
2117     0 /* flags */,
2118     &op84);
2119   if (status != xnn_status_success) {
2120     std::cerr << "failed to create operation #84" << std::endl;
2121     return ExecutionPlan();
2122   }
2123   operators.emplace_back(op84, xnn_delete_operator);
2124 
2125   xnn_operator_t op85 = nullptr;
2126   status = xnn_create_convolution2d_nchw_f32(
2127     0 /* top padding */, 0 /* right padding */,
2128     0 /* bottom padding */, 0 /* left padding */,
2129     1 /* kernel height */, 1 /* kernel width */,
2130     1 /* subsampling height */, 1 /* subsampling width */,
2131     1 /* dilation_height */, 1 /* dilation_width */,
2132     1 /* groups */,
2133     672 /* input channels per group */,
2134     160 /* output_channels_per_group */,
2135     672 /* input pixel stride */,
2136     160 /* output pixel stride */,
2137     w214.data(), w215.data(),
2138     -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
2139     0 /* flags */,
2140     &op85);
2141   if (status != xnn_status_success) {
2142     std::cerr << "failed to create operation #85" << std::endl;
2143     return ExecutionPlan();
2144   }
2145   operators.emplace_back(op85, xnn_delete_operator);
2146 
2147   xnn_operator_t op86 = nullptr;
2148   status = xnn_create_convolution2d_nchw_f32(
2149     0 /* top padding */, 0 /* right padding */,
2150     0 /* bottom padding */, 0 /* left padding */,
2151     1 /* kernel height */, 1 /* kernel width */,
2152     1 /* subsampling height */, 1 /* subsampling width */,
2153     1 /* dilation_height */, 1 /* dilation_width */,
2154     1 /* groups */,
2155     160 /* input channels per group */,
2156     960 /* output_channels_per_group */,
2157     160 /* input pixel stride */,
2158     960 /* output pixel stride */,
2159     w216.data(), w217.data(),
2160     -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
2161     0 /* flags */,
2162     &op86);
2163   if (status != xnn_status_success) {
2164     std::cerr << "failed to create operation #86" << std::endl;
2165     return ExecutionPlan();
2166   }
2167   operators.emplace_back(op86, xnn_delete_operator);
2168 
2169   xnn_operator_t op87 = nullptr;
2170   status = xnn_create_hardswish_nc_f32(
2171     960 /* channels */,
2172     960 /* input stride */,
2173     960 /* output stride */,
2174     0 /* flags */,
2175     &op87);
2176   if (status != xnn_status_success) {
2177     std::cerr << "failed to create operation #87" << std::endl;
2178     return ExecutionPlan();
2179   }
2180   operators.emplace_back(op87, xnn_delete_operator);
2181 
2182   xnn_operator_t op88 = nullptr;
2183   status = xnn_create_convolution2d_nchw_f32(
2184     2 /* top padding */, 2 /* right padding */,
2185     2 /* bottom padding */, 2 /* left padding */,
2186     5 /* kernel height */, 5 /* kernel width */,
2187     1 /* subsampling height */, 1 /* subsampling width */,
2188     1 /* dilation_height */, 1 /* dilation_width */,
2189     960 /* groups */,
2190     1 /* input channels per group */,
2191     1 /* output_channels_per_group */,
2192     960 /* input pixel stride */,
2193     960 /* output pixel stride */,
2194     w218.data(), w219.data(),
2195     -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
2196     0 /* flags */,
2197     &op88);
2198   if (status != xnn_status_success) {
2199     std::cerr << "failed to create operation #88" << std::endl;
2200     return ExecutionPlan();
2201   }
2202   operators.emplace_back(op88, xnn_delete_operator);
2203 
2204   xnn_operator_t op89 = nullptr;
2205   status = xnn_create_hardswish_nc_f32(
2206     960 /* channels */,
2207     960 /* input stride */,
2208     960 /* output stride */,
2209     0 /* flags */,
2210     &op89);
2211   if (status != xnn_status_success) {
2212     std::cerr << "failed to create operation #89" << std::endl;
2213     return ExecutionPlan();
2214   }
2215   operators.emplace_back(op89, xnn_delete_operator);
2216 
2217   xnn_operator_t op90 = nullptr;
2218   status = xnn_create_global_average_pooling_ncw_f32(
2219     960 /* channels */,
2220     -std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity(),
2221     0 /* flags */,
2222     &op90);
2223   if (status != xnn_status_success) {
2224     std::cerr << "failed to create operation #90" << std::endl;
2225     return ExecutionPlan();
2226   }
2227   operators.emplace_back(op90, xnn_delete_operator);
2228 
2229   xnn_operator_t op91 = nullptr;
2230   status = xnn_create_convolution2d_nchw_f32(
2231     0 /* top padding */, 0 /* right padding */,
2232     0 /* bottom padding */, 0 /* left padding */,
2233     1 /* kernel height */, 1 /* kernel width */,
2234     1 /* subsampling height */, 1 /* subsampling width */,
2235     1 /* dilation_height */, 1 /* dilation_width */,
2236     1 /* groups */,
2237     960 /* input channels per group */,
2238     240 /* output_channels_per_group */,
2239     960 /* input pixel stride */,
2240     240 /* output pixel stride */,
2241     w220.data(), w221.data(),
2242     0.0f /* output min */, std::numeric_limits<float>::infinity() /* output max */,
2243     0 /* flags */,
2244     &op91);
2245   if (status != xnn_status_success) {
2246     std::cerr << "failed to create operation #91" << std::endl;
2247     return ExecutionPlan();
2248   }
2249   operators.emplace_back(op91, xnn_delete_operator);
2250 
2251   xnn_operator_t op92 = nullptr;
2252   status = xnn_create_convolution2d_nchw_f32(
2253     0 /* top padding */, 0 /* right padding */,
2254     0 /* bottom padding */, 0 /* left padding */,
2255     1 /* kernel height */, 1 /* kernel width */,
2256     1 /* subsampling height */, 1 /* subsampling width */,
2257     1 /* dilation_height */, 1 /* dilation_width */,
2258     1 /* groups */,
2259     240 /* input channels per group */,
2260     960 /* output_channels_per_group */,
2261     240 /* input pixel stride */,
2262     960 /* output pixel stride */,
2263     w222.data(), w223.data(),
2264     0.0f /* output min */, +0x1.00014Fp+0 /* output max */,
2265     0 /* flags */,
2266     &op92);
2267   if (status != xnn_status_success) {
2268     std::cerr << "failed to create operation #92" << std::endl;
2269     return ExecutionPlan();
2270   }
2271   operators.emplace_back(op92, xnn_delete_operator);
2272 
2273   xnn_operator_t op93 = nullptr;
2274   status = xnn_create_multiply_nd_f32(
2275     -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
2276     0 /* flags */,
2277     &op93);
2278   if (status != xnn_status_success) {
2279     std::cerr << "failed to create operation #93" << std::endl;
2280     return ExecutionPlan();
2281   }
2282   operators.emplace_back(op93, xnn_delete_operator);
2283 
2284   xnn_operator_t op94 = nullptr;
2285   status = xnn_create_convolution2d_nchw_f32(
2286     0 /* top padding */, 0 /* right padding */,
2287     0 /* bottom padding */, 0 /* left padding */,
2288     1 /* kernel height */, 1 /* kernel width */,
2289     1 /* subsampling height */, 1 /* subsampling width */,
2290     1 /* dilation_height */, 1 /* dilation_width */,
2291     1 /* groups */,
2292     960 /* input channels per group */,
2293     160 /* output_channels_per_group */,
2294     960 /* input pixel stride */,
2295     160 /* output pixel stride */,
2296     w224.data(), w225.data(),
2297     -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
2298     0 /* flags */,
2299     &op94);
2300   if (status != xnn_status_success) {
2301     std::cerr << "failed to create operation #94" << std::endl;
2302     return ExecutionPlan();
2303   }
2304   operators.emplace_back(op94, xnn_delete_operator);
2305 
2306   xnn_operator_t op95 = nullptr;
2307   status = xnn_create_add_nd_f32(
2308     -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
2309     0 /* flags */,
2310     &op95);
2311   if (status != xnn_status_success) {
2312     std::cerr << "failed to create operation #95" << std::endl;
2313     return ExecutionPlan();
2314   }
2315   operators.emplace_back(op95, xnn_delete_operator);
2316 
2317   xnn_operator_t op96 = nullptr;
2318   status = xnn_create_convolution2d_nchw_f32(
2319     0 /* top padding */, 0 /* right padding */,
2320     0 /* bottom padding */, 0 /* left padding */,
2321     1 /* kernel height */, 1 /* kernel width */,
2322     1 /* subsampling height */, 1 /* subsampling width */,
2323     1 /* dilation_height */, 1 /* dilation_width */,
2324     1 /* groups */,
2325     160 /* input channels per group */,
2326     960 /* output_channels_per_group */,
2327     160 /* input pixel stride */,
2328     960 /* output pixel stride */,
2329     w226.data(), w227.data(),
2330     -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
2331     0 /* flags */,
2332     &op96);
2333   if (status != xnn_status_success) {
2334     std::cerr << "failed to create operation #96" << std::endl;
2335     return ExecutionPlan();
2336   }
2337   operators.emplace_back(op96, xnn_delete_operator);
2338 
2339   xnn_operator_t op97 = nullptr;
2340   status = xnn_create_hardswish_nc_f32(
2341     960 /* channels */,
2342     960 /* input stride */,
2343     960 /* output stride */,
2344     0 /* flags */,
2345     &op97);
2346   if (status != xnn_status_success) {
2347     std::cerr << "failed to create operation #97" << std::endl;
2348     return ExecutionPlan();
2349   }
2350   operators.emplace_back(op97, xnn_delete_operator);
2351 
2352   xnn_operator_t op98 = nullptr;
2353   status = xnn_create_convolution2d_nchw_f32(
2354     2 /* top padding */, 2 /* right padding */,
2355     2 /* bottom padding */, 2 /* left padding */,
2356     5 /* kernel height */, 5 /* kernel width */,
2357     1 /* subsampling height */, 1 /* subsampling width */,
2358     1 /* dilation_height */, 1 /* dilation_width */,
2359     960 /* groups */,
2360     1 /* input channels per group */,
2361     1 /* output_channels_per_group */,
2362     960 /* input pixel stride */,
2363     960 /* output pixel stride */,
2364     w228.data(), w229.data(),
2365     -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
2366     0 /* flags */,
2367     &op98);
2368   if (status != xnn_status_success) {
2369     std::cerr << "failed to create operation #98" << std::endl;
2370     return ExecutionPlan();
2371   }
2372   operators.emplace_back(op98, xnn_delete_operator);
2373 
2374   xnn_operator_t op99 = nullptr;
2375   status = xnn_create_hardswish_nc_f32(
2376     960 /* channels */,
2377     960 /* input stride */,
2378     960 /* output stride */,
2379     0 /* flags */,
2380     &op99);
2381   if (status != xnn_status_success) {
2382     std::cerr << "failed to create operation #99" << std::endl;
2383     return ExecutionPlan();
2384   }
2385   operators.emplace_back(op99, xnn_delete_operator);
2386 
2387   xnn_operator_t op100 = nullptr;
2388   status = xnn_create_global_average_pooling_ncw_f32(
2389     960 /* channels */,
2390     -std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity(),
2391     0 /* flags */,
2392     &op100);
2393   if (status != xnn_status_success) {
2394     std::cerr << "failed to create operation #100" << std::endl;
2395     return ExecutionPlan();
2396   }
2397   operators.emplace_back(op100, xnn_delete_operator);
2398 
2399   xnn_operator_t op101 = nullptr;
2400   status = xnn_create_convolution2d_nchw_f32(
2401     0 /* top padding */, 0 /* right padding */,
2402     0 /* bottom padding */, 0 /* left padding */,
2403     1 /* kernel height */, 1 /* kernel width */,
2404     1 /* subsampling height */, 1 /* subsampling width */,
2405     1 /* dilation_height */, 1 /* dilation_width */,
2406     1 /* groups */,
2407     960 /* input channels per group */,
2408     240 /* output_channels_per_group */,
2409     960 /* input pixel stride */,
2410     240 /* output pixel stride */,
2411     w230.data(), w231.data(),
2412     0.0f /* output min */, std::numeric_limits<float>::infinity() /* output max */,
2413     0 /* flags */,
2414     &op101);
2415   if (status != xnn_status_success) {
2416     std::cerr << "failed to create operation #101" << std::endl;
2417     return ExecutionPlan();
2418   }
2419   operators.emplace_back(op101, xnn_delete_operator);
2420 
2421   xnn_operator_t op102 = nullptr;
2422   status = xnn_create_convolution2d_nchw_f32(
2423     0 /* top padding */, 0 /* right padding */,
2424     0 /* bottom padding */, 0 /* left padding */,
2425     1 /* kernel height */, 1 /* kernel width */,
2426     1 /* subsampling height */, 1 /* subsampling width */,
2427     1 /* dilation_height */, 1 /* dilation_width */,
2428     1 /* groups */,
2429     240 /* input channels per group */,
2430     960 /* output_channels_per_group */,
2431     240 /* input pixel stride */,
2432     960 /* output pixel stride */,
2433     w232.data(), w233.data(),
2434     0.0f /* output min */, +0x1.00014Fp+0 /* output max */,
2435     0 /* flags */,
2436     &op102);
2437   if (status != xnn_status_success) {
2438     std::cerr << "failed to create operation #102" << std::endl;
2439     return ExecutionPlan();
2440   }
2441   operators.emplace_back(op102, xnn_delete_operator);
2442 
2443   xnn_operator_t op103 = nullptr;
2444   status = xnn_create_multiply_nd_f32(
2445     -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
2446     0 /* flags */,
2447     &op103);
2448   if (status != xnn_status_success) {
2449     std::cerr << "failed to create operation #103" << std::endl;
2450     return ExecutionPlan();
2451   }
2452   operators.emplace_back(op103, xnn_delete_operator);
2453 
2454   xnn_operator_t op104 = nullptr;
2455   status = xnn_create_convolution2d_nchw_f32(
2456     0 /* top padding */, 0 /* right padding */,
2457     0 /* bottom padding */, 0 /* left padding */,
2458     1 /* kernel height */, 1 /* kernel width */,
2459     1 /* subsampling height */, 1 /* subsampling width */,
2460     1 /* dilation_height */, 1 /* dilation_width */,
2461     1 /* groups */,
2462     960 /* input channels per group */,
2463     160 /* output_channels_per_group */,
2464     960 /* input pixel stride */,
2465     160 /* output pixel stride */,
2466     w234.data(), w235.data(),
2467     -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
2468     0 /* flags */,
2469     &op104);
2470   if (status != xnn_status_success) {
2471     std::cerr << "failed to create operation #104" << std::endl;
2472     return ExecutionPlan();
2473   }
2474   operators.emplace_back(op104, xnn_delete_operator);
2475 
2476   xnn_operator_t op105 = nullptr;
2477   status = xnn_create_add_nd_f32(
2478     -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
2479     0 /* flags */,
2480     &op105);
2481   if (status != xnn_status_success) {
2482     std::cerr << "failed to create operation #105" << std::endl;
2483     return ExecutionPlan();
2484   }
2485   operators.emplace_back(op105, xnn_delete_operator);
2486 
2487   xnn_operator_t op106 = nullptr;
2488   status = xnn_create_convolution2d_nchw_f32(
2489     0 /* top padding */, 0 /* right padding */,
2490     0 /* bottom padding */, 0 /* left padding */,
2491     1 /* kernel height */, 1 /* kernel width */,
2492     1 /* subsampling height */, 1 /* subsampling width */,
2493     1 /* dilation_height */, 1 /* dilation_width */,
2494     1 /* groups */,
2495     160 /* input channels per group */,
2496     960 /* output_channels_per_group */,
2497     160 /* input pixel stride */,
2498     960 /* output pixel stride */,
2499     w236.data(), w237.data(),
2500     -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
2501     0 /* flags */,
2502     &op106);
2503   if (status != xnn_status_success) {
2504     std::cerr << "failed to create operation #106" << std::endl;
2505     return ExecutionPlan();
2506   }
2507   operators.emplace_back(op106, xnn_delete_operator);
2508 
2509   xnn_operator_t op107 = nullptr;
2510   status = xnn_create_hardswish_nc_f32(
2511     960 /* channels */,
2512     960 /* input stride */,
2513     960 /* output stride */,
2514     0 /* flags */,
2515     &op107);
2516   if (status != xnn_status_success) {
2517     std::cerr << "failed to create operation #107" << std::endl;
2518     return ExecutionPlan();
2519   }
2520   operators.emplace_back(op107, xnn_delete_operator);
2521 
2522   xnn_operator_t op108 = nullptr;
2523   status = xnn_create_global_average_pooling_ncw_f32(
2524     960 /* channels */,
2525     -std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity(),
2526     0 /* flags */,
2527     &op108);
2528   if (status != xnn_status_success) {
2529     std::cerr << "failed to create operation #108" << std::endl;
2530     return ExecutionPlan();
2531   }
2532   operators.emplace_back(op108, xnn_delete_operator);
2533 
2534   xnn_operator_t op109 = nullptr;
2535   status = xnn_create_convolution2d_nhwc_f32(
2536     0 /* top padding */, 0 /* right padding */,
2537     0 /* bottom padding */, 0 /* left padding */,
2538     1 /* kernel height */, 1 /* kernel width */,
2539     1 /* subsampling height */, 1 /* subsampling width */,
2540     1 /* dilation_height */, 1 /* dilation_width */,
2541     1 /* groups */,
2542     960 /* input channels per group */,
2543     1280 /* output_channels_per_group */,
2544     960 /* input pixel stride */,
2545     1280 /* output pixel stride */,
2546     w238.data(), w239.data(),
2547     -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
2548     0 /* flags */,
2549     &op109);
2550   if (status != xnn_status_success) {
2551     std::cerr << "failed to create operation #109" << std::endl;
2552     return ExecutionPlan();
2553   }
2554   operators.emplace_back(op109, xnn_delete_operator);
2555 
2556   xnn_operator_t op110 = nullptr;
2557   status = xnn_create_hardswish_nc_f32(
2558     1280 /* channels */,
2559     1280 /* input stride */,
2560     1280 /* output stride */,
2561     0 /* flags */,
2562     &op110);
2563   if (status != xnn_status_success) {
2564     std::cerr << "failed to create operation #110" << std::endl;
2565     return ExecutionPlan();
2566   }
2567   operators.emplace_back(op110, xnn_delete_operator);
2568 
2569   xnn_operator_t op111 = nullptr;
2570   status = xnn_create_global_average_pooling_nwc_f32(
2571     1280 /* channels */, 1280 /* input stride */, 1280 /* output stride */,
2572     -std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity(),
2573     0 /* flags */,
2574     &op111);
2575   if (status != xnn_status_success) {
2576     std::cerr << "failed to create operation #111" << std::endl;
2577     return ExecutionPlan();
2578   }
2579   operators.emplace_back(op111, xnn_delete_operator);
2580 
2581   xnn_operator_t op112 = nullptr;
2582   status = xnn_create_convolution2d_nhwc_f32(
2583     0 /* top padding */, 0 /* right padding */,
2584     0 /* bottom padding */, 0 /* left padding */,
2585     1 /* kernel height */, 1 /* kernel width */,
2586     1 /* subsampling height */, 1 /* subsampling width */,
2587     1 /* dilation_height */, 1 /* dilation_width */,
2588     1 /* groups */,
2589     1280 /* input channels per group */,
2590     1001 /* output_channels_per_group */,
2591     1280 /* input pixel stride */,
2592     1001 /* output pixel stride */,
2593     w240.data(), w241.data(),
2594     -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
2595     0 /* flags */,
2596     &op112);
2597   if (status != xnn_status_success) {
2598     std::cerr << "failed to create operation #112" << std::endl;
2599     return ExecutionPlan();
2600   }
2601   operators.emplace_back(op112, xnn_delete_operator);
2602 
2603 
2604 
2605   status = xnn_setup_convolution2d_nchw_f32(
2606     op0,
2607     1 /* batch size */, 224 /* input height */, 224 /* input width */,
2608     v0.data() /* input */, v1.data() /* output */,
2609     threadpool /* threadpool */);
2610   if (status != xnn_status_success) {
2611     std::cerr << "failed to setup operation #0" << std::endl;
2612     return ExecutionPlan();
2613   }
2614 
2615   status = xnn_setup_hardswish_nc_f32(
2616     op1,
2617     12544 /* batch size */,
2618     v1.data() /* input */, v2.data() /* output */,
2619     threadpool /* threadpool */);
2620   if (status != xnn_status_success) {
2621     std::cerr << "failed to setup operation #1" << std::endl;
2622     return ExecutionPlan();
2623   }
2624 
2625   status = xnn_setup_convolution2d_nchw_f32(
2626     op2,
2627     1 /* batch size */, 112 /* input height */, 112 /* input width */,
2628     v2.data() /* input */, v3.data() /* output */,
2629     threadpool /* threadpool */);
2630   if (status != xnn_status_success) {
2631     std::cerr << "failed to setup operation #2" << std::endl;
2632     return ExecutionPlan();
2633   }
2634 
2635   status = xnn_setup_convolution2d_nchw_f32(
2636     op3,
2637     1 /* batch size */, 112 /* input height */, 112 /* input width */,
2638     v3.data() /* input */, v4.data() /* output */,
2639     threadpool /* threadpool */);
2640   if (status != xnn_status_success) {
2641     std::cerr << "failed to setup operation #3" << std::endl;
2642     return ExecutionPlan();
2643   }
2644 
2645   {
2646     const size_t a_shape[] = { 1, 16, 112, 112 };
2647     const size_t b_shape[] = { 1, 16, 112, 112 };
2648     status = xnn_setup_add_nd_f32(
2649       op4,
2650       4, a_shape, 4, b_shape,
2651       v4.data() /* a */, v2.data() /* b */, v5.data() /* output */,
2652       threadpool /* threadpool */);
2653   }
2654   if (status != xnn_status_success) {
2655     std::cerr << "failed to setup operation #4" << std::endl;
2656     return ExecutionPlan();
2657   }
2658 
2659   status = xnn_setup_convolution2d_nchw_f32(
2660     op5,
2661     1 /* batch size */, 112 /* input height */, 112 /* input width */,
2662     v5.data() /* input */, v6.data() /* output */,
2663     threadpool /* threadpool */);
2664   if (status != xnn_status_success) {
2665     std::cerr << "failed to setup operation #5" << std::endl;
2666     return ExecutionPlan();
2667   }
2668 
2669   status = xnn_setup_convolution2d_nchw_f32(
2670     op6,
2671     1 /* batch size */, 112 /* input height */, 112 /* input width */,
2672     v6.data() /* input */, v7.data() /* output */,
2673     threadpool /* threadpool */);
2674   if (status != xnn_status_success) {
2675     std::cerr << "failed to setup operation #6" << std::endl;
2676     return ExecutionPlan();
2677   }
2678 
2679   status = xnn_setup_convolution2d_nchw_f32(
2680     op7,
2681     1 /* batch size */, 56 /* input height */, 56 /* input width */,
2682     v7.data() /* input */, v8.data() /* output */,
2683     threadpool /* threadpool */);
2684   if (status != xnn_status_success) {
2685     std::cerr << "failed to setup operation #7" << std::endl;
2686     return ExecutionPlan();
2687   }
2688 
2689   status = xnn_setup_convolution2d_nchw_f32(
2690     op8,
2691     1 /* batch size */, 56 /* input height */, 56 /* input width */,
2692     v8.data() /* input */, v9.data() /* output */,
2693     threadpool /* threadpool */);
2694   if (status != xnn_status_success) {
2695     std::cerr << "failed to setup operation #8" << std::endl;
2696     return ExecutionPlan();
2697   }
2698 
2699   status = xnn_setup_convolution2d_nchw_f32(
2700     op9,
2701     1 /* batch size */, 56 /* input height */, 56 /* input width */,
2702     v9.data() /* input */, v10.data() /* output */,
2703     threadpool /* threadpool */);
2704   if (status != xnn_status_success) {
2705     std::cerr << "failed to setup operation #9" << std::endl;
2706     return ExecutionPlan();
2707   }
2708 
2709   status = xnn_setup_convolution2d_nchw_f32(
2710     op10,
2711     1 /* batch size */, 56 /* input height */, 56 /* input width */,
2712     v10.data() /* input */, v11.data() /* output */,
2713     threadpool /* threadpool */);
2714   if (status != xnn_status_success) {
2715     std::cerr << "failed to setup operation #10" << std::endl;
2716     return ExecutionPlan();
2717   }
2718 
2719   {
2720     const size_t a_shape[] = { 1, 24, 56, 56 };
2721     const size_t b_shape[] = { 1, 24, 56, 56 };
2722     status = xnn_setup_add_nd_f32(
2723       op11,
2724       4, a_shape, 4, b_shape,
2725       v11.data() /* a */, v8.data() /* b */, v12.data() /* output */,
2726       threadpool /* threadpool */);
2727   }
2728   if (status != xnn_status_success) {
2729     std::cerr << "failed to setup operation #11" << std::endl;
2730     return ExecutionPlan();
2731   }
2732 
2733   status = xnn_setup_convolution2d_nchw_f32(
2734     op12,
2735     1 /* batch size */, 56 /* input height */, 56 /* input width */,
2736     v12.data() /* input */, v13.data() /* output */,
2737     threadpool /* threadpool */);
2738   if (status != xnn_status_success) {
2739     std::cerr << "failed to setup operation #12" << std::endl;
2740     return ExecutionPlan();
2741   }
2742 
2743   status = xnn_setup_convolution2d_nchw_f32(
2744     op13,
2745     1 /* batch size */, 56 /* input height */, 56 /* input width */,
2746     v13.data() /* input */, v14.data() /* output */,
2747     threadpool /* threadpool */);
2748   if (status != xnn_status_success) {
2749     std::cerr << "failed to setup operation #13" << std::endl;
2750     return ExecutionPlan();
2751   }
2752 
2753   status = xnn_setup_global_average_pooling_ncw_f32(
2754     op14,
2755     1 /* batch size */, 784 /* width */,
2756     v14.data() /* input */, v15.data() /* output */,
2757     threadpool /* threadpool */);
2758   if (status != xnn_status_success) {
2759     std::cerr << "failed to setup operation #14" << std::endl;
2760     return ExecutionPlan();
2761   }
2762 
2763   status = xnn_setup_convolution2d_nchw_f32(
2764     op15,
2765     1 /* batch size */, 1 /* input height */, 1 /* input width */,
2766     v15.data() /* input */, v16.data() /* output */,
2767     threadpool /* threadpool */);
2768   if (status != xnn_status_success) {
2769     std::cerr << "failed to setup operation #15" << std::endl;
2770     return ExecutionPlan();
2771   }
2772 
2773   status = xnn_setup_convolution2d_nchw_f32(
2774     op16,
2775     1 /* batch size */, 1 /* input height */, 1 /* input width */,
2776     v16.data() /* input */, v17.data() /* output */,
2777     threadpool /* threadpool */);
2778   if (status != xnn_status_success) {
2779     std::cerr << "failed to setup operation #16" << std::endl;
2780     return ExecutionPlan();
2781   }
2782 
2783   {
2784     const size_t a_shape[] = { 1, 72, 28, 28 };
2785     const size_t b_shape[] = { 1, 72, 1, 1 };
2786     status = xnn_setup_multiply_nd_f32(
2787       op17,
2788       4, a_shape, 4, b_shape,
2789       v14.data() /* a */, v17.data() /* b */, v18.data() /* output */,
2790       threadpool /* threadpool */);
2791   }
2792   if (status != xnn_status_success) {
2793     std::cerr << "failed to setup operation #17" << std::endl;
2794     return ExecutionPlan();
2795   }
2796 
2797   status = xnn_setup_convolution2d_nchw_f32(
2798     op18,
2799     1 /* batch size */, 28 /* input height */, 28 /* input width */,
2800     v18.data() /* input */, v19.data() /* output */,
2801     threadpool /* threadpool */);
2802   if (status != xnn_status_success) {
2803     std::cerr << "failed to setup operation #18" << std::endl;
2804     return ExecutionPlan();
2805   }
2806 
2807   status = xnn_setup_convolution2d_nchw_f32(
2808     op19,
2809     1 /* batch size */, 28 /* input height */, 28 /* input width */,
2810     v19.data() /* input */, v20.data() /* output */,
2811     threadpool /* threadpool */);
2812   if (status != xnn_status_success) {
2813     std::cerr << "failed to setup operation #19" << std::endl;
2814     return ExecutionPlan();
2815   }
2816 
2817   status = xnn_setup_convolution2d_nchw_f32(
2818     op20,
2819     1 /* batch size */, 28 /* input height */, 28 /* input width */,
2820     v20.data() /* input */, v21.data() /* output */,
2821     threadpool /* threadpool */);
2822   if (status != xnn_status_success) {
2823     std::cerr << "failed to setup operation #20" << std::endl;
2824     return ExecutionPlan();
2825   }
2826 
2827   status = xnn_setup_global_average_pooling_ncw_f32(
2828     op21,
2829     1 /* batch size */, 784 /* width */,
2830     v21.data() /* input */, v22.data() /* output */,
2831     threadpool /* threadpool */);
2832   if (status != xnn_status_success) {
2833     std::cerr << "failed to setup operation #21" << std::endl;
2834     return ExecutionPlan();
2835   }
2836 
2837   status = xnn_setup_convolution2d_nchw_f32(
2838     op22,
2839     1 /* batch size */, 1 /* input height */, 1 /* input width */,
2840     v22.data() /* input */, v23.data() /* output */,
2841     threadpool /* threadpool */);
2842   if (status != xnn_status_success) {
2843     std::cerr << "failed to setup operation #22" << std::endl;
2844     return ExecutionPlan();
2845   }
2846 
2847   status = xnn_setup_convolution2d_nchw_f32(
2848     op23,
2849     1 /* batch size */, 1 /* input height */, 1 /* input width */,
2850     v23.data() /* input */, v24.data() /* output */,
2851     threadpool /* threadpool */);
2852   if (status != xnn_status_success) {
2853     std::cerr << "failed to setup operation #23" << std::endl;
2854     return ExecutionPlan();
2855   }
2856 
2857   {
2858     const size_t a_shape[] = { 1, 120, 28, 28 };
2859     const size_t b_shape[] = { 1, 120, 1, 1 };
2860     status = xnn_setup_multiply_nd_f32(
2861       op24,
2862       4, a_shape, 4, b_shape,
2863       v21.data() /* a */, v24.data() /* b */, v25.data() /* output */,
2864       threadpool /* threadpool */);
2865   }
2866   if (status != xnn_status_success) {
2867     std::cerr << "failed to setup operation #24" << std::endl;
2868     return ExecutionPlan();
2869   }
2870 
2871   status = xnn_setup_convolution2d_nchw_f32(
2872     op25,
2873     1 /* batch size */, 28 /* input height */, 28 /* input width */,
2874     v25.data() /* input */, v26.data() /* output */,
2875     threadpool /* threadpool */);
2876   if (status != xnn_status_success) {
2877     std::cerr << "failed to setup operation #25" << std::endl;
2878     return ExecutionPlan();
2879   }
2880 
2881   {
2882     const size_t a_shape[] = { 1, 40, 28, 28 };
2883     const size_t b_shape[] = { 1, 40, 28, 28 };
2884     status = xnn_setup_add_nd_f32(
2885       op26,
2886       4, a_shape, 4, b_shape,
2887       v26.data() /* a */, v19.data() /* b */, v27.data() /* output */,
2888       threadpool /* threadpool */);
2889   }
2890   if (status != xnn_status_success) {
2891     std::cerr << "failed to setup operation #26" << std::endl;
2892     return ExecutionPlan();
2893   }
2894 
2895   status = xnn_setup_convolution2d_nchw_f32(
2896     op27,
2897     1 /* batch size */, 28 /* input height */, 28 /* input width */,
2898     v27.data() /* input */, v28.data() /* output */,
2899     threadpool /* threadpool */);
2900   if (status != xnn_status_success) {
2901     std::cerr << "failed to setup operation #27" << std::endl;
2902     return ExecutionPlan();
2903   }
2904 
2905   status = xnn_setup_convolution2d_nchw_f32(
2906     op28,
2907     1 /* batch size */, 28 /* input height */, 28 /* input width */,
2908     v28.data() /* input */, v29.data() /* output */,
2909     threadpool /* threadpool */);
2910   if (status != xnn_status_success) {
2911     std::cerr << "failed to setup operation #28" << std::endl;
2912     return ExecutionPlan();
2913   }
2914 
2915   status = xnn_setup_global_average_pooling_ncw_f32(
2916     op29,
2917     1 /* batch size */, 784 /* width */,
2918     v29.data() /* input */, v30.data() /* output */,
2919     threadpool /* threadpool */);
2920   if (status != xnn_status_success) {
2921     std::cerr << "failed to setup operation #29" << std::endl;
2922     return ExecutionPlan();
2923   }
2924 
2925   status = xnn_setup_convolution2d_nchw_f32(
2926     op30,
2927     1 /* batch size */, 1 /* input height */, 1 /* input width */,
2928     v30.data() /* input */, v31.data() /* output */,
2929     threadpool /* threadpool */);
2930   if (status != xnn_status_success) {
2931     std::cerr << "failed to setup operation #30" << std::endl;
2932     return ExecutionPlan();
2933   }
2934 
2935   status = xnn_setup_convolution2d_nchw_f32(
2936     op31,
2937     1 /* batch size */, 1 /* input height */, 1 /* input width */,
2938     v31.data() /* input */, v32.data() /* output */,
2939     threadpool /* threadpool */);
2940   if (status != xnn_status_success) {
2941     std::cerr << "failed to setup operation #31" << std::endl;
2942     return ExecutionPlan();
2943   }
2944 
2945   {
2946     const size_t a_shape[] = { 1, 120, 28, 28 };
2947     const size_t b_shape[] = { 1, 120, 1, 1 };
2948     status = xnn_setup_multiply_nd_f32(
2949       op32,
2950       4, a_shape, 4, b_shape,
2951       v29.data() /* a */, v32.data() /* b */, v33.data() /* output */,
2952       threadpool /* threadpool */);
2953   }
2954   if (status != xnn_status_success) {
2955     std::cerr << "failed to setup operation #32" << std::endl;
2956     return ExecutionPlan();
2957   }
2958 
2959   status = xnn_setup_convolution2d_nchw_f32(
2960     op33,
2961     1 /* batch size */, 28 /* input height */, 28 /* input width */,
2962     v33.data() /* input */, v34.data() /* output */,
2963     threadpool /* threadpool */);
2964   if (status != xnn_status_success) {
2965     std::cerr << "failed to setup operation #33" << std::endl;
2966     return ExecutionPlan();
2967   }
2968 
2969   {
2970     const size_t a_shape[] = { 1, 40, 28, 28 };
2971     const size_t b_shape[] = { 1, 40, 28, 28 };
2972     status = xnn_setup_add_nd_f32(
2973       op34,
2974       4, a_shape, 4, b_shape,
2975       v34.data() /* a */, v27.data() /* b */, v35.data() /* output */,
2976       threadpool /* threadpool */);
2977   }
2978   if (status != xnn_status_success) {
2979     std::cerr << "failed to setup operation #34" << std::endl;
2980     return ExecutionPlan();
2981   }
2982 
2983   status = xnn_setup_convolution2d_nchw_f32(
2984     op35,
2985     1 /* batch size */, 28 /* input height */, 28 /* input width */,
2986     v35.data() /* input */, v36.data() /* output */,
2987     threadpool /* threadpool */);
2988   if (status != xnn_status_success) {
2989     std::cerr << "failed to setup operation #35" << std::endl;
2990     return ExecutionPlan();
2991   }
2992 
2993   status = xnn_setup_hardswish_nc_f32(
2994     op36,
2995     784 /* batch size */,
2996     v36.data() /* input */, v37.data() /* output */,
2997     threadpool /* threadpool */);
2998   if (status != xnn_status_success) {
2999     std::cerr << "failed to setup operation #36" << std::endl;
3000     return ExecutionPlan();
3001   }
3002 
3003   status = xnn_setup_convolution2d_nchw_f32(
3004     op37,
3005     1 /* batch size */, 28 /* input height */, 28 /* input width */,
3006     v37.data() /* input */, v38.data() /* output */,
3007     threadpool /* threadpool */);
3008   if (status != xnn_status_success) {
3009     std::cerr << "failed to setup operation #37" << std::endl;
3010     return ExecutionPlan();
3011   }
3012 
3013   status = xnn_setup_hardswish_nc_f32(
3014     op38,
3015     196 /* batch size */,
3016     v38.data() /* input */, v39.data() /* output */,
3017     threadpool /* threadpool */);
3018   if (status != xnn_status_success) {
3019     std::cerr << "failed to setup operation #38" << std::endl;
3020     return ExecutionPlan();
3021   }
3022 
3023   status = xnn_setup_convolution2d_nchw_f32(
3024     op39,
3025     1 /* batch size */, 14 /* input height */, 14 /* input width */,
3026     v39.data() /* input */, v40.data() /* output */,
3027     threadpool /* threadpool */);
3028   if (status != xnn_status_success) {
3029     std::cerr << "failed to setup operation #39" << std::endl;
3030     return ExecutionPlan();
3031   }
3032 
3033   status = xnn_setup_convolution2d_nchw_f32(
3034     op40,
3035     1 /* batch size */, 14 /* input height */, 14 /* input width */,
3036     v40.data() /* input */, v41.data() /* output */,
3037     threadpool /* threadpool */);
3038   if (status != xnn_status_success) {
3039     std::cerr << "failed to setup operation #40" << std::endl;
3040     return ExecutionPlan();
3041   }
3042 
3043   status = xnn_setup_hardswish_nc_f32(
3044     op41,
3045     196 /* batch size */,
3046     v41.data() /* input */, v42.data() /* output */,
3047     threadpool /* threadpool */);
3048   if (status != xnn_status_success) {
3049     std::cerr << "failed to setup operation #41" << std::endl;
3050     return ExecutionPlan();
3051   }
3052 
3053   status = xnn_setup_convolution2d_nchw_f32(
3054     op42,
3055     1 /* batch size */, 14 /* input height */, 14 /* input width */,
3056     v42.data() /* input */, v43.data() /* output */,
3057     threadpool /* threadpool */);
3058   if (status != xnn_status_success) {
3059     std::cerr << "failed to setup operation #42" << std::endl;
3060     return ExecutionPlan();
3061   }
3062 
3063   status = xnn_setup_hardswish_nc_f32(
3064     op43,
3065     196 /* batch size */,
3066     v43.data() /* input */, v44.data() /* output */,
3067     threadpool /* threadpool */);
3068   if (status != xnn_status_success) {
3069     std::cerr << "failed to setup operation #43" << std::endl;
3070     return ExecutionPlan();
3071   }
3072 
3073   status = xnn_setup_convolution2d_nchw_f32(
3074     op44,
3075     1 /* batch size */, 14 /* input height */, 14 /* input width */,
3076     v44.data() /* input */, v45.data() /* output */,
3077     threadpool /* threadpool */);
3078   if (status != xnn_status_success) {
3079     std::cerr << "failed to setup operation #44" << std::endl;
3080     return ExecutionPlan();
3081   }
3082 
3083   {
3084     const size_t a_shape[] = { 1, 80, 14, 14 };
3085     const size_t b_shape[] = { 1, 80, 14, 14 };
3086     status = xnn_setup_add_nd_f32(
3087       op45,
3088       4, a_shape, 4, b_shape,
3089       v45.data() /* a */, v40.data() /* b */, v46.data() /* output */,
3090       threadpool /* threadpool */);
3091   }
3092   if (status != xnn_status_success) {
3093     std::cerr << "failed to setup operation #45" << std::endl;
3094     return ExecutionPlan();
3095   }
3096 
3097   status = xnn_setup_convolution2d_nchw_f32(
3098     op46,
3099     1 /* batch size */, 14 /* input height */, 14 /* input width */,
3100     v46.data() /* input */, v47.data() /* output */,
3101     threadpool /* threadpool */);
3102   if (status != xnn_status_success) {
3103     std::cerr << "failed to setup operation #46" << std::endl;
3104     return ExecutionPlan();
3105   }
3106 
3107   status = xnn_setup_hardswish_nc_f32(
3108     op47,
3109     196 /* batch size */,
3110     v47.data() /* input */, v48.data() /* output */,
3111     threadpool /* threadpool */);
3112   if (status != xnn_status_success) {
3113     std::cerr << "failed to setup operation #47" << std::endl;
3114     return ExecutionPlan();
3115   }
3116 
3117   status = xnn_setup_convolution2d_nchw_f32(
3118     op48,
3119     1 /* batch size */, 14 /* input height */, 14 /* input width */,
3120     v48.data() /* input */, v49.data() /* output */,
3121     threadpool /* threadpool */);
3122   if (status != xnn_status_success) {
3123     std::cerr << "failed to setup operation #48" << std::endl;
3124     return ExecutionPlan();
3125   }
3126 
3127   status = xnn_setup_hardswish_nc_f32(
3128     op49,
3129     196 /* batch size */,
3130     v49.data() /* input */, v50.data() /* output */,
3131     threadpool /* threadpool */);
3132   if (status != xnn_status_success) {
3133     std::cerr << "failed to setup operation #49" << std::endl;
3134     return ExecutionPlan();
3135   }
3136 
3137   status = xnn_setup_convolution2d_nchw_f32(
3138     op50,
3139     1 /* batch size */, 14 /* input height */, 14 /* input width */,
3140     v50.data() /* input */, v51.data() /* output */,
3141     threadpool /* threadpool */);
3142   if (status != xnn_status_success) {
3143     std::cerr << "failed to setup operation #50" << std::endl;
3144     return ExecutionPlan();
3145   }
3146 
3147   {
3148     const size_t a_shape[] = { 1, 80, 14, 14 };
3149     const size_t b_shape[] = { 1, 80, 14, 14 };
3150     status = xnn_setup_add_nd_f32(
3151       op51,
3152       4, a_shape, 4, b_shape,
3153       v51.data() /* a */, v46.data() /* b */, v52.data() /* output */,
3154       threadpool /* threadpool */);
3155   }
3156   if (status != xnn_status_success) {
3157     std::cerr << "failed to setup operation #51" << std::endl;
3158     return ExecutionPlan();
3159   }
3160 
3161   status = xnn_setup_convolution2d_nchw_f32(
3162     op52,
3163     1 /* batch size */, 14 /* input height */, 14 /* input width */,
3164     v52.data() /* input */, v53.data() /* output */,
3165     threadpool /* threadpool */);
3166   if (status != xnn_status_success) {
3167     std::cerr << "failed to setup operation #52" << std::endl;
3168     return ExecutionPlan();
3169   }
3170 
3171   status = xnn_setup_hardswish_nc_f32(
3172     op53,
3173     196 /* batch size */,
3174     v53.data() /* input */, v54.data() /* output */,
3175     threadpool /* threadpool */);
3176   if (status != xnn_status_success) {
3177     std::cerr << "failed to setup operation #53" << std::endl;
3178     return ExecutionPlan();
3179   }
3180 
3181   status = xnn_setup_convolution2d_nchw_f32(
3182     op54,
3183     1 /* batch size */, 14 /* input height */, 14 /* input width */,
3184     v54.data() /* input */, v55.data() /* output */,
3185     threadpool /* threadpool */);
3186   if (status != xnn_status_success) {
3187     std::cerr << "failed to setup operation #54" << std::endl;
3188     return ExecutionPlan();
3189   }
3190 
3191   status = xnn_setup_hardswish_nc_f32(
3192     op55,
3193     196 /* batch size */,
3194     v55.data() /* input */, v56.data() /* output */,
3195     threadpool /* threadpool */);
3196   if (status != xnn_status_success) {
3197     std::cerr << "failed to setup operation #55" << std::endl;
3198     return ExecutionPlan();
3199   }
3200 
3201   status = xnn_setup_convolution2d_nchw_f32(
3202     op56,
3203     1 /* batch size */, 14 /* input height */, 14 /* input width */,
3204     v56.data() /* input */, v57.data() /* output */,
3205     threadpool /* threadpool */);
3206   if (status != xnn_status_success) {
3207     std::cerr << "failed to setup operation #56" << std::endl;
3208     return ExecutionPlan();
3209   }
3210 
3211   {
3212     const size_t a_shape[] = { 1, 80, 14, 14 };
3213     const size_t b_shape[] = { 1, 80, 14, 14 };
3214     status = xnn_setup_add_nd_f32(
3215       op57,
3216       4, a_shape, 4, b_shape,
3217       v57.data() /* a */, v52.data() /* b */, v58.data() /* output */,
3218       threadpool /* threadpool */);
3219   }
3220   if (status != xnn_status_success) {
3221     std::cerr << "failed to setup operation #57" << std::endl;
3222     return ExecutionPlan();
3223   }
3224 
3225   status = xnn_setup_convolution2d_nchw_f32(
3226     op58,
3227     1 /* batch size */, 14 /* input height */, 14 /* input width */,
3228     v58.data() /* input */, v59.data() /* output */,
3229     threadpool /* threadpool */);
3230   if (status != xnn_status_success) {
3231     std::cerr << "failed to setup operation #58" << std::endl;
3232     return ExecutionPlan();
3233   }
3234 
3235   status = xnn_setup_hardswish_nc_f32(
3236     op59,
3237     196 /* batch size */,
3238     v59.data() /* input */, v60.data() /* output */,
3239     threadpool /* threadpool */);
3240   if (status != xnn_status_success) {
3241     std::cerr << "failed to setup operation #59" << std::endl;
3242     return ExecutionPlan();
3243   }
3244 
3245   status = xnn_setup_convolution2d_nchw_f32(
3246     op60,
3247     1 /* batch size */, 14 /* input height */, 14 /* input width */,
3248     v60.data() /* input */, v61.data() /* output */,
3249     threadpool /* threadpool */);
3250   if (status != xnn_status_success) {
3251     std::cerr << "failed to setup operation #60" << std::endl;
3252     return ExecutionPlan();
3253   }
3254 
3255   status = xnn_setup_hardswish_nc_f32(
3256     op61,
3257     196 /* batch size */,
3258     v61.data() /* input */, v62.data() /* output */,
3259     threadpool /* threadpool */);
3260   if (status != xnn_status_success) {
3261     std::cerr << "failed to setup operation #61" << std::endl;
3262     return ExecutionPlan();
3263   }
3264 
3265   status = xnn_setup_global_average_pooling_ncw_f32(
3266     op62,
3267     1 /* batch size */, 196 /* width */,
3268     v62.data() /* input */, v63.data() /* output */,
3269     threadpool /* threadpool */);
3270   if (status != xnn_status_success) {
3271     std::cerr << "failed to setup operation #62" << std::endl;
3272     return ExecutionPlan();
3273   }
3274 
3275   status = xnn_setup_convolution2d_nchw_f32(
3276     op63,
3277     1 /* batch size */, 1 /* input height */, 1 /* input width */,
3278     v63.data() /* input */, v64.data() /* output */,
3279     threadpool /* threadpool */);
3280   if (status != xnn_status_success) {
3281     std::cerr << "failed to setup operation #63" << std::endl;
3282     return ExecutionPlan();
3283   }
3284 
3285   status = xnn_setup_convolution2d_nchw_f32(
3286     op64,
3287     1 /* batch size */, 1 /* input height */, 1 /* input width */,
3288     v64.data() /* input */, v65.data() /* output */,
3289     threadpool /* threadpool */);
3290   if (status != xnn_status_success) {
3291     std::cerr << "failed to setup operation #64" << std::endl;
3292     return ExecutionPlan();
3293   }
3294 
3295   {
3296     const size_t a_shape[] = { 1, 480, 14, 14 };
3297     const size_t b_shape[] = { 1, 480, 1, 1 };
3298     status = xnn_setup_multiply_nd_f32(
3299       op65,
3300       4, a_shape, 4, b_shape,
3301       v62.data() /* a */, v65.data() /* b */, v66.data() /* output */,
3302       threadpool /* threadpool */);
3303   }
3304   if (status != xnn_status_success) {
3305     std::cerr << "failed to setup operation #65" << std::endl;
3306     return ExecutionPlan();
3307   }
3308 
3309   status = xnn_setup_convolution2d_nchw_f32(
3310     op66,
3311     1 /* batch size */, 14 /* input height */, 14 /* input width */,
3312     v66.data() /* input */, v67.data() /* output */,
3313     threadpool /* threadpool */);
3314   if (status != xnn_status_success) {
3315     std::cerr << "failed to setup operation #66" << std::endl;
3316     return ExecutionPlan();
3317   }
3318 
3319   status = xnn_setup_convolution2d_nchw_f32(
3320     op67,
3321     1 /* batch size */, 14 /* input height */, 14 /* input width */,
3322     v67.data() /* input */, v68.data() /* output */,
3323     threadpool /* threadpool */);
3324   if (status != xnn_status_success) {
3325     std::cerr << "failed to setup operation #67" << std::endl;
3326     return ExecutionPlan();
3327   }
3328 
3329   status = xnn_setup_hardswish_nc_f32(
3330     op68,
3331     196 /* batch size */,
3332     v68.data() /* input */, v69.data() /* output */,
3333     threadpool /* threadpool */);
3334   if (status != xnn_status_success) {
3335     std::cerr << "failed to setup operation #68" << std::endl;
3336     return ExecutionPlan();
3337   }
3338 
3339   status = xnn_setup_convolution2d_nchw_f32(
3340     op69,
3341     1 /* batch size */, 14 /* input height */, 14 /* input width */,
3342     v69.data() /* input */, v70.data() /* output */,
3343     threadpool /* threadpool */);
3344   if (status != xnn_status_success) {
3345     std::cerr << "failed to setup operation #69" << std::endl;
3346     return ExecutionPlan();
3347   }
3348 
3349   status = xnn_setup_hardswish_nc_f32(
3350     op70,
3351     196 /* batch size */,
3352     v70.data() /* input */, v71.data() /* output */,
3353     threadpool /* threadpool */);
3354   if (status != xnn_status_success) {
3355     std::cerr << "failed to setup operation #70" << std::endl;
3356     return ExecutionPlan();
3357   }
3358 
3359   status = xnn_setup_global_average_pooling_ncw_f32(
3360     op71,
3361     1 /* batch size */, 196 /* width */,
3362     v71.data() /* input */, v72.data() /* output */,
3363     threadpool /* threadpool */);
3364   if (status != xnn_status_success) {
3365     std::cerr << "failed to setup operation #71" << std::endl;
3366     return ExecutionPlan();
3367   }
3368 
3369   status = xnn_setup_convolution2d_nchw_f32(
3370     op72,
3371     1 /* batch size */, 1 /* input height */, 1 /* input width */,
3372     v72.data() /* input */, v73.data() /* output */,
3373     threadpool /* threadpool */);
3374   if (status != xnn_status_success) {
3375     std::cerr << "failed to setup operation #72" << std::endl;
3376     return ExecutionPlan();
3377   }
3378 
3379   status = xnn_setup_convolution2d_nchw_f32(
3380     op73,
3381     1 /* batch size */, 1 /* input height */, 1 /* input width */,
3382     v73.data() /* input */, v74.data() /* output */,
3383     threadpool /* threadpool */);
3384   if (status != xnn_status_success) {
3385     std::cerr << "failed to setup operation #73" << std::endl;
3386     return ExecutionPlan();
3387   }
3388 
3389   {
3390     const size_t a_shape[] = { 1, 672, 14, 14 };
3391     const size_t b_shape[] = { 1, 672, 1, 1 };
3392     status = xnn_setup_multiply_nd_f32(
3393       op74,
3394       4, a_shape, 4, b_shape,
3395       v71.data() /* a */, v74.data() /* b */, v75.data() /* output */,
3396       threadpool /* threadpool */);
3397   }
3398   if (status != xnn_status_success) {
3399     std::cerr << "failed to setup operation #74" << std::endl;
3400     return ExecutionPlan();
3401   }
3402 
3403   status = xnn_setup_convolution2d_nchw_f32(
3404     op75,
3405     1 /* batch size */, 14 /* input height */, 14 /* input width */,
3406     v75.data() /* input */, v76.data() /* output */,
3407     threadpool /* threadpool */);
3408   if (status != xnn_status_success) {
3409     std::cerr << "failed to setup operation #75" << std::endl;
3410     return ExecutionPlan();
3411   }
3412 
3413   {
3414     const size_t a_shape[] = { 1, 112, 14, 14 };
3415     const size_t b_shape[] = { 1, 112, 14, 14 };
3416     status = xnn_setup_add_nd_f32(
3417       op76,
3418       4, a_shape, 4, b_shape,
3419       v76.data() /* a */, v67.data() /* b */, v77.data() /* output */,
3420       threadpool /* threadpool */);
3421   }
3422   if (status != xnn_status_success) {
3423     std::cerr << "failed to setup operation #76" << std::endl;
3424     return ExecutionPlan();
3425   }
3426 
3427   status = xnn_setup_convolution2d_nchw_f32(
3428     op77,
3429     1 /* batch size */, 14 /* input height */, 14 /* input width */,
3430     v77.data() /* input */, v78.data() /* output */,
3431     threadpool /* threadpool */);
3432   if (status != xnn_status_success) {
3433     std::cerr << "failed to setup operation #77" << std::endl;
3434     return ExecutionPlan();
3435   }
3436 
3437   status = xnn_setup_hardswish_nc_f32(
3438     op78,
3439     196 /* batch size */,
3440     v78.data() /* input */, v79.data() /* output */,
3441     threadpool /* threadpool */);
3442   if (status != xnn_status_success) {
3443     std::cerr << "failed to setup operation #78" << std::endl;
3444     return ExecutionPlan();
3445   }
3446 
3447   status = xnn_setup_convolution2d_nchw_f32(
3448     op79,
3449     1 /* batch size */, 14 /* input height */, 14 /* input width */,
3450     v79.data() /* input */, v80.data() /* output */,
3451     threadpool /* threadpool */);
3452   if (status != xnn_status_success) {
3453     std::cerr << "failed to setup operation #79" << std::endl;
3454     return ExecutionPlan();
3455   }
3456 
3457   status = xnn_setup_hardswish_nc_f32(
3458     op80,
3459     49 /* batch size */,
3460     v80.data() /* input */, v81.data() /* output */,
3461     threadpool /* threadpool */);
3462   if (status != xnn_status_success) {
3463     std::cerr << "failed to setup operation #80" << std::endl;
3464     return ExecutionPlan();
3465   }
3466 
3467   status = xnn_setup_global_average_pooling_ncw_f32(
3468     op81,
3469     1 /* batch size */, 49 /* width */,
3470     v81.data() /* input */, v82.data() /* output */,
3471     threadpool /* threadpool */);
3472   if (status != xnn_status_success) {
3473     std::cerr << "failed to setup operation #81" << std::endl;
3474     return ExecutionPlan();
3475   }
3476 
3477   status = xnn_setup_convolution2d_nchw_f32(
3478     op82,
3479     1 /* batch size */, 1 /* input height */, 1 /* input width */,
3480     v82.data() /* input */, v83.data() /* output */,
3481     threadpool /* threadpool */);
3482   if (status != xnn_status_success) {
3483     std::cerr << "failed to setup operation #82" << std::endl;
3484     return ExecutionPlan();
3485   }
3486 
3487   status = xnn_setup_convolution2d_nchw_f32(
3488     op83,
3489     1 /* batch size */, 1 /* input height */, 1 /* input width */,
3490     v83.data() /* input */, v84.data() /* output */,
3491     threadpool /* threadpool */);
3492   if (status != xnn_status_success) {
3493     std::cerr << "failed to setup operation #83" << std::endl;
3494     return ExecutionPlan();
3495   }
3496 
3497   {
3498     const size_t a_shape[] = { 1, 672, 7, 7 };
3499     const size_t b_shape[] = { 1, 672, 1, 1 };
3500     status = xnn_setup_multiply_nd_f32(
3501       op84,
3502       4, a_shape, 4, b_shape,
3503       v81.data() /* a */, v84.data() /* b */, v85.data() /* output */,
3504       threadpool /* threadpool */);
3505   }
3506   if (status != xnn_status_success) {
3507     std::cerr << "failed to setup operation #84" << std::endl;
3508     return ExecutionPlan();
3509   }
3510 
3511   status = xnn_setup_convolution2d_nchw_f32(
3512     op85,
3513     1 /* batch size */, 7 /* input height */, 7 /* input width */,
3514     v85.data() /* input */, v86.data() /* output */,
3515     threadpool /* threadpool */);
3516   if (status != xnn_status_success) {
3517     std::cerr << "failed to setup operation #85" << std::endl;
3518     return ExecutionPlan();
3519   }
3520 
3521   status = xnn_setup_convolution2d_nchw_f32(
3522     op86,
3523     1 /* batch size */, 7 /* input height */, 7 /* input width */,
3524     v86.data() /* input */, v87.data() /* output */,
3525     threadpool /* threadpool */);
3526   if (status != xnn_status_success) {
3527     std::cerr << "failed to setup operation #86" << std::endl;
3528     return ExecutionPlan();
3529   }
3530 
3531   status = xnn_setup_hardswish_nc_f32(
3532     op87,
3533     49 /* batch size */,
3534     v87.data() /* input */, v88.data() /* output */,
3535     threadpool /* threadpool */);
3536   if (status != xnn_status_success) {
3537     std::cerr << "failed to setup operation #87" << std::endl;
3538     return ExecutionPlan();
3539   }
3540 
3541   status = xnn_setup_convolution2d_nchw_f32(
3542     op88,
3543     1 /* batch size */, 7 /* input height */, 7 /* input width */,
3544     v88.data() /* input */, v89.data() /* output */,
3545     threadpool /* threadpool */);
3546   if (status != xnn_status_success) {
3547     std::cerr << "failed to setup operation #88" << std::endl;
3548     return ExecutionPlan();
3549   }
3550 
3551   status = xnn_setup_hardswish_nc_f32(
3552     op89,
3553     49 /* batch size */,
3554     v89.data() /* input */, v90.data() /* output */,
3555     threadpool /* threadpool */);
3556   if (status != xnn_status_success) {
3557     std::cerr << "failed to setup operation #89" << std::endl;
3558     return ExecutionPlan();
3559   }
3560 
3561   status = xnn_setup_global_average_pooling_ncw_f32(
3562     op90,
3563     1 /* batch size */, 49 /* width */,
3564     v90.data() /* input */, v91.data() /* output */,
3565     threadpool /* threadpool */);
3566   if (status != xnn_status_success) {
3567     std::cerr << "failed to setup operation #90" << std::endl;
3568     return ExecutionPlan();
3569   }
3570 
3571   status = xnn_setup_convolution2d_nchw_f32(
3572     op91,
3573     1 /* batch size */, 1 /* input height */, 1 /* input width */,
3574     v91.data() /* input */, v92.data() /* output */,
3575     threadpool /* threadpool */);
3576   if (status != xnn_status_success) {
3577     std::cerr << "failed to setup operation #91" << std::endl;
3578     return ExecutionPlan();
3579   }
3580 
3581   status = xnn_setup_convolution2d_nchw_f32(
3582     op92,
3583     1 /* batch size */, 1 /* input height */, 1 /* input width */,
3584     v92.data() /* input */, v93.data() /* output */,
3585     threadpool /* threadpool */);
3586   if (status != xnn_status_success) {
3587     std::cerr << "failed to setup operation #92" << std::endl;
3588     return ExecutionPlan();
3589   }
3590 
3591   {
3592     const size_t a_shape[] = { 1, 960, 7, 7 };
3593     const size_t b_shape[] = { 1, 960, 1, 1 };
3594     status = xnn_setup_multiply_nd_f32(
3595       op93,
3596       4, a_shape, 4, b_shape,
3597       v90.data() /* a */, v93.data() /* b */, v94.data() /* output */,
3598       threadpool /* threadpool */);
3599   }
3600   if (status != xnn_status_success) {
3601     std::cerr << "failed to setup operation #93" << std::endl;
3602     return ExecutionPlan();
3603   }
3604 
3605   status = xnn_setup_convolution2d_nchw_f32(
3606     op94,
3607     1 /* batch size */, 7 /* input height */, 7 /* input width */,
3608     v94.data() /* input */, v95.data() /* output */,
3609     threadpool /* threadpool */);
3610   if (status != xnn_status_success) {
3611     std::cerr << "failed to setup operation #94" << std::endl;
3612     return ExecutionPlan();
3613   }
3614 
3615   {
3616     const size_t a_shape[] = { 1, 160, 7, 7 };
3617     const size_t b_shape[] = { 1, 160, 7, 7 };
3618     status = xnn_setup_add_nd_f32(
3619       op95,
3620       4, a_shape, 4, b_shape,
3621       v95.data() /* a */, v86.data() /* b */, v96.data() /* output */,
3622       threadpool /* threadpool */);
3623   }
3624   if (status != xnn_status_success) {
3625     std::cerr << "failed to setup operation #95" << std::endl;
3626     return ExecutionPlan();
3627   }
3628 
3629   status = xnn_setup_convolution2d_nchw_f32(
3630     op96,
3631     1 /* batch size */, 7 /* input height */, 7 /* input width */,
3632     v96.data() /* input */, v97.data() /* output */,
3633     threadpool /* threadpool */);
3634   if (status != xnn_status_success) {
3635     std::cerr << "failed to setup operation #96" << std::endl;
3636     return ExecutionPlan();
3637   }
3638 
3639   status = xnn_setup_hardswish_nc_f32(
3640     op97,
3641     49 /* batch size */,
3642     v97.data() /* input */, v98.data() /* output */,
3643     threadpool /* threadpool */);
3644   if (status != xnn_status_success) {
3645     std::cerr << "failed to setup operation #97" << std::endl;
3646     return ExecutionPlan();
3647   }
3648 
3649   status = xnn_setup_convolution2d_nchw_f32(
3650     op98,
3651     1 /* batch size */, 7 /* input height */, 7 /* input width */,
3652     v98.data() /* input */, v99.data() /* output */,
3653     threadpool /* threadpool */);
3654   if (status != xnn_status_success) {
3655     std::cerr << "failed to setup operation #98" << std::endl;
3656     return ExecutionPlan();
3657   }
3658 
3659   status = xnn_setup_hardswish_nc_f32(
3660     op99,
3661     49 /* batch size */,
3662     v99.data() /* input */, v100.data() /* output */,
3663     threadpool /* threadpool */);
3664   if (status != xnn_status_success) {
3665     std::cerr << "failed to setup operation #99" << std::endl;
3666     return ExecutionPlan();
3667   }
3668 
3669   status = xnn_setup_global_average_pooling_ncw_f32(
3670     op100,
3671     1 /* batch size */, 49 /* width */,
3672     v100.data() /* input */, v101.data() /* output */,
3673     threadpool /* threadpool */);
3674   if (status != xnn_status_success) {
3675     std::cerr << "failed to setup operation #100" << std::endl;
3676     return ExecutionPlan();
3677   }
3678 
3679   status = xnn_setup_convolution2d_nchw_f32(
3680     op101,
3681     1 /* batch size */, 1 /* input height */, 1 /* input width */,
3682     v101.data() /* input */, v102.data() /* output */,
3683     threadpool /* threadpool */);
3684   if (status != xnn_status_success) {
3685     std::cerr << "failed to setup operation #101" << std::endl;
3686     return ExecutionPlan();
3687   }
3688 
3689   status = xnn_setup_convolution2d_nchw_f32(
3690     op102,
3691     1 /* batch size */, 1 /* input height */, 1 /* input width */,
3692     v102.data() /* input */, v103.data() /* output */,
3693     threadpool /* threadpool */);
3694   if (status != xnn_status_success) {
3695     std::cerr << "failed to setup operation #102" << std::endl;
3696     return ExecutionPlan();
3697   }
3698 
3699   {
3700     const size_t a_shape[] = { 1, 960, 7, 7 };
3701     const size_t b_shape[] = { 1, 960, 1, 1 };
3702     status = xnn_setup_multiply_nd_f32(
3703       op103,
3704       4, a_shape, 4, b_shape,
3705       v100.data() /* a */, v103.data() /* b */, v104.data() /* output */,
3706       threadpool /* threadpool */);
3707   }
3708   if (status != xnn_status_success) {
3709     std::cerr << "failed to setup operation #103" << std::endl;
3710     return ExecutionPlan();
3711   }
3712 
3713   status = xnn_setup_convolution2d_nchw_f32(
3714     op104,
3715     1 /* batch size */, 7 /* input height */, 7 /* input width */,
3716     v104.data() /* input */, v105.data() /* output */,
3717     threadpool /* threadpool */);
3718   if (status != xnn_status_success) {
3719     std::cerr << "failed to setup operation #104" << std::endl;
3720     return ExecutionPlan();
3721   }
3722 
3723   {
3724     const size_t a_shape[] = { 1, 160, 7, 7 };
3725     const size_t b_shape[] = { 1, 160, 7, 7 };
3726     status = xnn_setup_add_nd_f32(
3727       op105,
3728       4, a_shape, 4, b_shape,
3729       v105.data() /* a */, v96.data() /* b */, v106.data() /* output */,
3730       threadpool /* threadpool */);
3731   }
3732   if (status != xnn_status_success) {
3733     std::cerr << "failed to setup operation #105" << std::endl;
3734     return ExecutionPlan();
3735   }
3736 
3737   status = xnn_setup_convolution2d_nchw_f32(
3738     op106,
3739     1 /* batch size */, 7 /* input height */, 7 /* input width */,
3740     v106.data() /* input */, v107.data() /* output */,
3741     threadpool /* threadpool */);
3742   if (status != xnn_status_success) {
3743     std::cerr << "failed to setup operation #106" << std::endl;
3744     return ExecutionPlan();
3745   }
3746 
3747   status = xnn_setup_hardswish_nc_f32(
3748     op107,
3749     49 /* batch size */,
3750     v107.data() /* input */, v108.data() /* output */,
3751     threadpool /* threadpool */);
3752   if (status != xnn_status_success) {
3753     std::cerr << "failed to setup operation #107" << std::endl;
3754     return ExecutionPlan();
3755   }
3756 
3757   status = xnn_setup_global_average_pooling_ncw_f32(
3758     op108,
3759     1 /* batch size */, 49 /* width */,
3760     v108.data() /* input */, v109.data() /* output */,
3761     threadpool /* threadpool */);
3762   if (status != xnn_status_success) {
3763     std::cerr << "failed to setup operation #108" << std::endl;
3764     return ExecutionPlan();
3765   }
3766 
3767   status = xnn_setup_convolution2d_nhwc_f32(
3768     op109,
3769     1 /* batch size */, 1 /* input height */, 1 /* input width */,
3770     v109.data() /* input */, v110.data() /* output */,
3771     threadpool /* threadpool */);
3772   if (status != xnn_status_success) {
3773     std::cerr << "failed to setup operation #109" << std::endl;
3774     return ExecutionPlan();
3775   }
3776 
3777   status = xnn_setup_hardswish_nc_f32(
3778     op110,
3779     1 /* batch size */,
3780     v110.data() /* input */, v111.data() /* output */,
3781     threadpool /* threadpool */);
3782   if (status != xnn_status_success) {
3783     std::cerr << "failed to setup operation #110" << std::endl;
3784     return ExecutionPlan();
3785   }
3786 
3787   status = xnn_setup_global_average_pooling_nwc_f32(
3788     op111,
3789     1 /* batch size */, 1 /* width */,
3790     v111.data() /* input */, v112.data() /* output */,
3791     threadpool /* threadpool */);
3792   if (status != xnn_status_success) {
3793     std::cerr << "failed to setup operation #111" << std::endl;
3794     return ExecutionPlan();
3795   }
3796 
3797   status = xnn_setup_convolution2d_nhwc_f32(
3798     op112,
3799     1 /* batch size */, 1 /* input height */, 1 /* input width */,
3800     v112.data() /* input */, v113.data() /* output */,
3801     threadpool /* threadpool */);
3802   if (status != xnn_status_success) {
3803     std::cerr << "failed to setup operation #112" << std::endl;
3804     return ExecutionPlan();
3805   }
3806 
3807   #pragma clang diagnostic push
3808   #pragma clang diagnostic ignored "-Wpessimizing-move"
3809   return operators;
3810   #pragma clang diagnostic pop
3811 }
3812 
3813 }  // namespace models
3814