1 /* 2 * Copyright (C) 2014 The Android Open Source Project 3 * Copyright (c) 1994, 2018, Oracle and/or its affiliates. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. Oracle designates this 9 * particular file as subject to the "Classpath" exception as provided 10 * by Oracle in the LICENSE file that accompanied this code. 11 * 12 * This code is distributed in the hope that it will be useful, but WITHOUT 13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 15 * version 2 for more details (a copy is included in the LICENSE file that 16 * accompanied this code). 17 * 18 * You should have received a copy of the GNU General Public License version 19 * 2 along with this work; if not, write to the Free Software Foundation, 20 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 21 * 22 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 23 * or visit www.oracle.com if you need additional information or have any 24 * questions. 25 */ 26 27 package java.lang; 28 29 import java.lang.annotation.Native; 30 import java.util.Objects; 31 import jdk.internal.HotSpotIntrinsicCandidate; 32 import jdk.internal.misc.VM; 33 34 /** 35 * The {@code Integer} class wraps a value of the primitive type 36 * {@code int} in an object. An object of type {@code Integer} 37 * contains a single field whose type is {@code int}. 38 * 39 * <p>In addition, this class provides several methods for converting 40 * an {@code int} to a {@code String} and a {@code String} to an 41 * {@code int}, as well as other constants and methods useful when 42 * dealing with an {@code int}. 43 * 44 * <p>Implementation note: The implementations of the "bit twiddling" 45 * methods (such as {@link #highestOneBit(int) highestOneBit} and 46 * {@link #numberOfTrailingZeros(int) numberOfTrailingZeros}) are 47 * based on material from Henry S. Warren, Jr.'s <i>Hacker's 48 * Delight</i>, (Addison Wesley, 2002). 49 * 50 * @author Lee Boynton 51 * @author Arthur van Hoff 52 * @author Josh Bloch 53 * @author Joseph D. Darcy 54 * @since 1.0 55 */ 56 public final class Integer extends Number implements Comparable<Integer> { 57 /** 58 * A constant holding the minimum value an {@code int} can 59 * have, -2<sup>31</sup>. 60 */ 61 @Native public static final int MIN_VALUE = 0x80000000; 62 63 /** 64 * A constant holding the maximum value an {@code int} can 65 * have, 2<sup>31</sup>-1. 66 */ 67 @Native public static final int MAX_VALUE = 0x7fffffff; 68 69 /** 70 * The {@code Class} instance representing the primitive type 71 * {@code int}. 72 * 73 * @since 1.1 74 */ 75 @SuppressWarnings("unchecked") 76 public static final Class<Integer> TYPE = (Class<Integer>) Class.getPrimitiveClass("int"); 77 78 /** 79 * All possible chars for representing a number as a String 80 */ 81 static final char[] digits = { 82 '0' , '1' , '2' , '3' , '4' , '5' , 83 '6' , '7' , '8' , '9' , 'a' , 'b' , 84 'c' , 'd' , 'e' , 'f' , 'g' , 'h' , 85 'i' , 'j' , 'k' , 'l' , 'm' , 'n' , 86 'o' , 'p' , 'q' , 'r' , 's' , 't' , 87 'u' , 'v' , 'w' , 'x' , 'y' , 'z' 88 }; 89 90 /** 91 * Returns a string representation of the first argument in the 92 * radix specified by the second argument. 93 * 94 * <p>If the radix is smaller than {@code Character.MIN_RADIX} 95 * or larger than {@code Character.MAX_RADIX}, then the radix 96 * {@code 10} is used instead. 97 * 98 * <p>If the first argument is negative, the first element of the 99 * result is the ASCII minus character {@code '-'} 100 * ({@code '\u005Cu002D'}). If the first argument is not 101 * negative, no sign character appears in the result. 102 * 103 * <p>The remaining characters of the result represent the magnitude 104 * of the first argument. If the magnitude is zero, it is 105 * represented by a single zero character {@code '0'} 106 * ({@code '\u005Cu0030'}); otherwise, the first character of 107 * the representation of the magnitude will not be the zero 108 * character. The following ASCII characters are used as digits: 109 * 110 * <blockquote> 111 * {@code 0123456789abcdefghijklmnopqrstuvwxyz} 112 * </blockquote> 113 * 114 * These are {@code '\u005Cu0030'} through 115 * {@code '\u005Cu0039'} and {@code '\u005Cu0061'} through 116 * {@code '\u005Cu007A'}. If {@code radix} is 117 * <var>N</var>, then the first <var>N</var> of these characters 118 * are used as radix-<var>N</var> digits in the order shown. Thus, 119 * the digits for hexadecimal (radix 16) are 120 * {@code 0123456789abcdef}. If uppercase letters are 121 * desired, the {@link java.lang.String#toUpperCase()} method may 122 * be called on the result: 123 * 124 * <blockquote> 125 * {@code Integer.toString(n, 16).toUpperCase()} 126 * </blockquote> 127 * 128 * @param i an integer to be converted to a string. 129 * @param radix the radix to use in the string representation. 130 * @return a string representation of the argument in the specified radix. 131 * @see java.lang.Character#MAX_RADIX 132 * @see java.lang.Character#MIN_RADIX 133 */ toString(int i, int radix)134 public static String toString(int i, int radix) { 135 if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX) 136 radix = 10; 137 138 /* Use the faster version */ 139 if (radix == 10) { 140 return toString(i); 141 } 142 143 // BEGIN Android-changed: Use single-byte chars. 144 /* 145 if (COMPACT_STRINGS) { 146 */ 147 byte[] buf = new byte[33]; 148 boolean negative = (i < 0); 149 int charPos = 32; 150 151 if (!negative) { 152 i = -i; 153 } 154 155 while (i <= -radix) { 156 buf[charPos--] = (byte)digits[-(i % radix)]; 157 i = i / radix; 158 } 159 buf[charPos] = (byte)digits[-i]; 160 161 if (negative) { 162 buf[--charPos] = '-'; 163 } 164 165 /* 166 return StringLatin1.newString(buf, charPos, (33 - charPos)); 167 } 168 return toStringUTF16(i, radix); 169 */ 170 return new String(buf, charPos, (33 - charPos)); 171 // END Android-changed: Use single-byte chars. 172 } 173 174 // BEGIN Android-removed: UTF16 version of toString. 175 /* 176 private static String toStringUTF16(int i, int radix) { 177 byte[] buf = new byte[33 * 2]; 178 boolean negative = (i < 0); 179 int charPos = 32; 180 if (!negative) { 181 i = -i; 182 } 183 while (i <= -radix) { 184 StringUTF16.putChar(buf, charPos--, digits[-(i % radix)]); 185 i = i / radix; 186 } 187 StringUTF16.putChar(buf, charPos, digits[-i]); 188 189 if (negative) { 190 StringUTF16.putChar(buf, --charPos, '-'); 191 } 192 return StringUTF16.newString(buf, charPos, (33 - charPos)); 193 } 194 */ 195 // END Android-removed: UTF16 version of toString. 196 197 /** 198 * Returns a string representation of the first argument as an 199 * unsigned integer value in the radix specified by the second 200 * argument. 201 * 202 * <p>If the radix is smaller than {@code Character.MIN_RADIX} 203 * or larger than {@code Character.MAX_RADIX}, then the radix 204 * {@code 10} is used instead. 205 * 206 * <p>Note that since the first argument is treated as an unsigned 207 * value, no leading sign character is printed. 208 * 209 * <p>If the magnitude is zero, it is represented by a single zero 210 * character {@code '0'} ({@code '\u005Cu0030'}); otherwise, 211 * the first character of the representation of the magnitude will 212 * not be the zero character. 213 * 214 * <p>The behavior of radixes and the characters used as digits 215 * are the same as {@link #toString(int, int) toString}. 216 * 217 * @param i an integer to be converted to an unsigned string. 218 * @param radix the radix to use in the string representation. 219 * @return an unsigned string representation of the argument in the specified radix. 220 * @see #toString(int, int) 221 * @since 1.8 222 */ toUnsignedString(int i, int radix)223 public static String toUnsignedString(int i, int radix) { 224 return Long.toUnsignedString(toUnsignedLong(i), radix); 225 } 226 227 /** 228 * Returns a string representation of the integer argument as an 229 * unsigned integer in base 16. 230 * 231 * <p>The unsigned integer value is the argument plus 2<sup>32</sup> 232 * if the argument is negative; otherwise, it is equal to the 233 * argument. This value is converted to a string of ASCII digits 234 * in hexadecimal (base 16) with no extra leading 235 * {@code 0}s. 236 * 237 * <p>The value of the argument can be recovered from the returned 238 * string {@code s} by calling {@link 239 * Integer#parseUnsignedInt(String, int) 240 * Integer.parseUnsignedInt(s, 16)}. 241 * 242 * <p>If the unsigned magnitude is zero, it is represented by a 243 * single zero character {@code '0'} ({@code '\u005Cu0030'}); 244 * otherwise, the first character of the representation of the 245 * unsigned magnitude will not be the zero character. The 246 * following characters are used as hexadecimal digits: 247 * 248 * <blockquote> 249 * {@code 0123456789abcdef} 250 * </blockquote> 251 * 252 * These are the characters {@code '\u005Cu0030'} through 253 * {@code '\u005Cu0039'} and {@code '\u005Cu0061'} through 254 * {@code '\u005Cu0066'}. If uppercase letters are 255 * desired, the {@link java.lang.String#toUpperCase()} method may 256 * be called on the result: 257 * 258 * <blockquote> 259 * {@code Integer.toHexString(n).toUpperCase()} 260 * </blockquote> 261 * 262 * @param i an integer to be converted to a string. 263 * @return the string representation of the unsigned integer value 264 * represented by the argument in hexadecimal (base 16). 265 * @see #parseUnsignedInt(String, int) 266 * @see #toUnsignedString(int, int) 267 * @since 1.0.2 268 */ toHexString(int i)269 public static String toHexString(int i) { 270 return toUnsignedString0(i, 4); 271 } 272 273 /** 274 * Returns a string representation of the integer argument as an 275 * unsigned integer in base 8. 276 * 277 * <p>The unsigned integer value is the argument plus 2<sup>32</sup> 278 * if the argument is negative; otherwise, it is equal to the 279 * argument. This value is converted to a string of ASCII digits 280 * in octal (base 8) with no extra leading {@code 0}s. 281 * 282 * <p>The value of the argument can be recovered from the returned 283 * string {@code s} by calling {@link 284 * Integer#parseUnsignedInt(String, int) 285 * Integer.parseUnsignedInt(s, 8)}. 286 * 287 * <p>If the unsigned magnitude is zero, it is represented by a 288 * single zero character {@code '0'} ({@code '\u005Cu0030'}); 289 * otherwise, the first character of the representation of the 290 * unsigned magnitude will not be the zero character. The 291 * following characters are used as octal digits: 292 * 293 * <blockquote> 294 * {@code 01234567} 295 * </blockquote> 296 * 297 * These are the characters {@code '\u005Cu0030'} through 298 * {@code '\u005Cu0037'}. 299 * 300 * @param i an integer to be converted to a string. 301 * @return the string representation of the unsigned integer value 302 * represented by the argument in octal (base 8). 303 * @see #parseUnsignedInt(String, int) 304 * @see #toUnsignedString(int, int) 305 * @since 1.0.2 306 */ toOctalString(int i)307 public static String toOctalString(int i) { 308 return toUnsignedString0(i, 3); 309 } 310 311 /** 312 * Returns a string representation of the integer argument as an 313 * unsigned integer in base 2. 314 * 315 * <p>The unsigned integer value is the argument plus 2<sup>32</sup> 316 * if the argument is negative; otherwise it is equal to the 317 * argument. This value is converted to a string of ASCII digits 318 * in binary (base 2) with no extra leading {@code 0}s. 319 * 320 * <p>The value of the argument can be recovered from the returned 321 * string {@code s} by calling {@link 322 * Integer#parseUnsignedInt(String, int) 323 * Integer.parseUnsignedInt(s, 2)}. 324 * 325 * <p>If the unsigned magnitude is zero, it is represented by a 326 * single zero character {@code '0'} ({@code '\u005Cu0030'}); 327 * otherwise, the first character of the representation of the 328 * unsigned magnitude will not be the zero character. The 329 * characters {@code '0'} ({@code '\u005Cu0030'}) and {@code 330 * '1'} ({@code '\u005Cu0031'}) are used as binary digits. 331 * 332 * @param i an integer to be converted to a string. 333 * @return the string representation of the unsigned integer value 334 * represented by the argument in binary (base 2). 335 * @see #parseUnsignedInt(String, int) 336 * @see #toUnsignedString(int, int) 337 * @since 1.0.2 338 */ toBinaryString(int i)339 public static String toBinaryString(int i) { 340 return toUnsignedString0(i, 1); 341 } 342 343 /** 344 * Convert the integer to an unsigned number. 345 */ toUnsignedString0(int val, int shift)346 private static String toUnsignedString0(int val, int shift) { 347 // assert shift > 0 && shift <=5 : "Illegal shift value"; 348 int mag = Integer.SIZE - Integer.numberOfLeadingZeros(val); 349 int chars = Math.max(((mag + (shift - 1)) / shift), 1); 350 351 352 // BEGIN Android-changed: Use single-byte chars. 353 /* 354 if (COMPACT_STRINGS) { 355 */ 356 byte[] buf = new byte[chars]; 357 formatUnsignedInt(val, shift, buf, 0, chars); 358 /* 359 return new String(buf, LATIN1); 360 } else { 361 byte[] buf = new byte[chars * 2]; 362 formatUnsignedIntUTF16(val, shift, buf, 0, chars); 363 return new String(buf, UTF16); 364 } 365 */ 366 return new String(buf); 367 // END Android-changed: Use single-byte chars. 368 } 369 370 /** 371 * Format an {@code int} (treated as unsigned) into a character buffer. If 372 * {@code len} exceeds the formatted ASCII representation of {@code val}, 373 * {@code buf} will be padded with leading zeroes. 374 * 375 * @param val the unsigned int to format 376 * @param shift the log2 of the base to format in (4 for hex, 3 for octal, 1 for binary) 377 * @param buf the character buffer to write to 378 * @param offset the offset in the destination buffer to start at 379 * @param len the number of characters to write 380 */ formatUnsignedInt(int val, int shift, char[] buf, int offset, int len)381 static void formatUnsignedInt(int val, int shift, char[] buf, int offset, int len) { 382 // assert shift > 0 && shift <=5 : "Illegal shift value"; 383 // assert offset >= 0 && offset < buf.length : "illegal offset"; 384 // assert len > 0 && (offset + len) <= buf.length : "illegal length"; 385 int charPos = offset + len; 386 int radix = 1 << shift; 387 int mask = radix - 1; 388 do { 389 buf[--charPos] = Integer.digits[val & mask]; 390 val >>>= shift; 391 } while (charPos > offset); 392 } 393 394 /** byte[]/LATIN1 version */ formatUnsignedInt(int val, int shift, byte[] buf, int offset, int len)395 static void formatUnsignedInt(int val, int shift, byte[] buf, int offset, int len) { 396 int charPos = offset + len; 397 int radix = 1 << shift; 398 int mask = radix - 1; 399 do { 400 buf[--charPos] = (byte)Integer.digits[val & mask]; 401 val >>>= shift; 402 } while (charPos > offset); 403 } 404 405 // BEGIN Android-removed: UTF16 version of formatUnsignedInt(). 406 /* 407 /** byte[]/UTF16 version * 408 private static void formatUnsignedIntUTF16(int val, int shift, byte[] buf, int offset, int len) { 409 int charPos = offset + len; 410 int radix = 1 << shift; 411 int mask = radix - 1; 412 do { 413 StringUTF16.putChar(buf, --charPos, Integer.digits[val & mask]); 414 val >>>= shift; 415 } while (charPos > offset); 416 } 417 */ 418 // END Android-removed: UTF16 version of formatUnsignedInt(). 419 420 // BEGIN Android-changed: Cache the toString() result for small values. 421 private static final String[] SMALL_NEG_VALUES = new String[100]; 422 private static final String[] SMALL_NONNEG_VALUES = new String[100]; 423 // END Android-changed: Cache the toString() result for small values. 424 425 static final byte[] DigitTens = { 426 '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', 427 '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', 428 '2', '2', '2', '2', '2', '2', '2', '2', '2', '2', 429 '3', '3', '3', '3', '3', '3', '3', '3', '3', '3', 430 '4', '4', '4', '4', '4', '4', '4', '4', '4', '4', 431 '5', '5', '5', '5', '5', '5', '5', '5', '5', '5', 432 '6', '6', '6', '6', '6', '6', '6', '6', '6', '6', 433 '7', '7', '7', '7', '7', '7', '7', '7', '7', '7', 434 '8', '8', '8', '8', '8', '8', '8', '8', '8', '8', 435 '9', '9', '9', '9', '9', '9', '9', '9', '9', '9', 436 } ; 437 438 static final byte[] DigitOnes = { 439 '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 440 '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 441 '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 442 '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 443 '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 444 '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 445 '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 446 '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 447 '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 448 '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 449 } ; 450 451 452 /** 453 * Returns a {@code String} object representing the 454 * specified integer. The argument is converted to signed decimal 455 * representation and returned as a string, exactly as if the 456 * argument and radix 10 were given as arguments to the {@link 457 * #toString(int, int)} method. 458 * 459 * @param i an integer to be converted. 460 * @return a string representation of the argument in base 10. 461 */ 462 @HotSpotIntrinsicCandidate toString(int i)463 public static String toString(int i) { 464 // BEGIN Android-changed: Cache the String for small values. 465 boolean negative = i < 0; 466 boolean small = negative ? i > -100 : i < 100; 467 if (small) { 468 final String[] smallValues = negative ? SMALL_NEG_VALUES : SMALL_NONNEG_VALUES; 469 470 if (negative) { 471 i = -i; 472 if (smallValues[i] == null) { 473 smallValues[i] = 474 i < 10 ? new String(new byte[]{'-', DigitOnes[i]}) 475 : new String(new byte[]{'-', DigitTens[i], DigitOnes[i]}); 476 } 477 } else { 478 if (smallValues[i] == null) { 479 smallValues[i] = 480 i < 10 ? new String(new byte[]{DigitOnes[i]}) 481 : new String(new byte[]{DigitTens[i], DigitOnes[i]}); 482 } 483 } 484 return smallValues[i]; 485 } 486 // END Android-changed: Cache the String for small values. 487 int size = stringSize(i); 488 489 // BEGIN Android-changed: Use single-byte chars. 490 /* 491 if (COMPACT_STRINGS) { 492 */ 493 byte[] buf = new byte[size]; 494 getChars(i, size, buf); 495 /* 496 return new String(buf, LATIN1); 497 } else { 498 byte[] buf = new byte[size * 2]; 499 StringUTF16.getChars(i, size, buf); 500 return new String(buf, UTF16); 501 } 502 */ 503 return new String(buf); 504 // END Android-changed: Use single-byte chars. 505 } 506 507 /** 508 * Returns a string representation of the argument as an unsigned 509 * decimal value. 510 * 511 * The argument is converted to unsigned decimal representation 512 * and returned as a string exactly as if the argument and radix 513 * 10 were given as arguments to the {@link #toUnsignedString(int, 514 * int)} method. 515 * 516 * @param i an integer to be converted to an unsigned string. 517 * @return an unsigned string representation of the argument. 518 * @see #toUnsignedString(int, int) 519 * @since 1.8 520 */ 521 public static String toUnsignedString(int i) { 522 return Long.toString(toUnsignedLong(i)); 523 } 524 525 /** 526 * Places characters representing the integer i into the 527 * character array buf. The characters are placed into 528 * the buffer backwards starting with the least significant 529 * digit at the specified index (exclusive), and working 530 * backwards from there. 531 * 532 * @implNote This method converts positive inputs into negative 533 * values, to cover the Integer.MIN_VALUE case. Converting otherwise 534 * (negative to positive) will expose -Integer.MIN_VALUE that overflows 535 * integer. 536 * 537 * @param i value to convert 538 * @param index next index, after the least significant digit 539 * @param buf target buffer, Latin1-encoded 540 * @return index of the most significant digit or minus sign, if present 541 */ 542 static int getChars(int i, int index, byte[] buf) { 543 int q, r; 544 int charPos = index; 545 546 boolean negative = i < 0; 547 if (!negative) { 548 i = -i; 549 } 550 551 // Generate two digits per iteration 552 while (i <= -100) { 553 q = i / 100; 554 r = (q * 100) - i; 555 i = q; 556 buf[--charPos] = DigitOnes[r]; 557 buf[--charPos] = DigitTens[r]; 558 } 559 560 // We know there are at most two digits left at this point. 561 q = i / 10; 562 r = (q * 10) - i; 563 buf[--charPos] = (byte)('0' + r); 564 565 // Whatever left is the remaining digit. 566 if (q < 0) { 567 buf[--charPos] = (byte)('0' - q); 568 } 569 570 if (negative) { 571 buf[--charPos] = (byte)'-'; 572 } 573 return charPos; 574 } 575 576 // BEGIN Android-added: char version of getChars(int i, int index, byte[] buf). 577 // for java.lang.AbstractStringBuilder#append(int). 578 static int getChars(int i, int index, char[] buf) { 579 int q, r; 580 int charPos = index; 581 582 boolean negative = i < 0; 583 if (!negative) { 584 i = -i; 585 } 586 587 // Generate two digits per iteration 588 while (i <= -100) { 589 q = i / 100; 590 r = (q * 100) - i; 591 i = q; 592 buf[--charPos] = (char)DigitOnes[r]; 593 buf[--charPos] = (char)DigitTens[r]; 594 } 595 596 // We know there are at most two digits left at this point. 597 q = i / 10; 598 r = (q * 10) - i; 599 buf[--charPos] = (char)('0' + r); 600 601 // Whatever left is the remaining digit. 602 if (q < 0) { 603 buf[--charPos] = (char)('0' - q); 604 } 605 606 if (negative) { 607 buf[--charPos] = (byte)'-'; 608 } 609 return charPos; 610 } 611 // END Android-added: char version of getChars(int i, int index, byte[] buf). 612 613 // Left here for compatibility reasons, see JDK-8143900. 614 static final int [] sizeTable = { 9, 99, 999, 9999, 99999, 999999, 9999999, 615 99999999, 999999999, Integer.MAX_VALUE }; 616 617 /** 618 * Returns the string representation size for a given int value. 619 * 620 * @param x int value 621 * @return string size 622 * 623 * @implNote There are other ways to compute this: e.g. binary search, 624 * but values are biased heavily towards zero, and therefore linear search 625 * wins. The iteration results are also routinely inlined in the generated 626 * code after loop unrolling. 627 */ 628 static int stringSize(int x) { 629 int d = 1; 630 if (x >= 0) { 631 d = 0; 632 x = -x; 633 } 634 int p = -10; 635 for (int i = 1; i < 10; i++) { 636 if (x > p) 637 return i + d; 638 p = 10 * p; 639 } 640 return 10 + d; 641 } 642 643 /** 644 * Parses the string argument as a signed integer in the radix 645 * specified by the second argument. The characters in the string 646 * must all be digits of the specified radix (as determined by 647 * whether {@link java.lang.Character#digit(char, int)} returns a 648 * nonnegative value), except that the first character may be an 649 * ASCII minus sign {@code '-'} ({@code '\u005Cu002D'}) to 650 * indicate a negative value or an ASCII plus sign {@code '+'} 651 * ({@code '\u005Cu002B'}) to indicate a positive value. The 652 * resulting integer value is returned. 653 * 654 * <p>An exception of type {@code NumberFormatException} is 655 * thrown if any of the following situations occurs: 656 * <ul> 657 * <li>The first argument is {@code null} or is a string of 658 * length zero. 659 * 660 * <li>The radix is either smaller than 661 * {@link java.lang.Character#MIN_RADIX} or 662 * larger than {@link java.lang.Character#MAX_RADIX}. 663 * 664 * <li>Any character of the string is not a digit of the specified 665 * radix, except that the first character may be a minus sign 666 * {@code '-'} ({@code '\u005Cu002D'}) or plus sign 667 * {@code '+'} ({@code '\u005Cu002B'}) provided that the 668 * string is longer than length 1. 669 * 670 * <li>The value represented by the string is not a value of type 671 * {@code int}. 672 * </ul> 673 * 674 * <p>Examples: 675 * <blockquote><pre> 676 * parseInt("0", 10) returns 0 677 * parseInt("473", 10) returns 473 678 * parseInt("+42", 10) returns 42 679 * parseInt("-0", 10) returns 0 680 * parseInt("-FF", 16) returns -255 681 * parseInt("1100110", 2) returns 102 682 * parseInt("2147483647", 10) returns 2147483647 683 * parseInt("-2147483648", 10) returns -2147483648 684 * parseInt("2147483648", 10) throws a NumberFormatException 685 * parseInt("99", 8) throws a NumberFormatException 686 * parseInt("Kona", 10) throws a NumberFormatException 687 * parseInt("Kona", 27) returns 411787 688 * </pre></blockquote> 689 * 690 * @param s the {@code String} containing the integer 691 * representation to be parsed 692 * @param radix the radix to be used while parsing {@code s}. 693 * @return the integer represented by the string argument in the 694 * specified radix. 695 * @exception NumberFormatException if the {@code String} 696 * does not contain a parsable {@code int}. 697 */ 698 public static int parseInt(String s, int radix) 699 throws NumberFormatException 700 { 701 /* 702 * WARNING: This method may be invoked early during VM initialization 703 * before IntegerCache is initialized. Care must be taken to not use 704 * the valueOf method. 705 */ 706 707 if (s == null) { 708 // Android-changed: Improve exception message for parseInt. 709 throw new NumberFormatException("s == null"); 710 } 711 712 if (radix < Character.MIN_RADIX) { 713 throw new NumberFormatException("radix " + radix + 714 " less than Character.MIN_RADIX"); 715 } 716 717 if (radix > Character.MAX_RADIX) { 718 throw new NumberFormatException("radix " + radix + 719 " greater than Character.MAX_RADIX"); 720 } 721 722 boolean negative = false; 723 int i = 0, len = s.length(); 724 int limit = -Integer.MAX_VALUE; 725 726 if (len > 0) { 727 char firstChar = s.charAt(0); 728 if (firstChar < '0') { // Possible leading "+" or "-" 729 if (firstChar == '-') { 730 negative = true; 731 limit = Integer.MIN_VALUE; 732 } else if (firstChar != '+') { 733 throw NumberFormatException.forInputString(s); 734 } 735 736 if (len == 1) { // Cannot have lone "+" or "-" 737 throw NumberFormatException.forInputString(s); 738 } 739 i++; 740 } 741 int multmin = limit / radix; 742 int result = 0; 743 while (i < len) { 744 // Accumulating negatively avoids surprises near MAX_VALUE 745 int digit = Character.digit(s.charAt(i++), radix); 746 if (digit < 0 || result < multmin) { 747 throw NumberFormatException.forInputString(s); 748 } 749 result *= radix; 750 if (result < limit + digit) { 751 throw NumberFormatException.forInputString(s); 752 } 753 result -= digit; 754 } 755 return negative ? result : -result; 756 } else { 757 throw NumberFormatException.forInputString(s); 758 } 759 } 760 761 /** 762 * Parses the {@link CharSequence} argument as a signed {@code int} in the 763 * specified {@code radix}, beginning at the specified {@code beginIndex} 764 * and extending to {@code endIndex - 1}. 765 * 766 * <p>The method does not take steps to guard against the 767 * {@code CharSequence} being mutated while parsing. 768 * 769 * @param s the {@code CharSequence} containing the {@code int} 770 * representation to be parsed 771 * @param beginIndex the beginning index, inclusive. 772 * @param endIndex the ending index, exclusive. 773 * @param radix the radix to be used while parsing {@code s}. 774 * @return the signed {@code int} represented by the subsequence in 775 * the specified radix. 776 * @throws NullPointerException if {@code s} is null. 777 * @throws IndexOutOfBoundsException if {@code beginIndex} is 778 * negative, or if {@code beginIndex} is greater than 779 * {@code endIndex} or if {@code endIndex} is greater than 780 * {@code s.length()}. 781 * @throws NumberFormatException if the {@code CharSequence} does not 782 * contain a parsable {@code int} in the specified 783 * {@code radix}, or if {@code radix} is either smaller than 784 * {@link java.lang.Character#MIN_RADIX} or larger than 785 * {@link java.lang.Character#MAX_RADIX}. 786 * @since 9 787 */ 788 public static int parseInt(CharSequence s, int beginIndex, int endIndex, int radix) 789 throws NumberFormatException { 790 s = Objects.requireNonNull(s); 791 792 if (beginIndex < 0 || beginIndex > endIndex || endIndex > s.length()) { 793 throw new IndexOutOfBoundsException(); 794 } 795 if (radix < Character.MIN_RADIX) { 796 throw new NumberFormatException("radix " + radix + 797 " less than Character.MIN_RADIX"); 798 } 799 if (radix > Character.MAX_RADIX) { 800 throw new NumberFormatException("radix " + radix + 801 " greater than Character.MAX_RADIX"); 802 } 803 804 boolean negative = false; 805 int i = beginIndex; 806 int limit = -Integer.MAX_VALUE; 807 808 if (i < endIndex) { 809 char firstChar = s.charAt(i); 810 if (firstChar < '0') { // Possible leading "+" or "-" 811 if (firstChar == '-') { 812 negative = true; 813 limit = Integer.MIN_VALUE; 814 } else if (firstChar != '+') { 815 throw NumberFormatException.forCharSequence(s, beginIndex, 816 endIndex, i); 817 } 818 i++; 819 if (i == endIndex) { // Cannot have lone "+" or "-" 820 throw NumberFormatException.forCharSequence(s, beginIndex, 821 endIndex, i); 822 } 823 } 824 int multmin = limit / radix; 825 int result = 0; 826 while (i < endIndex) { 827 // Accumulating negatively avoids surprises near MAX_VALUE 828 int digit = Character.digit(s.charAt(i), radix); 829 if (digit < 0 || result < multmin) { 830 throw NumberFormatException.forCharSequence(s, beginIndex, 831 endIndex, i); 832 } 833 result *= radix; 834 if (result < limit + digit) { 835 throw NumberFormatException.forCharSequence(s, beginIndex, 836 endIndex, i); 837 } 838 i++; 839 result -= digit; 840 } 841 return negative ? result : -result; 842 } else { 843 throw NumberFormatException.forInputString(""); 844 } 845 } 846 847 /** 848 * Parses the string argument as a signed decimal integer. The 849 * characters in the string must all be decimal digits, except 850 * that the first character may be an ASCII minus sign {@code '-'} 851 * ({@code '\u005Cu002D'}) to indicate a negative value or an 852 * ASCII plus sign {@code '+'} ({@code '\u005Cu002B'}) to 853 * indicate a positive value. The resulting integer value is 854 * returned, exactly as if the argument and the radix 10 were 855 * given as arguments to the {@link #parseInt(java.lang.String, 856 * int)} method. 857 * 858 * @param s a {@code String} containing the {@code int} 859 * representation to be parsed 860 * @return the integer value represented by the argument in decimal. 861 * @exception NumberFormatException if the string does not contain a 862 * parsable integer. 863 */ 864 public static int parseInt(String s) throws NumberFormatException { 865 return parseInt(s,10); 866 } 867 868 /** 869 * Parses the string argument as an unsigned integer in the radix 870 * specified by the second argument. An unsigned integer maps the 871 * values usually associated with negative numbers to positive 872 * numbers larger than {@code MAX_VALUE}. 873 * 874 * The characters in the string must all be digits of the 875 * specified radix (as determined by whether {@link 876 * java.lang.Character#digit(char, int)} returns a nonnegative 877 * value), except that the first character may be an ASCII plus 878 * sign {@code '+'} ({@code '\u005Cu002B'}). The resulting 879 * integer value is returned. 880 * 881 * <p>An exception of type {@code NumberFormatException} is 882 * thrown if any of the following situations occurs: 883 * <ul> 884 * <li>The first argument is {@code null} or is a string of 885 * length zero. 886 * 887 * <li>The radix is either smaller than 888 * {@link java.lang.Character#MIN_RADIX} or 889 * larger than {@link java.lang.Character#MAX_RADIX}. 890 * 891 * <li>Any character of the string is not a digit of the specified 892 * radix, except that the first character may be a plus sign 893 * {@code '+'} ({@code '\u005Cu002B'}) provided that the 894 * string is longer than length 1. 895 * 896 * <li>The value represented by the string is larger than the 897 * largest unsigned {@code int}, 2<sup>32</sup>-1. 898 * 899 * </ul> 900 * 901 * 902 * @param s the {@code String} containing the unsigned integer 903 * representation to be parsed 904 * @param radix the radix to be used while parsing {@code s}. 905 * @return the integer represented by the string argument in the 906 * specified radix. 907 * @throws NumberFormatException if the {@code String} 908 * does not contain a parsable {@code int}. 909 * @since 1.8 910 */ 911 public static int parseUnsignedInt(String s, int radix) 912 throws NumberFormatException { 913 if (s == null) { 914 throw new NumberFormatException("null"); 915 } 916 917 int len = s.length(); 918 if (len > 0) { 919 char firstChar = s.charAt(0); 920 if (firstChar == '-') { 921 throw new 922 NumberFormatException(String.format("Illegal leading minus sign " + 923 "on unsigned string %s.", s)); 924 } else { 925 if (len <= 5 || // Integer.MAX_VALUE in Character.MAX_RADIX is 6 digits 926 (radix == 10 && len <= 9) ) { // Integer.MAX_VALUE in base 10 is 10 digits 927 return parseInt(s, radix); 928 } else { 929 long ell = Long.parseLong(s, radix); 930 if ((ell & 0xffff_ffff_0000_0000L) == 0) { 931 return (int) ell; 932 } else { 933 throw new 934 NumberFormatException(String.format("String value %s exceeds " + 935 "range of unsigned int.", s)); 936 } 937 } 938 } 939 } else { 940 throw NumberFormatException.forInputString(s); 941 } 942 } 943 944 /** 945 * Parses the {@link CharSequence} argument as an unsigned {@code int} in 946 * the specified {@code radix}, beginning at the specified 947 * {@code beginIndex} and extending to {@code endIndex - 1}. 948 * 949 * <p>The method does not take steps to guard against the 950 * {@code CharSequence} being mutated while parsing. 951 * 952 * @param s the {@code CharSequence} containing the unsigned 953 * {@code int} representation to be parsed 954 * @param beginIndex the beginning index, inclusive. 955 * @param endIndex the ending index, exclusive. 956 * @param radix the radix to be used while parsing {@code s}. 957 * @return the unsigned {@code int} represented by the subsequence in 958 * the specified radix. 959 * @throws NullPointerException if {@code s} is null. 960 * @throws IndexOutOfBoundsException if {@code beginIndex} is 961 * negative, or if {@code beginIndex} is greater than 962 * {@code endIndex} or if {@code endIndex} is greater than 963 * {@code s.length()}. 964 * @throws NumberFormatException if the {@code CharSequence} does not 965 * contain a parsable unsigned {@code int} in the specified 966 * {@code radix}, or if {@code radix} is either smaller than 967 * {@link java.lang.Character#MIN_RADIX} or larger than 968 * {@link java.lang.Character#MAX_RADIX}. 969 * @since 9 970 */ 971 public static int parseUnsignedInt(CharSequence s, int beginIndex, int endIndex, int radix) 972 throws NumberFormatException { 973 s = Objects.requireNonNull(s); 974 975 if (beginIndex < 0 || beginIndex > endIndex || endIndex > s.length()) { 976 throw new IndexOutOfBoundsException(); 977 } 978 int start = beginIndex, len = endIndex - beginIndex; 979 980 if (len > 0) { 981 char firstChar = s.charAt(start); 982 if (firstChar == '-') { 983 throw new 984 NumberFormatException(String.format("Illegal leading minus sign " + 985 "on unsigned string %s.", s)); 986 } else { 987 if (len <= 5 || // Integer.MAX_VALUE in Character.MAX_RADIX is 6 digits 988 (radix == 10 && len <= 9)) { // Integer.MAX_VALUE in base 10 is 10 digits 989 return parseInt(s, start, start + len, radix); 990 } else { 991 long ell = Long.parseLong(s, start, start + len, radix); 992 if ((ell & 0xffff_ffff_0000_0000L) == 0) { 993 return (int) ell; 994 } else { 995 throw new 996 NumberFormatException(String.format("String value %s exceeds " + 997 "range of unsigned int.", s)); 998 } 999 } 1000 } 1001 } else { 1002 throw new NumberFormatException(""); 1003 } 1004 } 1005 1006 /** 1007 * Parses the string argument as an unsigned decimal integer. The 1008 * characters in the string must all be decimal digits, except 1009 * that the first character may be an ASCII plus sign {@code 1010 * '+'} ({@code '\u005Cu002B'}). The resulting integer value 1011 * is returned, exactly as if the argument and the radix 10 were 1012 * given as arguments to the {@link 1013 * #parseUnsignedInt(java.lang.String, int)} method. 1014 * 1015 * @param s a {@code String} containing the unsigned {@code int} 1016 * representation to be parsed 1017 * @return the unsigned integer value represented by the argument in decimal. 1018 * @throws NumberFormatException if the string does not contain a 1019 * parsable unsigned integer. 1020 * @since 1.8 1021 */ 1022 public static int parseUnsignedInt(String s) throws NumberFormatException { 1023 return parseUnsignedInt(s, 10); 1024 } 1025 1026 /** 1027 * Returns an {@code Integer} object holding the value 1028 * extracted from the specified {@code String} when parsed 1029 * with the radix given by the second argument. The first argument 1030 * is interpreted as representing a signed integer in the radix 1031 * specified by the second argument, exactly as if the arguments 1032 * were given to the {@link #parseInt(java.lang.String, int)} 1033 * method. The result is an {@code Integer} object that 1034 * represents the integer value specified by the string. 1035 * 1036 * <p>In other words, this method returns an {@code Integer} 1037 * object equal to the value of: 1038 * 1039 * <blockquote> 1040 * {@code new Integer(Integer.parseInt(s, radix))} 1041 * </blockquote> 1042 * 1043 * @param s the string to be parsed. 1044 * @param radix the radix to be used in interpreting {@code s} 1045 * @return an {@code Integer} object holding the value 1046 * represented by the string argument in the specified 1047 * radix. 1048 * @exception NumberFormatException if the {@code String} 1049 * does not contain a parsable {@code int}. 1050 */ 1051 public static Integer valueOf(String s, int radix) throws NumberFormatException { 1052 return Integer.valueOf(parseInt(s,radix)); 1053 } 1054 1055 /** 1056 * Returns an {@code Integer} object holding the 1057 * value of the specified {@code String}. The argument is 1058 * interpreted as representing a signed decimal integer, exactly 1059 * as if the argument were given to the {@link 1060 * #parseInt(java.lang.String)} method. The result is an 1061 * {@code Integer} object that represents the integer value 1062 * specified by the string. 1063 * 1064 * <p>In other words, this method returns an {@code Integer} 1065 * object equal to the value of: 1066 * 1067 * <blockquote> 1068 * {@code new Integer(Integer.parseInt(s))} 1069 * </blockquote> 1070 * 1071 * @param s the string to be parsed. 1072 * @return an {@code Integer} object holding the value 1073 * represented by the string argument. 1074 * @exception NumberFormatException if the string cannot be parsed 1075 * as an integer. 1076 */ 1077 public static Integer valueOf(String s) throws NumberFormatException { 1078 return Integer.valueOf(parseInt(s, 10)); 1079 } 1080 1081 /** 1082 * Cache to support the object identity semantics of autoboxing for values between 1083 * -128 and 127 (inclusive) as required by JLS. 1084 * 1085 * The cache is initialized on first usage. The size of the cache 1086 * may be controlled by the {@code -XX:AutoBoxCacheMax=<size>} option. 1087 * During VM initialization, java.lang.Integer.IntegerCache.high property 1088 * may be set and saved in the private system properties in the 1089 * jdk.internal.misc.VM class. 1090 */ 1091 1092 private static class IntegerCache { 1093 static final int low = -128; 1094 static final int high; 1095 static final Integer[] cache; 1096 static Integer[] archivedCache; 1097 1098 static { 1099 // high value may be configured by property 1100 int h = 127; 1101 String integerCacheHighPropValue = 1102 VM.getSavedProperty("java.lang.Integer.IntegerCache.high"); 1103 if (integerCacheHighPropValue != null) { 1104 try { 1105 int i = parseInt(integerCacheHighPropValue); 1106 i = Math.max(i, 127); 1107 // Maximum array size is Integer.MAX_VALUE 1108 h = Math.min(i, Integer.MAX_VALUE - (-low) -1); 1109 } catch( NumberFormatException nfe) { 1110 // If the property cannot be parsed into an int, ignore it. 1111 } 1112 } 1113 high = h; 1114 1115 // Load IntegerCache.archivedCache from archive, if possible 1116 // Android-removed: VM.initializeFromArchive isn't supported yet. 1117 // VM.initializeFromArchive(IntegerCache.class); 1118 int size = (high - low) + 1; 1119 1120 // Use the archived cache if it exists and is large enough 1121 if (archivedCache == null || size > archivedCache.length) { 1122 Integer[] c = new Integer[size]; 1123 int j = low; 1124 for(int k = 0; k < c.length; k++) 1125 c[k] = new Integer(j++); 1126 archivedCache = c; 1127 } 1128 cache = archivedCache; 1129 // range [-128, 127] must be interned (JLS7 5.1.7) 1130 assert IntegerCache.high >= 127; 1131 } 1132 1133 private IntegerCache() {} 1134 } 1135 1136 /** 1137 * Returns an {@code Integer} instance representing the specified 1138 * {@code int} value. If a new {@code Integer} instance is not 1139 * required, this method should generally be used in preference to 1140 * the constructor {@link #Integer(int)}, as this method is likely 1141 * to yield significantly better space and time performance by 1142 * caching frequently requested values. 1143 * 1144 * This method will always cache values in the range -128 to 127, 1145 * inclusive, and may cache other values outside of this range. 1146 * 1147 * @param i an {@code int} value. 1148 * @return an {@code Integer} instance representing {@code i}. 1149 * @since 1.5 1150 */ 1151 @HotSpotIntrinsicCandidate 1152 public static Integer valueOf(int i) { 1153 if (i >= IntegerCache.low && i <= IntegerCache.high) 1154 return IntegerCache.cache[i + (-IntegerCache.low)]; 1155 return new Integer(i); 1156 } 1157 1158 /** 1159 * The value of the {@code Integer}. 1160 * 1161 * @serial 1162 */ 1163 private final int value; 1164 1165 /** 1166 * Constructs a newly allocated {@code Integer} object that 1167 * represents the specified {@code int} value. 1168 * 1169 * @param value the value to be represented by the 1170 * {@code Integer} object. 1171 * 1172 * @deprecated 1173 * It is rarely appropriate to use this constructor. The static factory 1174 * {@link #valueOf(int)} is generally a better choice, as it is 1175 * likely to yield significantly better space and time performance. 1176 */ 1177 @Deprecated(since="9") 1178 public Integer(int value) { 1179 this.value = value; 1180 } 1181 1182 /** 1183 * Constructs a newly allocated {@code Integer} object that 1184 * represents the {@code int} value indicated by the 1185 * {@code String} parameter. The string is converted to an 1186 * {@code int} value in exactly the manner used by the 1187 * {@code parseInt} method for radix 10. 1188 * 1189 * @param s the {@code String} to be converted to an {@code Integer}. 1190 * @throws NumberFormatException if the {@code String} does not 1191 * contain a parsable integer. 1192 * 1193 * @deprecated 1194 * It is rarely appropriate to use this constructor. 1195 * Use {@link #parseInt(String)} to convert a string to a 1196 * {@code int} primitive, or use {@link #valueOf(String)} 1197 * to convert a string to an {@code Integer} object. 1198 */ 1199 @Deprecated(since="9") 1200 public Integer(String s) throws NumberFormatException { 1201 this.value = parseInt(s, 10); 1202 } 1203 1204 /** 1205 * Returns the value of this {@code Integer} as a {@code byte} 1206 * after a narrowing primitive conversion. 1207 * @jls 5.1.3 Narrowing Primitive Conversions 1208 */ 1209 public byte byteValue() { 1210 return (byte)value; 1211 } 1212 1213 /** 1214 * Returns the value of this {@code Integer} as a {@code short} 1215 * after a narrowing primitive conversion. 1216 * @jls 5.1.3 Narrowing Primitive Conversions 1217 */ 1218 public short shortValue() { 1219 return (short)value; 1220 } 1221 1222 /** 1223 * Returns the value of this {@code Integer} as an 1224 * {@code int}. 1225 */ 1226 @HotSpotIntrinsicCandidate 1227 public int intValue() { 1228 return value; 1229 } 1230 1231 /** 1232 * Returns the value of this {@code Integer} as a {@code long} 1233 * after a widening primitive conversion. 1234 * @jls 5.1.2 Widening Primitive Conversions 1235 * @see Integer#toUnsignedLong(int) 1236 */ 1237 public long longValue() { 1238 return (long)value; 1239 } 1240 1241 /** 1242 * Returns the value of this {@code Integer} as a {@code float} 1243 * after a widening primitive conversion. 1244 * @jls 5.1.2 Widening Primitive Conversions 1245 */ 1246 public float floatValue() { 1247 return (float)value; 1248 } 1249 1250 /** 1251 * Returns the value of this {@code Integer} as a {@code double} 1252 * after a widening primitive conversion. 1253 * @jls 5.1.2 Widening Primitive Conversions 1254 */ 1255 public double doubleValue() { 1256 return (double)value; 1257 } 1258 1259 /** 1260 * Returns a {@code String} object representing this 1261 * {@code Integer}'s value. The value is converted to signed 1262 * decimal representation and returned as a string, exactly as if 1263 * the integer value were given as an argument to the {@link 1264 * java.lang.Integer#toString(int)} method. 1265 * 1266 * @return a string representation of the value of this object in 1267 * base 10. 1268 */ 1269 public String toString() { 1270 return toString(value); 1271 } 1272 1273 /** 1274 * Returns a hash code for this {@code Integer}. 1275 * 1276 * @return a hash code value for this object, equal to the 1277 * primitive {@code int} value represented by this 1278 * {@code Integer} object. 1279 */ 1280 @Override 1281 public int hashCode() { 1282 return Integer.hashCode(value); 1283 } 1284 1285 /** 1286 * Returns a hash code for an {@code int} value; compatible with 1287 * {@code Integer.hashCode()}. 1288 * 1289 * @param value the value to hash 1290 * @since 1.8 1291 * 1292 * @return a hash code value for an {@code int} value. 1293 */ 1294 public static int hashCode(int value) { 1295 return value; 1296 } 1297 1298 /** 1299 * Compares this object to the specified object. The result is 1300 * {@code true} if and only if the argument is not 1301 * {@code null} and is an {@code Integer} object that 1302 * contains the same {@code int} value as this object. 1303 * 1304 * @param obj the object to compare with. 1305 * @return {@code true} if the objects are the same; 1306 * {@code false} otherwise. 1307 */ 1308 public boolean equals(Object obj) { 1309 if (obj instanceof Integer) { 1310 return value == ((Integer)obj).intValue(); 1311 } 1312 return false; 1313 } 1314 1315 /** 1316 * Determines the integer value of the system property with the 1317 * specified name. 1318 * 1319 * <p>The first argument is treated as the name of a system 1320 * property. System properties are accessible through the {@link 1321 * java.lang.System#getProperty(java.lang.String)} method. The 1322 * string value of this property is then interpreted as an integer 1323 * value using the grammar supported by {@link Integer#decode decode} and 1324 * an {@code Integer} object representing this value is returned. 1325 * 1326 * <p>If there is no property with the specified name, if the 1327 * specified name is empty or {@code null}, or if the property 1328 * does not have the correct numeric format, then {@code null} is 1329 * returned. 1330 * 1331 * <p>In other words, this method returns an {@code Integer} 1332 * object equal to the value of: 1333 * 1334 * <blockquote> 1335 * {@code getInteger(nm, null)} 1336 * </blockquote> 1337 * 1338 * @param nm property name. 1339 * @return the {@code Integer} value of the property. 1340 * @throws SecurityException for the same reasons as 1341 * {@link System#getProperty(String) System.getProperty} 1342 * @see java.lang.System#getProperty(java.lang.String) 1343 * @see java.lang.System#getProperty(java.lang.String, java.lang.String) 1344 */ 1345 public static Integer getInteger(String nm) { 1346 return getInteger(nm, null); 1347 } 1348 1349 /** 1350 * Determines the integer value of the system property with the 1351 * specified name. 1352 * 1353 * <p>The first argument is treated as the name of a system 1354 * property. System properties are accessible through the {@link 1355 * java.lang.System#getProperty(java.lang.String)} method. The 1356 * string value of this property is then interpreted as an integer 1357 * value using the grammar supported by {@link Integer#decode decode} and 1358 * an {@code Integer} object representing this value is returned. 1359 * 1360 * <p>The second argument is the default value. An {@code Integer} object 1361 * that represents the value of the second argument is returned if there 1362 * is no property of the specified name, if the property does not have 1363 * the correct numeric format, or if the specified name is empty or 1364 * {@code null}. 1365 * 1366 * <p>In other words, this method returns an {@code Integer} object 1367 * equal to the value of: 1368 * 1369 * <blockquote> 1370 * {@code getInteger(nm, new Integer(val))} 1371 * </blockquote> 1372 * 1373 * but in practice it may be implemented in a manner such as: 1374 * 1375 * <blockquote><pre> 1376 * Integer result = getInteger(nm, null); 1377 * return (result == null) ? new Integer(val) : result; 1378 * </pre></blockquote> 1379 * 1380 * to avoid the unnecessary allocation of an {@code Integer} 1381 * object when the default value is not needed. 1382 * 1383 * @param nm property name. 1384 * @param val default value. 1385 * @return the {@code Integer} value of the property. 1386 * @throws SecurityException for the same reasons as 1387 * {@link System#getProperty(String) System.getProperty} 1388 * @see java.lang.System#getProperty(java.lang.String) 1389 * @see java.lang.System#getProperty(java.lang.String, java.lang.String) 1390 */ 1391 public static Integer getInteger(String nm, int val) { 1392 Integer result = getInteger(nm, null); 1393 return (result == null) ? Integer.valueOf(val) : result; 1394 } 1395 1396 /** 1397 * Returns the integer value of the system property with the 1398 * specified name. The first argument is treated as the name of a 1399 * system property. System properties are accessible through the 1400 * {@link java.lang.System#getProperty(java.lang.String)} method. 1401 * The string value of this property is then interpreted as an 1402 * integer value, as per the {@link Integer#decode decode} method, 1403 * and an {@code Integer} object representing this value is 1404 * returned; in summary: 1405 * 1406 * <ul><li>If the property value begins with the two ASCII characters 1407 * {@code 0x} or the ASCII character {@code #}, not 1408 * followed by a minus sign, then the rest of it is parsed as a 1409 * hexadecimal integer exactly as by the method 1410 * {@link #valueOf(java.lang.String, int)} with radix 16. 1411 * <li>If the property value begins with the ASCII character 1412 * {@code 0} followed by another character, it is parsed as an 1413 * octal integer exactly as by the method 1414 * {@link #valueOf(java.lang.String, int)} with radix 8. 1415 * <li>Otherwise, the property value is parsed as a decimal integer 1416 * exactly as by the method {@link #valueOf(java.lang.String, int)} 1417 * with radix 10. 1418 * </ul> 1419 * 1420 * <p>The second argument is the default value. The default value is 1421 * returned if there is no property of the specified name, if the 1422 * property does not have the correct numeric format, or if the 1423 * specified name is empty or {@code null}. 1424 * 1425 * @param nm property name. 1426 * @param val default value. 1427 * @return the {@code Integer} value of the property. 1428 * @throws SecurityException for the same reasons as 1429 * {@link System#getProperty(String) System.getProperty} 1430 * @see System#getProperty(java.lang.String) 1431 * @see System#getProperty(java.lang.String, java.lang.String) 1432 */ 1433 public static Integer getInteger(String nm, Integer val) { 1434 String v = null; 1435 try { 1436 v = System.getProperty(nm); 1437 } catch (IllegalArgumentException | NullPointerException e) { 1438 } 1439 if (v != null) { 1440 try { 1441 return Integer.decode(v); 1442 } catch (NumberFormatException e) { 1443 } 1444 } 1445 return val; 1446 } 1447 1448 /** 1449 * Decodes a {@code String} into an {@code Integer}. 1450 * Accepts decimal, hexadecimal, and octal numbers given 1451 * by the following grammar: 1452 * 1453 * <blockquote> 1454 * <dl> 1455 * <dt><i>DecodableString:</i> 1456 * <dd><i>Sign<sub>opt</sub> DecimalNumeral</i> 1457 * <dd><i>Sign<sub>opt</sub></i> {@code 0x} <i>HexDigits</i> 1458 * <dd><i>Sign<sub>opt</sub></i> {@code 0X} <i>HexDigits</i> 1459 * <dd><i>Sign<sub>opt</sub></i> {@code #} <i>HexDigits</i> 1460 * <dd><i>Sign<sub>opt</sub></i> {@code 0} <i>OctalDigits</i> 1461 * 1462 * <dt><i>Sign:</i> 1463 * <dd>{@code -} 1464 * <dd>{@code +} 1465 * </dl> 1466 * </blockquote> 1467 * 1468 * <i>DecimalNumeral</i>, <i>HexDigits</i>, and <i>OctalDigits</i> 1469 * are as defined in section 3.10.1 of 1470 * <cite>The Java™ Language Specification</cite>, 1471 * except that underscores are not accepted between digits. 1472 * 1473 * <p>The sequence of characters following an optional 1474 * sign and/or radix specifier ("{@code 0x}", "{@code 0X}", 1475 * "{@code #}", or leading zero) is parsed as by the {@code 1476 * Integer.parseInt} method with the indicated radix (10, 16, or 1477 * 8). This sequence of characters must represent a positive 1478 * value or a {@link NumberFormatException} will be thrown. The 1479 * result is negated if first character of the specified {@code 1480 * String} is the minus sign. No whitespace characters are 1481 * permitted in the {@code String}. 1482 * 1483 * @param nm the {@code String} to decode. 1484 * @return an {@code Integer} object holding the {@code int} 1485 * value represented by {@code nm} 1486 * @exception NumberFormatException if the {@code String} does not 1487 * contain a parsable integer. 1488 * @see java.lang.Integer#parseInt(java.lang.String, int) 1489 */ 1490 public static Integer decode(String nm) throws NumberFormatException { 1491 int radix = 10; 1492 int index = 0; 1493 boolean negative = false; 1494 Integer result; 1495 1496 if (nm.isEmpty()) 1497 throw new NumberFormatException("Zero length string"); 1498 char firstChar = nm.charAt(0); 1499 // Handle sign, if present 1500 if (firstChar == '-') { 1501 negative = true; 1502 index++; 1503 } else if (firstChar == '+') 1504 index++; 1505 1506 // Handle radix specifier, if present 1507 if (nm.startsWith("0x", index) || nm.startsWith("0X", index)) { 1508 index += 2; 1509 radix = 16; 1510 } 1511 else if (nm.startsWith("#", index)) { 1512 index ++; 1513 radix = 16; 1514 } 1515 else if (nm.startsWith("0", index) && nm.length() > 1 + index) { 1516 index ++; 1517 radix = 8; 1518 } 1519 1520 if (nm.startsWith("-", index) || nm.startsWith("+", index)) 1521 throw new NumberFormatException("Sign character in wrong position"); 1522 1523 try { 1524 result = Integer.valueOf(nm.substring(index), radix); 1525 result = negative ? Integer.valueOf(-result.intValue()) : result; 1526 } catch (NumberFormatException e) { 1527 // If number is Integer.MIN_VALUE, we'll end up here. The next line 1528 // handles this case, and causes any genuine format error to be 1529 // rethrown. 1530 String constant = negative ? ("-" + nm.substring(index)) 1531 : nm.substring(index); 1532 result = Integer.valueOf(constant, radix); 1533 } 1534 return result; 1535 } 1536 1537 /** 1538 * Compares two {@code Integer} objects numerically. 1539 * 1540 * @param anotherInteger the {@code Integer} to be compared. 1541 * @return the value {@code 0} if this {@code Integer} is 1542 * equal to the argument {@code Integer}; a value less than 1543 * {@code 0} if this {@code Integer} is numerically less 1544 * than the argument {@code Integer}; and a value greater 1545 * than {@code 0} if this {@code Integer} is numerically 1546 * greater than the argument {@code Integer} (signed 1547 * comparison). 1548 * @since 1.2 1549 */ 1550 public int compareTo(Integer anotherInteger) { 1551 return compare(this.value, anotherInteger.value); 1552 } 1553 1554 /** 1555 * Compares two {@code int} values numerically. 1556 * The value returned is identical to what would be returned by: 1557 * <pre> 1558 * Integer.valueOf(x).compareTo(Integer.valueOf(y)) 1559 * </pre> 1560 * 1561 * @param x the first {@code int} to compare 1562 * @param y the second {@code int} to compare 1563 * @return the value {@code 0} if {@code x == y}; 1564 * a value less than {@code 0} if {@code x < y}; and 1565 * a value greater than {@code 0} if {@code x > y} 1566 * @since 1.7 1567 */ 1568 public static int compare(int x, int y) { 1569 return (x < y) ? -1 : ((x == y) ? 0 : 1); 1570 } 1571 1572 /** 1573 * Compares two {@code int} values numerically treating the values 1574 * as unsigned. 1575 * 1576 * @param x the first {@code int} to compare 1577 * @param y the second {@code int} to compare 1578 * @return the value {@code 0} if {@code x == y}; a value less 1579 * than {@code 0} if {@code x < y} as unsigned values; and 1580 * a value greater than {@code 0} if {@code x > y} as 1581 * unsigned values 1582 * @since 1.8 1583 */ 1584 public static int compareUnsigned(int x, int y) { 1585 return compare(x + MIN_VALUE, y + MIN_VALUE); 1586 } 1587 1588 /** 1589 * Converts the argument to a {@code long} by an unsigned 1590 * conversion. In an unsigned conversion to a {@code long}, the 1591 * high-order 32 bits of the {@code long} are zero and the 1592 * low-order 32 bits are equal to the bits of the integer 1593 * argument. 1594 * 1595 * Consequently, zero and positive {@code int} values are mapped 1596 * to a numerically equal {@code long} value and negative {@code 1597 * int} values are mapped to a {@code long} value equal to the 1598 * input plus 2<sup>32</sup>. 1599 * 1600 * @param x the value to convert to an unsigned {@code long} 1601 * @return the argument converted to {@code long} by an unsigned 1602 * conversion 1603 * @since 1.8 1604 */ 1605 public static long toUnsignedLong(int x) { 1606 return ((long) x) & 0xffffffffL; 1607 } 1608 1609 /** 1610 * Returns the unsigned quotient of dividing the first argument by 1611 * the second where each argument and the result is interpreted as 1612 * an unsigned value. 1613 * 1614 * <p>Note that in two's complement arithmetic, the three other 1615 * basic arithmetic operations of add, subtract, and multiply are 1616 * bit-wise identical if the two operands are regarded as both 1617 * being signed or both being unsigned. Therefore separate {@code 1618 * addUnsigned}, etc. methods are not provided. 1619 * 1620 * @param dividend the value to be divided 1621 * @param divisor the value doing the dividing 1622 * @return the unsigned quotient of the first argument divided by 1623 * the second argument 1624 * @see #remainderUnsigned 1625 * @since 1.8 1626 */ 1627 public static int divideUnsigned(int dividend, int divisor) { 1628 // In lieu of tricky code, for now just use long arithmetic. 1629 return (int)(toUnsignedLong(dividend) / toUnsignedLong(divisor)); 1630 } 1631 1632 /** 1633 * Returns the unsigned remainder from dividing the first argument 1634 * by the second where each argument and the result is interpreted 1635 * as an unsigned value. 1636 * 1637 * @param dividend the value to be divided 1638 * @param divisor the value doing the dividing 1639 * @return the unsigned remainder of the first argument divided by 1640 * the second argument 1641 * @see #divideUnsigned 1642 * @since 1.8 1643 */ 1644 public static int remainderUnsigned(int dividend, int divisor) { 1645 // In lieu of tricky code, for now just use long arithmetic. 1646 return (int)(toUnsignedLong(dividend) % toUnsignedLong(divisor)); 1647 } 1648 1649 1650 // Bit twiddling 1651 1652 /** 1653 * The number of bits used to represent an {@code int} value in two's 1654 * complement binary form. 1655 * 1656 * @since 1.5 1657 */ 1658 @Native public static final int SIZE = 32; 1659 1660 /** 1661 * The number of bytes used to represent an {@code int} value in two's 1662 * complement binary form. 1663 * 1664 * @since 1.8 1665 */ 1666 public static final int BYTES = SIZE / Byte.SIZE; 1667 1668 /** 1669 * Returns an {@code int} value with at most a single one-bit, in the 1670 * position of the highest-order ("leftmost") one-bit in the specified 1671 * {@code int} value. Returns zero if the specified value has no 1672 * one-bits in its two's complement binary representation, that is, if it 1673 * is equal to zero. 1674 * 1675 * @param i the value whose highest one bit is to be computed 1676 * @return an {@code int} value with a single one-bit, in the position 1677 * of the highest-order one-bit in the specified value, or zero if 1678 * the specified value is itself equal to zero. 1679 * @since 1.5 1680 */ 1681 public static int highestOneBit(int i) { 1682 return i & (MIN_VALUE >>> numberOfLeadingZeros(i)); 1683 } 1684 1685 /** 1686 * Returns an {@code int} value with at most a single one-bit, in the 1687 * position of the lowest-order ("rightmost") one-bit in the specified 1688 * {@code int} value. Returns zero if the specified value has no 1689 * one-bits in its two's complement binary representation, that is, if it 1690 * is equal to zero. 1691 * 1692 * @param i the value whose lowest one bit is to be computed 1693 * @return an {@code int} value with a single one-bit, in the position 1694 * of the lowest-order one-bit in the specified value, or zero if 1695 * the specified value is itself equal to zero. 1696 * @since 1.5 1697 */ 1698 public static int lowestOneBit(int i) { 1699 // HD, Section 2-1 1700 return i & -i; 1701 } 1702 1703 /** 1704 * Returns the number of zero bits preceding the highest-order 1705 * ("leftmost") one-bit in the two's complement binary representation 1706 * of the specified {@code int} value. Returns 32 if the 1707 * specified value has no one-bits in its two's complement representation, 1708 * in other words if it is equal to zero. 1709 * 1710 * <p>Note that this method is closely related to the logarithm base 2. 1711 * For all positive {@code int} values x: 1712 * <ul> 1713 * <li>floor(log<sub>2</sub>(x)) = {@code 31 - numberOfLeadingZeros(x)} 1714 * <li>ceil(log<sub>2</sub>(x)) = {@code 32 - numberOfLeadingZeros(x - 1)} 1715 * </ul> 1716 * 1717 * @param i the value whose number of leading zeros is to be computed 1718 * @return the number of zero bits preceding the highest-order 1719 * ("leftmost") one-bit in the two's complement binary representation 1720 * of the specified {@code int} value, or 32 if the value 1721 * is equal to zero. 1722 * @since 1.5 1723 */ 1724 @HotSpotIntrinsicCandidate 1725 public static int numberOfLeadingZeros(int i) { 1726 // HD, Count leading 0's 1727 if (i <= 0) 1728 return i == 0 ? 32 : 0; 1729 int n = 31; 1730 if (i >= 1 << 16) { n -= 16; i >>>= 16; } 1731 if (i >= 1 << 8) { n -= 8; i >>>= 8; } 1732 if (i >= 1 << 4) { n -= 4; i >>>= 4; } 1733 if (i >= 1 << 2) { n -= 2; i >>>= 2; } 1734 return n - (i >>> 1); 1735 } 1736 1737 /** 1738 * Returns the number of zero bits following the lowest-order ("rightmost") 1739 * one-bit in the two's complement binary representation of the specified 1740 * {@code int} value. Returns 32 if the specified value has no 1741 * one-bits in its two's complement representation, in other words if it is 1742 * equal to zero. 1743 * 1744 * @param i the value whose number of trailing zeros is to be computed 1745 * @return the number of zero bits following the lowest-order ("rightmost") 1746 * one-bit in the two's complement binary representation of the 1747 * specified {@code int} value, or 32 if the value is equal 1748 * to zero. 1749 * @since 1.5 1750 */ 1751 @HotSpotIntrinsicCandidate 1752 public static int numberOfTrailingZeros(int i) { 1753 // HD, Figure 5-14 1754 int y; 1755 if (i == 0) return 32; 1756 int n = 31; 1757 y = i <<16; if (y != 0) { n = n -16; i = y; } 1758 y = i << 8; if (y != 0) { n = n - 8; i = y; } 1759 y = i << 4; if (y != 0) { n = n - 4; i = y; } 1760 y = i << 2; if (y != 0) { n = n - 2; i = y; } 1761 return n - ((i << 1) >>> 31); 1762 } 1763 1764 /** 1765 * Returns the number of one-bits in the two's complement binary 1766 * representation of the specified {@code int} value. This function is 1767 * sometimes referred to as the <i>population count</i>. 1768 * 1769 * @param i the value whose bits are to be counted 1770 * @return the number of one-bits in the two's complement binary 1771 * representation of the specified {@code int} value. 1772 * @since 1.5 1773 */ 1774 @HotSpotIntrinsicCandidate 1775 public static int bitCount(int i) { 1776 // HD, Figure 5-2 1777 i = i - ((i >>> 1) & 0x55555555); 1778 i = (i & 0x33333333) + ((i >>> 2) & 0x33333333); 1779 i = (i + (i >>> 4)) & 0x0f0f0f0f; 1780 i = i + (i >>> 8); 1781 i = i + (i >>> 16); 1782 return i & 0x3f; 1783 } 1784 1785 /** 1786 * Returns the value obtained by rotating the two's complement binary 1787 * representation of the specified {@code int} value left by the 1788 * specified number of bits. (Bits shifted out of the left hand, or 1789 * high-order, side reenter on the right, or low-order.) 1790 * 1791 * <p>Note that left rotation with a negative distance is equivalent to 1792 * right rotation: {@code rotateLeft(val, -distance) == rotateRight(val, 1793 * distance)}. Note also that rotation by any multiple of 32 is a 1794 * no-op, so all but the last five bits of the rotation distance can be 1795 * ignored, even if the distance is negative: {@code rotateLeft(val, 1796 * distance) == rotateLeft(val, distance & 0x1F)}. 1797 * 1798 * @param i the value whose bits are to be rotated left 1799 * @param distance the number of bit positions to rotate left 1800 * @return the value obtained by rotating the two's complement binary 1801 * representation of the specified {@code int} value left by the 1802 * specified number of bits. 1803 * @since 1.5 1804 */ rotateLeft(int i, int distance)1805 public static int rotateLeft(int i, int distance) { 1806 return (i << distance) | (i >>> -distance); 1807 } 1808 1809 /** 1810 * Returns the value obtained by rotating the two's complement binary 1811 * representation of the specified {@code int} value right by the 1812 * specified number of bits. (Bits shifted out of the right hand, or 1813 * low-order, side reenter on the left, or high-order.) 1814 * 1815 * <p>Note that right rotation with a negative distance is equivalent to 1816 * left rotation: {@code rotateRight(val, -distance) == rotateLeft(val, 1817 * distance)}. Note also that rotation by any multiple of 32 is a 1818 * no-op, so all but the last five bits of the rotation distance can be 1819 * ignored, even if the distance is negative: {@code rotateRight(val, 1820 * distance) == rotateRight(val, distance & 0x1F)}. 1821 * 1822 * @param i the value whose bits are to be rotated right 1823 * @param distance the number of bit positions to rotate right 1824 * @return the value obtained by rotating the two's complement binary 1825 * representation of the specified {@code int} value right by the 1826 * specified number of bits. 1827 * @since 1.5 1828 */ rotateRight(int i, int distance)1829 public static int rotateRight(int i, int distance) { 1830 return (i >>> distance) | (i << -distance); 1831 } 1832 1833 /** 1834 * Returns the value obtained by reversing the order of the bits in the 1835 * two's complement binary representation of the specified {@code int} 1836 * value. 1837 * 1838 * @param i the value to be reversed 1839 * @return the value obtained by reversing order of the bits in the 1840 * specified {@code int} value. 1841 * @since 1.5 1842 */ reverse(int i)1843 public static int reverse(int i) { 1844 // HD, Figure 7-1 1845 i = (i & 0x55555555) << 1 | (i >>> 1) & 0x55555555; 1846 i = (i & 0x33333333) << 2 | (i >>> 2) & 0x33333333; 1847 i = (i & 0x0f0f0f0f) << 4 | (i >>> 4) & 0x0f0f0f0f; 1848 1849 return reverseBytes(i); 1850 } 1851 1852 /** 1853 * Returns the signum function of the specified {@code int} value. (The 1854 * return value is -1 if the specified value is negative; 0 if the 1855 * specified value is zero; and 1 if the specified value is positive.) 1856 * 1857 * @param i the value whose signum is to be computed 1858 * @return the signum function of the specified {@code int} value. 1859 * @since 1.5 1860 */ signum(int i)1861 public static int signum(int i) { 1862 // HD, Section 2-7 1863 return (i >> 31) | (-i >>> 31); 1864 } 1865 1866 /** 1867 * Returns the value obtained by reversing the order of the bytes in the 1868 * two's complement representation of the specified {@code int} value. 1869 * 1870 * @param i the value whose bytes are to be reversed 1871 * @return the value obtained by reversing the bytes in the specified 1872 * {@code int} value. 1873 * @since 1.5 1874 */ 1875 @HotSpotIntrinsicCandidate reverseBytes(int i)1876 public static int reverseBytes(int i) { 1877 return (i << 24) | 1878 ((i & 0xff00) << 8) | 1879 ((i >>> 8) & 0xff00) | 1880 (i >>> 24); 1881 } 1882 1883 /** 1884 * Adds two integers together as per the + operator. 1885 * 1886 * @param a the first operand 1887 * @param b the second operand 1888 * @return the sum of {@code a} and {@code b} 1889 * @see java.util.function.BinaryOperator 1890 * @since 1.8 1891 */ sum(int a, int b)1892 public static int sum(int a, int b) { 1893 return a + b; 1894 } 1895 1896 /** 1897 * Returns the greater of two {@code int} values 1898 * as if by calling {@link Math#max(int, int) Math.max}. 1899 * 1900 * @param a the first operand 1901 * @param b the second operand 1902 * @return the greater of {@code a} and {@code b} 1903 * @see java.util.function.BinaryOperator 1904 * @since 1.8 1905 */ max(int a, int b)1906 public static int max(int a, int b) { 1907 return Math.max(a, b); 1908 } 1909 1910 /** 1911 * Returns the smaller of two {@code int} values 1912 * as if by calling {@link Math#min(int, int) Math.min}. 1913 * 1914 * @param a the first operand 1915 * @param b the second operand 1916 * @return the smaller of {@code a} and {@code b} 1917 * @see java.util.function.BinaryOperator 1918 * @since 1.8 1919 */ min(int a, int b)1920 public static int min(int a, int b) { 1921 return Math.min(a, b); 1922 } 1923 1924 /** use serialVersionUID from JDK 1.0.2 for interoperability */ 1925 @Native private static final long serialVersionUID = 1360826667806852920L; 1926 } 1927