• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  * Copyright (c) 1994, 2018, Oracle and/or its affiliates. All rights reserved.
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This code is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 only, as
8  * published by the Free Software Foundation.  Oracle designates this
9  * particular file as subject to the "Classpath" exception as provided
10  * by Oracle in the LICENSE file that accompanied this code.
11  *
12  * This code is distributed in the hope that it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15  * version 2 for more details (a copy is included in the LICENSE file that
16  * accompanied this code).
17  *
18  * You should have received a copy of the GNU General Public License version
19  * 2 along with this work; if not, write to the Free Software Foundation,
20  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
21  *
22  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
23  * or visit www.oracle.com if you need additional information or have any
24  * questions.
25  */
26 
27 package java.lang;
28 
29 import java.lang.annotation.Native;
30 import java.math.*;
31 import java.util.Objects;
32 import jdk.internal.HotSpotIntrinsicCandidate;
33 
34 
35 /**
36  * The {@code Long} class wraps a value of the primitive type {@code
37  * long} in an object. An object of type {@code Long} contains a
38  * single field whose type is {@code long}.
39  *
40  * <p> In addition, this class provides several methods for converting
41  * a {@code long} to a {@code String} and a {@code String} to a {@code
42  * long}, as well as other constants and methods useful when dealing
43  * with a {@code long}.
44  *
45  * <p>Implementation note: The implementations of the "bit twiddling"
46  * methods (such as {@link #highestOneBit(long) highestOneBit} and
47  * {@link #numberOfTrailingZeros(long) numberOfTrailingZeros}) are
48  * based on material from Henry S. Warren, Jr.'s <i>Hacker's
49  * Delight</i>, (Addison Wesley, 2002).
50  *
51  * @author  Lee Boynton
52  * @author  Arthur van Hoff
53  * @author  Josh Bloch
54  * @author  Joseph D. Darcy
55  * @since   1.0
56  */
57 public final class Long extends Number implements Comparable<Long> {
58     /**
59      * A constant holding the minimum value a {@code long} can
60      * have, -2<sup>63</sup>.
61      */
62     @Native public static final long MIN_VALUE = 0x8000000000000000L;
63 
64     /**
65      * A constant holding the maximum value a {@code long} can
66      * have, 2<sup>63</sup>-1.
67      */
68     @Native public static final long MAX_VALUE = 0x7fffffffffffffffL;
69 
70     /**
71      * The {@code Class} instance representing the primitive type
72      * {@code long}.
73      *
74      * @since   1.1
75      */
76     @SuppressWarnings("unchecked")
77     public static final Class<Long>     TYPE = (Class<Long>) Class.getPrimitiveClass("long");
78 
79     /**
80      * Returns a string representation of the first argument in the
81      * radix specified by the second argument.
82      *
83      * <p>If the radix is smaller than {@code Character.MIN_RADIX}
84      * or larger than {@code Character.MAX_RADIX}, then the radix
85      * {@code 10} is used instead.
86      *
87      * <p>If the first argument is negative, the first element of the
88      * result is the ASCII minus sign {@code '-'}
89      * ({@code '\u005Cu002d'}). If the first argument is not
90      * negative, no sign character appears in the result.
91      *
92      * <p>The remaining characters of the result represent the magnitude
93      * of the first argument. If the magnitude is zero, it is
94      * represented by a single zero character {@code '0'}
95      * ({@code '\u005Cu0030'}); otherwise, the first character of
96      * the representation of the magnitude will not be the zero
97      * character.  The following ASCII characters are used as digits:
98      *
99      * <blockquote>
100      *   {@code 0123456789abcdefghijklmnopqrstuvwxyz}
101      * </blockquote>
102      *
103      * These are {@code '\u005Cu0030'} through
104      * {@code '\u005Cu0039'} and {@code '\u005Cu0061'} through
105      * {@code '\u005Cu007a'}. If {@code radix} is
106      * <var>N</var>, then the first <var>N</var> of these characters
107      * are used as radix-<var>N</var> digits in the order shown. Thus,
108      * the digits for hexadecimal (radix 16) are
109      * {@code 0123456789abcdef}. If uppercase letters are
110      * desired, the {@link java.lang.String#toUpperCase()} method may
111      * be called on the result:
112      *
113      * <blockquote>
114      *  {@code Long.toString(n, 16).toUpperCase()}
115      * </blockquote>
116      *
117      * @param   i       a {@code long} to be converted to a string.
118      * @param   radix   the radix to use in the string representation.
119      * @return  a string representation of the argument in the specified radix.
120      * @see     java.lang.Character#MAX_RADIX
121      * @see     java.lang.Character#MIN_RADIX
122      */
toString(long i, int radix)123     public static String toString(long i, int radix) {
124         if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
125             radix = 10;
126         if (radix == 10)
127             return toString(i);
128 
129         // BEGIN Android-changed: Use single-byte chars.
130         /*
131         if (COMPACT_STRINGS) {
132          */
133             byte[] buf = new byte[65];
134             int charPos = 64;
135             boolean negative = (i < 0);
136 
137             if (!negative) {
138                 i = -i;
139             }
140 
141             while (i <= -radix) {
142                 buf[charPos--] = (byte)Integer.digits[(int)(-(i % radix))];
143                 i = i / radix;
144             }
145             buf[charPos] = (byte)Integer.digits[(int)(-i)];
146 
147             if (negative) {
148                 buf[--charPos] = '-';
149             }
150         /*
151             return StringLatin1.newString(buf, charPos, (65 - charPos));
152         }
153         return toStringUTF16(i, radix);
154          */
155         return new String(buf, charPos, (65 - charPos));
156         // END Android-changed: Use single-byte chars.
157     }
158 
159     // BEGIN Android-removed: UTF16 version of toString(long i, int radix).
160     /*
161     private static String toStringUTF16(long i, int radix) {
162         byte[] buf = new byte[65 * 2];
163         int charPos = 64;
164         boolean negative = (i < 0);
165         if (!negative) {
166             i = -i;
167         }
168         while (i <= -radix) {
169             StringUTF16.putChar(buf, charPos--, Integer.digits[(int)(-(i % radix))]);
170             i = i / radix;
171         }
172         StringUTF16.putChar(buf, charPos, Integer.digits[(int)(-i)]);
173         if (negative) {
174             StringUTF16.putChar(buf, --charPos, '-');
175         }
176         return StringUTF16.newString(buf, charPos, (65 - charPos));
177     }
178      */
179     // END Android-removed: UTF16 version of toString(long i, int radix).
180 
181     /**
182      * Returns a string representation of the first argument as an
183      * unsigned integer value in the radix specified by the second
184      * argument.
185      *
186      * <p>If the radix is smaller than {@code Character.MIN_RADIX}
187      * or larger than {@code Character.MAX_RADIX}, then the radix
188      * {@code 10} is used instead.
189      *
190      * <p>Note that since the first argument is treated as an unsigned
191      * value, no leading sign character is printed.
192      *
193      * <p>If the magnitude is zero, it is represented by a single zero
194      * character {@code '0'} ({@code '\u005Cu0030'}); otherwise,
195      * the first character of the representation of the magnitude will
196      * not be the zero character.
197      *
198      * <p>The behavior of radixes and the characters used as digits
199      * are the same as {@link #toString(long, int) toString}.
200      *
201      * @param   i       an integer to be converted to an unsigned string.
202      * @param   radix   the radix to use in the string representation.
203      * @return  an unsigned string representation of the argument in the specified radix.
204      * @see     #toString(long, int)
205      * @since 1.8
206      */
toUnsignedString(long i, int radix)207     public static String toUnsignedString(long i, int radix) {
208         if (i >= 0)
209             return toString(i, radix);
210         else {
211             switch (radix) {
212             case 2:
213                 return toBinaryString(i);
214 
215             case 4:
216                 return toUnsignedString0(i, 2);
217 
218             case 8:
219                 return toOctalString(i);
220 
221             case 10:
222                 /*
223                  * We can get the effect of an unsigned division by 10
224                  * on a long value by first shifting right, yielding a
225                  * positive value, and then dividing by 5.  This
226                  * allows the last digit and preceding digits to be
227                  * isolated more quickly than by an initial conversion
228                  * to BigInteger.
229                  */
230                 long quot = (i >>> 1) / 5;
231                 long rem = i - quot * 10;
232                 return toString(quot) + rem;
233 
234             case 16:
235                 return toHexString(i);
236 
237             case 32:
238                 return toUnsignedString0(i, 5);
239 
240             default:
241                 return toUnsignedBigInteger(i).toString(radix);
242             }
243         }
244     }
245 
246     /**
247      * Return a BigInteger equal to the unsigned value of the
248      * argument.
249      */
toUnsignedBigInteger(long i)250     private static BigInteger toUnsignedBigInteger(long i) {
251         if (i >= 0L)
252             return BigInteger.valueOf(i);
253         else {
254             int upper = (int) (i >>> 32);
255             int lower = (int) i;
256 
257             // return (upper << 32) + lower
258             return (BigInteger.valueOf(Integer.toUnsignedLong(upper))).shiftLeft(32).
259                 add(BigInteger.valueOf(Integer.toUnsignedLong(lower)));
260         }
261     }
262 
263     /**
264      * Returns a string representation of the {@code long}
265      * argument as an unsigned integer in base&nbsp;16.
266      *
267      * <p>The unsigned {@code long} value is the argument plus
268      * 2<sup>64</sup> if the argument is negative; otherwise, it is
269      * equal to the argument.  This value is converted to a string of
270      * ASCII digits in hexadecimal (base&nbsp;16) with no extra
271      * leading {@code 0}s.
272      *
273      * <p>The value of the argument can be recovered from the returned
274      * string {@code s} by calling {@link
275      * Long#parseUnsignedLong(String, int) Long.parseUnsignedLong(s,
276      * 16)}.
277      *
278      * <p>If the unsigned magnitude is zero, it is represented by a
279      * single zero character {@code '0'} ({@code '\u005Cu0030'});
280      * otherwise, the first character of the representation of the
281      * unsigned magnitude will not be the zero character. The
282      * following characters are used as hexadecimal digits:
283      *
284      * <blockquote>
285      *  {@code 0123456789abcdef}
286      * </blockquote>
287      *
288      * These are the characters {@code '\u005Cu0030'} through
289      * {@code '\u005Cu0039'} and  {@code '\u005Cu0061'} through
290      * {@code '\u005Cu0066'}.  If uppercase letters are desired,
291      * the {@link java.lang.String#toUpperCase()} method may be called
292      * on the result:
293      *
294      * <blockquote>
295      *  {@code Long.toHexString(n).toUpperCase()}
296      * </blockquote>
297      *
298      * @param   i   a {@code long} to be converted to a string.
299      * @return  the string representation of the unsigned {@code long}
300      *          value represented by the argument in hexadecimal
301      *          (base&nbsp;16).
302      * @see #parseUnsignedLong(String, int)
303      * @see #toUnsignedString(long, int)
304      * @since   1.0.2
305      */
toHexString(long i)306     public static String toHexString(long i) {
307         return toUnsignedString0(i, 4);
308     }
309 
310     /**
311      * Returns a string representation of the {@code long}
312      * argument as an unsigned integer in base&nbsp;8.
313      *
314      * <p>The unsigned {@code long} value is the argument plus
315      * 2<sup>64</sup> if the argument is negative; otherwise, it is
316      * equal to the argument.  This value is converted to a string of
317      * ASCII digits in octal (base&nbsp;8) with no extra leading
318      * {@code 0}s.
319      *
320      * <p>The value of the argument can be recovered from the returned
321      * string {@code s} by calling {@link
322      * Long#parseUnsignedLong(String, int) Long.parseUnsignedLong(s,
323      * 8)}.
324      *
325      * <p>If the unsigned magnitude is zero, it is represented by a
326      * single zero character {@code '0'} ({@code '\u005Cu0030'});
327      * otherwise, the first character of the representation of the
328      * unsigned magnitude will not be the zero character. The
329      * following characters are used as octal digits:
330      *
331      * <blockquote>
332      *  {@code 01234567}
333      * </blockquote>
334      *
335      * These are the characters {@code '\u005Cu0030'} through
336      * {@code '\u005Cu0037'}.
337      *
338      * @param   i   a {@code long} to be converted to a string.
339      * @return  the string representation of the unsigned {@code long}
340      *          value represented by the argument in octal (base&nbsp;8).
341      * @see #parseUnsignedLong(String, int)
342      * @see #toUnsignedString(long, int)
343      * @since   1.0.2
344      */
toOctalString(long i)345     public static String toOctalString(long i) {
346         return toUnsignedString0(i, 3);
347     }
348 
349     /**
350      * Returns a string representation of the {@code long}
351      * argument as an unsigned integer in base&nbsp;2.
352      *
353      * <p>The unsigned {@code long} value is the argument plus
354      * 2<sup>64</sup> if the argument is negative; otherwise, it is
355      * equal to the argument.  This value is converted to a string of
356      * ASCII digits in binary (base&nbsp;2) with no extra leading
357      * {@code 0}s.
358      *
359      * <p>The value of the argument can be recovered from the returned
360      * string {@code s} by calling {@link
361      * Long#parseUnsignedLong(String, int) Long.parseUnsignedLong(s,
362      * 2)}.
363      *
364      * <p>If the unsigned magnitude is zero, it is represented by a
365      * single zero character {@code '0'} ({@code '\u005Cu0030'});
366      * otherwise, the first character of the representation of the
367      * unsigned magnitude will not be the zero character. The
368      * characters {@code '0'} ({@code '\u005Cu0030'}) and {@code
369      * '1'} ({@code '\u005Cu0031'}) are used as binary digits.
370      *
371      * @param   i   a {@code long} to be converted to a string.
372      * @return  the string representation of the unsigned {@code long}
373      *          value represented by the argument in binary (base&nbsp;2).
374      * @see #parseUnsignedLong(String, int)
375      * @see #toUnsignedString(long, int)
376      * @since   1.0.2
377      */
toBinaryString(long i)378     public static String toBinaryString(long i) {
379         return toUnsignedString0(i, 1);
380     }
381 
382     /**
383      * Format a long (treated as unsigned) into a String.
384      * @param val the value to format
385      * @param shift the log2 of the base to format in (4 for hex, 3 for octal, 1 for binary)
386      */
toUnsignedString0(long val, int shift)387     static String toUnsignedString0(long val, int shift) {
388         // assert shift > 0 && shift <=5 : "Illegal shift value";
389         int mag = Long.SIZE - Long.numberOfLeadingZeros(val);
390         int chars = Math.max(((mag + (shift - 1)) / shift), 1);
391 
392         // BEGIN Android-changed: Use single-byte chars.
393         /*
394         if (COMPACT_STRINGS) {
395          */
396             byte[] buf = new byte[chars];
397             formatUnsignedLong0(val, shift, buf, 0, chars);
398         /*
399             return new String(buf, LATIN1);
400         } else {
401             byte[] buf = new byte[chars * 2];
402             formatUnsignedLong0UTF16(val, shift, buf, 0, chars);
403             return new String(buf, UTF16);
404         }
405         */
406         return new String(buf);
407         // END Android-changed: Use single-byte chars.
408     }
409 
410     /**
411      * Format a long (treated as unsigned) into a character buffer. If
412      * {@code len} exceeds the formatted ASCII representation of {@code val},
413      * {@code buf} will be padded with leading zeroes.
414      *
415      * @param val the unsigned long to format
416      * @param shift the log2 of the base to format in (4 for hex, 3 for octal, 1 for binary)
417      * @param buf the character buffer to write to
418      * @param offset the offset in the destination buffer to start at
419      * @param len the number of characters to write
420      */
421 
422     /** byte[]/LATIN1 version    */
formatUnsignedLong0(long val, int shift, byte[] buf, int offset, int len)423     static void formatUnsignedLong0(long val, int shift, byte[] buf, int offset, int len) {
424         int charPos = offset + len;
425         int radix = 1 << shift;
426         int mask = radix - 1;
427         do {
428             buf[--charPos] = (byte)Integer.digits[((int) val) & mask];
429             val >>>= shift;
430         } while (charPos > offset);
431     }
432 
433     // BEGIN Android-removed: UTF16 version of formatUnsignedLong0().
434     /*
435     /** byte[]/UTF16 version    *
436     private static void formatUnsignedLong0UTF16(long val, int shift, byte[] buf, int offset, int len) {
437         int charPos = offset + len;
438         int radix = 1 << shift;
439         int mask = radix - 1;
440         do {
441             StringUTF16.putChar(buf, --charPos, Integer.digits[((int) val) & mask]);
442             val >>>= shift;
443         } while (charPos > offset);
444     }
445      */
446     // END Android-removed: UTF16 version of formatUnsignedLong0().
447 
448     /**
449      * Returns a {@code String} object representing the specified
450      * {@code long}.  The argument is converted to signed decimal
451      * representation and returned as a string, exactly as if the
452      * argument and the radix 10 were given as arguments to the {@link
453      * #toString(long, int)} method.
454      *
455      * @param   i   a {@code long} to be converted.
456      * @return  a string representation of the argument in base&nbsp;10.
457      */
toString(long i)458     public static String toString(long i) {
459         int size = stringSize(i);
460         // BEGIN Android-changed: Always use single-byte buffer.
461         /*
462         if (COMPACT_STRINGS) {
463          */
464             byte[] buf = new byte[size];
465             getChars(i, size, buf);
466         /*
467             return new String(buf, LATIN1);
468         } else {
469             byte[] buf = new byte[size * 2];
470             StringUTF16.getChars(i, size, buf);
471             return new String(buf, UTF16);
472         }
473          */
474         return new String(buf);
475         // END Android-changed: Always use single-byte buffer.
476     }
477 
478     /**
479      * Returns a string representation of the argument as an unsigned
480      * decimal value.
481      *
482      * The argument is converted to unsigned decimal representation
483      * and returned as a string exactly as if the argument and radix
484      * 10 were given as arguments to the {@link #toUnsignedString(long,
485      * int)} method.
486      *
487      * @param   i  an integer to be converted to an unsigned string.
488      * @return  an unsigned string representation of the argument.
489      * @see     #toUnsignedString(long, int)
490      * @since 1.8
491      */
toUnsignedString(long i)492     public static String toUnsignedString(long i) {
493         return toUnsignedString(i, 10);
494     }
495 
496     /**
497      * Places characters representing the long i into the
498      * character array buf. The characters are placed into
499      * the buffer backwards starting with the least significant
500      * digit at the specified index (exclusive), and working
501      * backwards from there.
502      *
503      * @implNote This method converts positive inputs into negative
504      * values, to cover the Long.MIN_VALUE case. Converting otherwise
505      * (negative to positive) will expose -Long.MIN_VALUE that overflows
506      * long.
507      *
508      * @param i     value to convert
509      * @param index next index, after the least significant digit
510      * @param buf   target buffer, Latin1-encoded
511      * @return index of the most significant digit or minus sign, if present
512      */
getChars(long i, int index, byte[] buf)513     static int getChars(long i, int index, byte[] buf) {
514         long q;
515         int r;
516         int charPos = index;
517 
518         boolean negative = (i < 0);
519         if (!negative) {
520             i = -i;
521         }
522 
523         // Get 2 digits/iteration using longs until quotient fits into an int
524         while (i <= Integer.MIN_VALUE) {
525             q = i / 100;
526             r = (int)((q * 100) - i);
527             i = q;
528             buf[--charPos] = Integer.DigitOnes[r];
529             buf[--charPos] = Integer.DigitTens[r];
530         }
531 
532         // Get 2 digits/iteration using ints
533         int q2;
534         int i2 = (int)i;
535         while (i2 <= -100) {
536             q2 = i2 / 100;
537             r  = (q2 * 100) - i2;
538             i2 = q2;
539             buf[--charPos] = Integer.DigitOnes[r];
540             buf[--charPos] = Integer.DigitTens[r];
541         }
542 
543         // We know there are at most two digits left at this point.
544         q2 = i2 / 10;
545         r  = (q2 * 10) - i2;
546         buf[--charPos] = (byte)('0' + r);
547 
548         // Whatever left is the remaining digit.
549         if (q2 < 0) {
550             buf[--charPos] = (byte)('0' - q2);
551         }
552 
553         if (negative) {
554             buf[--charPos] = (byte)'-';
555         }
556         return charPos;
557     }
558 
559     // BEGIN Android-added: char version of getChars(long i, int index, byte[] buf).
560     // for java.lang.AbstractStringBuilder#append(int).
getChars(long i, int index, char[] buf)561     static int getChars(long i, int index, char[] buf) {
562         long q;
563         int r;
564         int charPos = index;
565 
566         boolean negative = (i < 0);
567         if (!negative) {
568             i = -i;
569         }
570 
571         // Get 2 digits/iteration using longs until quotient fits into an int
572         while (i <= Integer.MIN_VALUE) {
573             q = i / 100;
574             r = (int)((q * 100) - i);
575             i = q;
576             buf[--charPos] = (char)Integer.DigitOnes[r];
577             buf[--charPos] = (char)Integer.DigitTens[r];
578         }
579 
580         // Get 2 digits/iteration using ints
581         int q2;
582         int i2 = (int)i;
583         while (i2 <= -100) {
584             q2 = i2 / 100;
585             r  = (q2 * 100) - i2;
586             i2 = q2;
587             buf[--charPos] = (char)Integer.DigitOnes[r];
588             buf[--charPos] = (char)Integer.DigitTens[r];
589         }
590 
591         // We know there are at most two digits left at this point.
592         q2 = i2 / 10;
593         r  = (q2 * 10) - i2;
594         buf[--charPos] = (char)('0' + r);
595 
596         // Whatever left is the remaining digit.
597         if (q2 < 0) {
598             buf[--charPos] = (char)('0' - q2);
599         }
600 
601         if (negative) {
602             buf[--charPos] = (byte)'-';
603         }
604         return charPos;
605     }
606     // END Android-added: char version of getChars(long i, int index, byte[] buf).
607 
608     /**
609      * Returns the string representation size for a given long value.
610      *
611      * @param x long value
612      * @return string size
613      *
614      * @implNote There are other ways to compute this: e.g. binary search,
615      * but values are biased heavily towards zero, and therefore linear search
616      * wins. The iteration results are also routinely inlined in the generated
617      * code after loop unrolling.
618      */
stringSize(long x)619     static int stringSize(long x) {
620         int d = 1;
621         if (x >= 0) {
622             d = 0;
623             x = -x;
624         }
625         long p = -10;
626         for (int i = 1; i < 19; i++) {
627             if (x > p)
628                 return i + d;
629             p = 10 * p;
630         }
631         return 19 + d;
632     }
633 
634     /**
635      * Parses the string argument as a signed {@code long} in the
636      * radix specified by the second argument. The characters in the
637      * string must all be digits of the specified radix (as determined
638      * by whether {@link java.lang.Character#digit(char, int)} returns
639      * a nonnegative value), except that the first character may be an
640      * ASCII minus sign {@code '-'} ({@code '\u005Cu002D'}) to
641      * indicate a negative value or an ASCII plus sign {@code '+'}
642      * ({@code '\u005Cu002B'}) to indicate a positive value. The
643      * resulting {@code long} value is returned.
644      *
645      * <p>Note that neither the character {@code L}
646      * ({@code '\u005Cu004C'}) nor {@code l}
647      * ({@code '\u005Cu006C'}) is permitted to appear at the end
648      * of the string as a type indicator, as would be permitted in
649      * Java programming language source code - except that either
650      * {@code L} or {@code l} may appear as a digit for a
651      * radix greater than or equal to 22.
652      *
653      * <p>An exception of type {@code NumberFormatException} is
654      * thrown if any of the following situations occurs:
655      * <ul>
656      *
657      * <li>The first argument is {@code null} or is a string of
658      * length zero.
659      *
660      * <li>The {@code radix} is either smaller than {@link
661      * java.lang.Character#MIN_RADIX} or larger than {@link
662      * java.lang.Character#MAX_RADIX}.
663      *
664      * <li>Any character of the string is not a digit of the specified
665      * radix, except that the first character may be a minus sign
666      * {@code '-'} ({@code '\u005Cu002d'}) or plus sign {@code
667      * '+'} ({@code '\u005Cu002B'}) provided that the string is
668      * longer than length 1.
669      *
670      * <li>The value represented by the string is not a value of type
671      *      {@code long}.
672      * </ul>
673      *
674      * <p>Examples:
675      * <blockquote><pre>
676      * parseLong("0", 10) returns 0L
677      * parseLong("473", 10) returns 473L
678      * parseLong("+42", 10) returns 42L
679      * parseLong("-0", 10) returns 0L
680      * parseLong("-FF", 16) returns -255L
681      * parseLong("1100110", 2) returns 102L
682      * parseLong("99", 8) throws a NumberFormatException
683      * parseLong("Hazelnut", 10) throws a NumberFormatException
684      * parseLong("Hazelnut", 36) returns 1356099454469L
685      * </pre></blockquote>
686      *
687      * @param      s       the {@code String} containing the
688      *                     {@code long} representation to be parsed.
689      * @param      radix   the radix to be used while parsing {@code s}.
690      * @return     the {@code long} represented by the string argument in
691      *             the specified radix.
692      * @throws     NumberFormatException  if the string does not contain a
693      *             parsable {@code long}.
694      */
parseLong(String s, int radix)695     public static long parseLong(String s, int radix)
696               throws NumberFormatException
697     {
698         if (s == null) {
699             throw new NumberFormatException("null");
700         }
701 
702         if (radix < Character.MIN_RADIX) {
703             throw new NumberFormatException("radix " + radix +
704                                             " less than Character.MIN_RADIX");
705         }
706         if (radix > Character.MAX_RADIX) {
707             throw new NumberFormatException("radix " + radix +
708                                             " greater than Character.MAX_RADIX");
709         }
710 
711         boolean negative = false;
712         int i = 0, len = s.length();
713         long limit = -Long.MAX_VALUE;
714 
715         if (len > 0) {
716             char firstChar = s.charAt(0);
717             if (firstChar < '0') { // Possible leading "+" or "-"
718                 if (firstChar == '-') {
719                     negative = true;
720                     limit = Long.MIN_VALUE;
721                 } else if (firstChar != '+') {
722                     throw NumberFormatException.forInputString(s);
723                 }
724 
725                 if (len == 1) { // Cannot have lone "+" or "-"
726                     throw NumberFormatException.forInputString(s);
727                 }
728                 i++;
729             }
730             long multmin = limit / radix;
731             long result = 0;
732             while (i < len) {
733                 // Accumulating negatively avoids surprises near MAX_VALUE
734                 int digit = Character.digit(s.charAt(i++),radix);
735                 if (digit < 0 || result < multmin) {
736                     throw NumberFormatException.forInputString(s);
737                 }
738                 result *= radix;
739                 if (result < limit + digit) {
740                     throw NumberFormatException.forInputString(s);
741                 }
742                 result -= digit;
743             }
744             return negative ? result : -result;
745         } else {
746             throw NumberFormatException.forInputString(s);
747         }
748     }
749 
750     /**
751      * Parses the {@link CharSequence} argument as a signed {@code long} in
752      * the specified {@code radix}, beginning at the specified
753      * {@code beginIndex} and extending to {@code endIndex - 1}.
754      *
755      * <p>The method does not take steps to guard against the
756      * {@code CharSequence} being mutated while parsing.
757      *
758      * @param      s   the {@code CharSequence} containing the {@code long}
759      *                  representation to be parsed
760      * @param      beginIndex   the beginning index, inclusive.
761      * @param      endIndex     the ending index, exclusive.
762      * @param      radix   the radix to be used while parsing {@code s}.
763      * @return     the signed {@code long} represented by the subsequence in
764      *             the specified radix.
765      * @throws     NullPointerException  if {@code s} is null.
766      * @throws     IndexOutOfBoundsException  if {@code beginIndex} is
767      *             negative, or if {@code beginIndex} is greater than
768      *             {@code endIndex} or if {@code endIndex} is greater than
769      *             {@code s.length()}.
770      * @throws     NumberFormatException  if the {@code CharSequence} does not
771      *             contain a parsable {@code int} in the specified
772      *             {@code radix}, or if {@code radix} is either smaller than
773      *             {@link java.lang.Character#MIN_RADIX} or larger than
774      *             {@link java.lang.Character#MAX_RADIX}.
775      * @since  9
776      */
parseLong(CharSequence s, int beginIndex, int endIndex, int radix)777     public static long parseLong(CharSequence s, int beginIndex, int endIndex, int radix)
778                 throws NumberFormatException {
779         s = Objects.requireNonNull(s);
780 
781         if (beginIndex < 0 || beginIndex > endIndex || endIndex > s.length()) {
782             throw new IndexOutOfBoundsException();
783         }
784         if (radix < Character.MIN_RADIX) {
785             throw new NumberFormatException("radix " + radix +
786                     " less than Character.MIN_RADIX");
787         }
788         if (radix > Character.MAX_RADIX) {
789             throw new NumberFormatException("radix " + radix +
790                     " greater than Character.MAX_RADIX");
791         }
792 
793         boolean negative = false;
794         int i = beginIndex;
795         long limit = -Long.MAX_VALUE;
796 
797         if (i < endIndex) {
798             char firstChar = s.charAt(i);
799             if (firstChar < '0') { // Possible leading "+" or "-"
800                 if (firstChar == '-') {
801                     negative = true;
802                     limit = Long.MIN_VALUE;
803                 } else if (firstChar != '+') {
804                     throw NumberFormatException.forCharSequence(s, beginIndex,
805                             endIndex, i);
806                 }
807                 i++;
808             }
809             if (i >= endIndex) { // Cannot have lone "+", "-" or ""
810                 throw NumberFormatException.forCharSequence(s, beginIndex,
811                         endIndex, i);
812             }
813             long multmin = limit / radix;
814             long result = 0;
815             while (i < endIndex) {
816                 // Accumulating negatively avoids surprises near MAX_VALUE
817                 int digit = Character.digit(s.charAt(i), radix);
818                 if (digit < 0 || result < multmin) {
819                     throw NumberFormatException.forCharSequence(s, beginIndex,
820                             endIndex, i);
821                 }
822                 result *= radix;
823                 if (result < limit + digit) {
824                     throw NumberFormatException.forCharSequence(s, beginIndex,
825                             endIndex, i);
826                 }
827                 i++;
828                 result -= digit;
829             }
830             return negative ? result : -result;
831         } else {
832             throw new NumberFormatException("");
833         }
834     }
835 
836     /**
837      * Parses the string argument as a signed decimal {@code long}.
838      * The characters in the string must all be decimal digits, except
839      * that the first character may be an ASCII minus sign {@code '-'}
840      * ({@code \u005Cu002D'}) to indicate a negative value or an
841      * ASCII plus sign {@code '+'} ({@code '\u005Cu002B'}) to
842      * indicate a positive value. The resulting {@code long} value is
843      * returned, exactly as if the argument and the radix {@code 10}
844      * were given as arguments to the {@link
845      * #parseLong(java.lang.String, int)} method.
846      *
847      * <p>Note that neither the character {@code L}
848      * ({@code '\u005Cu004C'}) nor {@code l}
849      * ({@code '\u005Cu006C'}) is permitted to appear at the end
850      * of the string as a type indicator, as would be permitted in
851      * Java programming language source code.
852      *
853      * @param      s   a {@code String} containing the {@code long}
854      *             representation to be parsed
855      * @return     the {@code long} represented by the argument in
856      *             decimal.
857      * @throws     NumberFormatException  if the string does not contain a
858      *             parsable {@code long}.
859      */
parseLong(String s)860     public static long parseLong(String s) throws NumberFormatException {
861         return parseLong(s, 10);
862     }
863 
864     /**
865      * Parses the string argument as an unsigned {@code long} in the
866      * radix specified by the second argument.  An unsigned integer
867      * maps the values usually associated with negative numbers to
868      * positive numbers larger than {@code MAX_VALUE}.
869      *
870      * The characters in the string must all be digits of the
871      * specified radix (as determined by whether {@link
872      * java.lang.Character#digit(char, int)} returns a nonnegative
873      * value), except that the first character may be an ASCII plus
874      * sign {@code '+'} ({@code '\u005Cu002B'}). The resulting
875      * integer value is returned.
876      *
877      * <p>An exception of type {@code NumberFormatException} is
878      * thrown if any of the following situations occurs:
879      * <ul>
880      * <li>The first argument is {@code null} or is a string of
881      * length zero.
882      *
883      * <li>The radix is either smaller than
884      * {@link java.lang.Character#MIN_RADIX} or
885      * larger than {@link java.lang.Character#MAX_RADIX}.
886      *
887      * <li>Any character of the string is not a digit of the specified
888      * radix, except that the first character may be a plus sign
889      * {@code '+'} ({@code '\u005Cu002B'}) provided that the
890      * string is longer than length 1.
891      *
892      * <li>The value represented by the string is larger than the
893      * largest unsigned {@code long}, 2<sup>64</sup>-1.
894      *
895      * </ul>
896      *
897      *
898      * @param      s   the {@code String} containing the unsigned integer
899      *                  representation to be parsed
900      * @param      radix   the radix to be used while parsing {@code s}.
901      * @return     the unsigned {@code long} represented by the string
902      *             argument in the specified radix.
903      * @throws     NumberFormatException if the {@code String}
904      *             does not contain a parsable {@code long}.
905      * @since 1.8
906      */
parseUnsignedLong(String s, int radix)907     public static long parseUnsignedLong(String s, int radix)
908                 throws NumberFormatException {
909         if (s == null)  {
910             throw new NumberFormatException("null");
911         }
912 
913         int len = s.length();
914         if (len > 0) {
915             char firstChar = s.charAt(0);
916             if (firstChar == '-') {
917                 throw new
918                     NumberFormatException(String.format("Illegal leading minus sign " +
919                                                        "on unsigned string %s.", s));
920             } else {
921                 if (len <= 12 || // Long.MAX_VALUE in Character.MAX_RADIX is 13 digits
922                     (radix == 10 && len <= 18) ) { // Long.MAX_VALUE in base 10 is 19 digits
923                     return parseLong(s, radix);
924                 }
925 
926                 // No need for range checks on len due to testing above.
927                 long first = parseLong(s, 0, len - 1, radix);
928                 int second = Character.digit(s.charAt(len - 1), radix);
929                 if (second < 0) {
930                     throw new NumberFormatException("Bad digit at end of " + s);
931                 }
932                 long result = first * radix + second;
933 
934                 /*
935                  * Test leftmost bits of multiprecision extension of first*radix
936                  * for overflow. The number of bits needed is defined by
937                  * GUARD_BIT = ceil(log2(Character.MAX_RADIX)) + 1 = 7. Then
938                  * int guard = radix*(int)(first >>> (64 - GUARD_BIT)) and
939                  * overflow is tested by splitting guard in the ranges
940                  * guard < 92, 92 <= guard < 128, and 128 <= guard, where
941                  * 92 = 128 - Character.MAX_RADIX. Note that guard cannot take
942                  * on a value which does not include a prime factor in the legal
943                  * radix range.
944                  */
945                 int guard = radix * (int) (first >>> 57);
946                 if (guard >= 128 ||
947                     (result >= 0 && guard >= 128 - Character.MAX_RADIX)) {
948                     /*
949                      * For purposes of exposition, the programmatic statements
950                      * below should be taken to be multi-precision, i.e., not
951                      * subject to overflow.
952                      *
953                      * A) Condition guard >= 128:
954                      * If guard >= 128 then first*radix >= 2^7 * 2^57 = 2^64
955                      * hence always overflow.
956                      *
957                      * B) Condition guard < 92:
958                      * Define left7 = first >>> 57.
959                      * Given first = (left7 * 2^57) + (first & (2^57 - 1)) then
960                      * result <= (radix*left7)*2^57 + radix*(2^57 - 1) + second.
961                      * Thus if radix*left7 < 92, radix <= 36, and second < 36,
962                      * then result < 92*2^57 + 36*(2^57 - 1) + 36 = 2^64 hence
963                      * never overflow.
964                      *
965                      * C) Condition 92 <= guard < 128:
966                      * first*radix + second >= radix*left7*2^57 + second
967                      * so that first*radix + second >= 92*2^57 + 0 > 2^63
968                      *
969                      * D) Condition guard < 128:
970                      * radix*first <= (radix*left7) * 2^57 + radix*(2^57 - 1)
971                      * so
972                      * radix*first + second <= (radix*left7) * 2^57 + radix*(2^57 - 1) + 36
973                      * thus
974                      * radix*first + second < 128 * 2^57 + 36*2^57 - radix + 36
975                      * whence
976                      * radix*first + second < 2^64 + 2^6*2^57 = 2^64 + 2^63
977                      *
978                      * E) Conditions C, D, and result >= 0:
979                      * C and D combined imply the mathematical result
980                      * 2^63 < first*radix + second < 2^64 + 2^63. The lower
981                      * bound is therefore negative as a signed long, but the
982                      * upper bound is too small to overflow again after the
983                      * signed long overflows to positive above 2^64 - 1. Hence
984                      * result >= 0 implies overflow given C and D.
985                      */
986                     throw new NumberFormatException(String.format("String value %s exceeds " +
987                                                                   "range of unsigned long.", s));
988                 }
989                 return result;
990             }
991         } else {
992             throw NumberFormatException.forInputString(s);
993         }
994     }
995 
996     /**
997      * Parses the {@link CharSequence} argument as an unsigned {@code long} in
998      * the specified {@code radix}, beginning at the specified
999      * {@code beginIndex} and extending to {@code endIndex - 1}.
1000      *
1001      * <p>The method does not take steps to guard against the
1002      * {@code CharSequence} being mutated while parsing.
1003      *
1004      * @param      s   the {@code CharSequence} containing the unsigned
1005      *                 {@code long} representation to be parsed
1006      * @param      beginIndex   the beginning index, inclusive.
1007      * @param      endIndex     the ending index, exclusive.
1008      * @param      radix   the radix to be used while parsing {@code s}.
1009      * @return     the unsigned {@code long} represented by the subsequence in
1010      *             the specified radix.
1011      * @throws     NullPointerException  if {@code s} is null.
1012      * @throws     IndexOutOfBoundsException  if {@code beginIndex} is
1013      *             negative, or if {@code beginIndex} is greater than
1014      *             {@code endIndex} or if {@code endIndex} is greater than
1015      *             {@code s.length()}.
1016      * @throws     NumberFormatException  if the {@code CharSequence} does not
1017      *             contain a parsable unsigned {@code long} in the specified
1018      *             {@code radix}, or if {@code radix} is either smaller than
1019      *             {@link java.lang.Character#MIN_RADIX} or larger than
1020      *             {@link java.lang.Character#MAX_RADIX}.
1021      * @since  9
1022      */
parseUnsignedLong(CharSequence s, int beginIndex, int endIndex, int radix)1023     public static long parseUnsignedLong(CharSequence s, int beginIndex, int endIndex, int radix)
1024                 throws NumberFormatException {
1025         s = Objects.requireNonNull(s);
1026 
1027         if (beginIndex < 0 || beginIndex > endIndex || endIndex > s.length()) {
1028             throw new IndexOutOfBoundsException();
1029         }
1030         int start = beginIndex, len = endIndex - beginIndex;
1031 
1032         if (len > 0) {
1033             char firstChar = s.charAt(start);
1034             if (firstChar == '-') {
1035                 throw new NumberFormatException(String.format("Illegal leading minus sign " +
1036                         "on unsigned string %s.", s.subSequence(start, start + len)));
1037             } else {
1038                 if (len <= 12 || // Long.MAX_VALUE in Character.MAX_RADIX is 13 digits
1039                     (radix == 10 && len <= 18) ) { // Long.MAX_VALUE in base 10 is 19 digits
1040                     return parseLong(s, start, start + len, radix);
1041                 }
1042 
1043                 // No need for range checks on end due to testing above.
1044                 long first = parseLong(s, start, start + len - 1, radix);
1045                 int second = Character.digit(s.charAt(start + len - 1), radix);
1046                 if (second < 0) {
1047                     throw new NumberFormatException("Bad digit at end of " +
1048                             s.subSequence(start, start + len));
1049                 }
1050                 long result = first * radix + second;
1051 
1052                 /*
1053                  * Test leftmost bits of multiprecision extension of first*radix
1054                  * for overflow. The number of bits needed is defined by
1055                  * GUARD_BIT = ceil(log2(Character.MAX_RADIX)) + 1 = 7. Then
1056                  * int guard = radix*(int)(first >>> (64 - GUARD_BIT)) and
1057                  * overflow is tested by splitting guard in the ranges
1058                  * guard < 92, 92 <= guard < 128, and 128 <= guard, where
1059                  * 92 = 128 - Character.MAX_RADIX. Note that guard cannot take
1060                  * on a value which does not include a prime factor in the legal
1061                  * radix range.
1062                  */
1063                 int guard = radix * (int) (first >>> 57);
1064                 if (guard >= 128 ||
1065                         (result >= 0 && guard >= 128 - Character.MAX_RADIX)) {
1066                     /*
1067                      * For purposes of exposition, the programmatic statements
1068                      * below should be taken to be multi-precision, i.e., not
1069                      * subject to overflow.
1070                      *
1071                      * A) Condition guard >= 128:
1072                      * If guard >= 128 then first*radix >= 2^7 * 2^57 = 2^64
1073                      * hence always overflow.
1074                      *
1075                      * B) Condition guard < 92:
1076                      * Define left7 = first >>> 57.
1077                      * Given first = (left7 * 2^57) + (first & (2^57 - 1)) then
1078                      * result <= (radix*left7)*2^57 + radix*(2^57 - 1) + second.
1079                      * Thus if radix*left7 < 92, radix <= 36, and second < 36,
1080                      * then result < 92*2^57 + 36*(2^57 - 1) + 36 = 2^64 hence
1081                      * never overflow.
1082                      *
1083                      * C) Condition 92 <= guard < 128:
1084                      * first*radix + second >= radix*left7*2^57 + second
1085                      * so that first*radix + second >= 92*2^57 + 0 > 2^63
1086                      *
1087                      * D) Condition guard < 128:
1088                      * radix*first <= (radix*left7) * 2^57 + radix*(2^57 - 1)
1089                      * so
1090                      * radix*first + second <= (radix*left7) * 2^57 + radix*(2^57 - 1) + 36
1091                      * thus
1092                      * radix*first + second < 128 * 2^57 + 36*2^57 - radix + 36
1093                      * whence
1094                      * radix*first + second < 2^64 + 2^6*2^57 = 2^64 + 2^63
1095                      *
1096                      * E) Conditions C, D, and result >= 0:
1097                      * C and D combined imply the mathematical result
1098                      * 2^63 < first*radix + second < 2^64 + 2^63. The lower
1099                      * bound is therefore negative as a signed long, but the
1100                      * upper bound is too small to overflow again after the
1101                      * signed long overflows to positive above 2^64 - 1. Hence
1102                      * result >= 0 implies overflow given C and D.
1103                      */
1104                     throw new NumberFormatException(String.format("String value %s exceeds " +
1105                             "range of unsigned long.", s.subSequence(start, start + len)));
1106                 }
1107                 return result;
1108             }
1109         } else {
1110             throw NumberFormatException.forInputString("");
1111         }
1112     }
1113 
1114     /**
1115      * Parses the string argument as an unsigned decimal {@code long}. The
1116      * characters in the string must all be decimal digits, except
1117      * that the first character may be an ASCII plus sign {@code
1118      * '+'} ({@code '\u005Cu002B'}). The resulting integer value
1119      * is returned, exactly as if the argument and the radix 10 were
1120      * given as arguments to the {@link
1121      * #parseUnsignedLong(java.lang.String, int)} method.
1122      *
1123      * @param s   a {@code String} containing the unsigned {@code long}
1124      *            representation to be parsed
1125      * @return    the unsigned {@code long} value represented by the decimal string argument
1126      * @throws    NumberFormatException  if the string does not contain a
1127      *            parsable unsigned integer.
1128      * @since 1.8
1129      */
parseUnsignedLong(String s)1130     public static long parseUnsignedLong(String s) throws NumberFormatException {
1131         return parseUnsignedLong(s, 10);
1132     }
1133 
1134     /**
1135      * Returns a {@code Long} object holding the value
1136      * extracted from the specified {@code String} when parsed
1137      * with the radix given by the second argument.  The first
1138      * argument is interpreted as representing a signed
1139      * {@code long} in the radix specified by the second
1140      * argument, exactly as if the arguments were given to the {@link
1141      * #parseLong(java.lang.String, int)} method. The result is a
1142      * {@code Long} object that represents the {@code long}
1143      * value specified by the string.
1144      *
1145      * <p>In other words, this method returns a {@code Long} object equal
1146      * to the value of:
1147      *
1148      * <blockquote>
1149      *  {@code new Long(Long.parseLong(s, radix))}
1150      * </blockquote>
1151      *
1152      * @param      s       the string to be parsed
1153      * @param      radix   the radix to be used in interpreting {@code s}
1154      * @return     a {@code Long} object holding the value
1155      *             represented by the string argument in the specified
1156      *             radix.
1157      * @throws     NumberFormatException  If the {@code String} does not
1158      *             contain a parsable {@code long}.
1159      */
valueOf(String s, int radix)1160     public static Long valueOf(String s, int radix) throws NumberFormatException {
1161         return Long.valueOf(parseLong(s, radix));
1162     }
1163 
1164     /**
1165      * Returns a {@code Long} object holding the value
1166      * of the specified {@code String}. The argument is
1167      * interpreted as representing a signed decimal {@code long},
1168      * exactly as if the argument were given to the {@link
1169      * #parseLong(java.lang.String)} method. The result is a
1170      * {@code Long} object that represents the integer value
1171      * specified by the string.
1172      *
1173      * <p>In other words, this method returns a {@code Long} object
1174      * equal to the value of:
1175      *
1176      * <blockquote>
1177      *  {@code new Long(Long.parseLong(s))}
1178      * </blockquote>
1179      *
1180      * @param      s   the string to be parsed.
1181      * @return     a {@code Long} object holding the value
1182      *             represented by the string argument.
1183      * @throws     NumberFormatException  If the string cannot be parsed
1184      *             as a {@code long}.
1185      */
valueOf(String s)1186     public static Long valueOf(String s) throws NumberFormatException
1187     {
1188         return Long.valueOf(parseLong(s, 10));
1189     }
1190 
1191     private static class LongCache {
LongCache()1192         private LongCache(){}
1193 
1194         static final Long cache[] = new Long[-(-128) + 127 + 1];
1195 
1196         static {
1197             for(int i = 0; i < cache.length; i++)
1198                 cache[i] = new Long(i - 128);
1199         }
1200     }
1201 
1202     /**
1203      * Returns a {@code Long} instance representing the specified
1204      * {@code long} value.
1205      * If a new {@code Long} instance is not required, this method
1206      * should generally be used in preference to the constructor
1207      * {@link #Long(long)}, as this method is likely to yield
1208      * significantly better space and time performance by caching
1209      * frequently requested values.
1210      *
1211      * This method will always cache values in the range -128 to 127,
1212      * inclusive, and may cache other values outside of this range.
1213      *
1214      * @param  l a long value.
1215      * @return a {@code Long} instance representing {@code l}.
1216      * @since  1.5
1217      */
1218     @HotSpotIntrinsicCandidate
valueOf(long l)1219     public static Long valueOf(long l) {
1220         final int offset = 128;
1221         if (l >= -128 && l <= 127) { // will cache
1222             return LongCache.cache[(int)l + offset];
1223         }
1224         return new Long(l);
1225     }
1226 
1227     /**
1228      * Decodes a {@code String} into a {@code Long}.
1229      * Accepts decimal, hexadecimal, and octal numbers given by the
1230      * following grammar:
1231      *
1232      * <blockquote>
1233      * <dl>
1234      * <dt><i>DecodableString:</i>
1235      * <dd><i>Sign<sub>opt</sub> DecimalNumeral</i>
1236      * <dd><i>Sign<sub>opt</sub></i> {@code 0x} <i>HexDigits</i>
1237      * <dd><i>Sign<sub>opt</sub></i> {@code 0X} <i>HexDigits</i>
1238      * <dd><i>Sign<sub>opt</sub></i> {@code #} <i>HexDigits</i>
1239      * <dd><i>Sign<sub>opt</sub></i> {@code 0} <i>OctalDigits</i>
1240      *
1241      * <dt><i>Sign:</i>
1242      * <dd>{@code -}
1243      * <dd>{@code +}
1244      * </dl>
1245      * </blockquote>
1246      *
1247      * <i>DecimalNumeral</i>, <i>HexDigits</i>, and <i>OctalDigits</i>
1248      * are as defined in section 3.10.1 of
1249      * <cite>The Java&trade; Language Specification</cite>,
1250      * except that underscores are not accepted between digits.
1251      *
1252      * <p>The sequence of characters following an optional
1253      * sign and/or radix specifier ("{@code 0x}", "{@code 0X}",
1254      * "{@code #}", or leading zero) is parsed as by the {@code
1255      * Long.parseLong} method with the indicated radix (10, 16, or 8).
1256      * This sequence of characters must represent a positive value or
1257      * a {@link NumberFormatException} will be thrown.  The result is
1258      * negated if first character of the specified {@code String} is
1259      * the minus sign.  No whitespace characters are permitted in the
1260      * {@code String}.
1261      *
1262      * @param     nm the {@code String} to decode.
1263      * @return    a {@code Long} object holding the {@code long}
1264      *            value represented by {@code nm}
1265      * @throws    NumberFormatException  if the {@code String} does not
1266      *            contain a parsable {@code long}.
1267      * @see java.lang.Long#parseLong(String, int)
1268      * @since 1.2
1269      */
decode(String nm)1270     public static Long decode(String nm) throws NumberFormatException {
1271         int radix = 10;
1272         int index = 0;
1273         boolean negative = false;
1274         Long result;
1275 
1276         if (nm.isEmpty())
1277             throw new NumberFormatException("Zero length string");
1278         char firstChar = nm.charAt(0);
1279         // Handle sign, if present
1280         if (firstChar == '-') {
1281             negative = true;
1282             index++;
1283         } else if (firstChar == '+')
1284             index++;
1285 
1286         // Handle radix specifier, if present
1287         if (nm.startsWith("0x", index) || nm.startsWith("0X", index)) {
1288             index += 2;
1289             radix = 16;
1290         }
1291         else if (nm.startsWith("#", index)) {
1292             index ++;
1293             radix = 16;
1294         }
1295         else if (nm.startsWith("0", index) && nm.length() > 1 + index) {
1296             index ++;
1297             radix = 8;
1298         }
1299 
1300         if (nm.startsWith("-", index) || nm.startsWith("+", index))
1301             throw new NumberFormatException("Sign character in wrong position");
1302 
1303         try {
1304             result = Long.valueOf(nm.substring(index), radix);
1305             result = negative ? Long.valueOf(-result.longValue()) : result;
1306         } catch (NumberFormatException e) {
1307             // If number is Long.MIN_VALUE, we'll end up here. The next line
1308             // handles this case, and causes any genuine format error to be
1309             // rethrown.
1310             String constant = negative ? ("-" + nm.substring(index))
1311                                        : nm.substring(index);
1312             result = Long.valueOf(constant, radix);
1313         }
1314         return result;
1315     }
1316 
1317     /**
1318      * The value of the {@code Long}.
1319      *
1320      * @serial
1321      */
1322     private final long value;
1323 
1324     /**
1325      * Constructs a newly allocated {@code Long} object that
1326      * represents the specified {@code long} argument.
1327      *
1328      * @param   value   the value to be represented by the
1329      *          {@code Long} object.
1330      *
1331      * @deprecated
1332      * It is rarely appropriate to use this constructor. The static factory
1333      * {@link #valueOf(long)} is generally a better choice, as it is
1334      * likely to yield significantly better space and time performance.
1335      */
1336     @Deprecated(since="9")
Long(long value)1337     public Long(long value) {
1338         this.value = value;
1339     }
1340 
1341     /**
1342      * Constructs a newly allocated {@code Long} object that
1343      * represents the {@code long} value indicated by the
1344      * {@code String} parameter. The string is converted to a
1345      * {@code long} value in exactly the manner used by the
1346      * {@code parseLong} method for radix 10.
1347      *
1348      * @param      s   the {@code String} to be converted to a
1349      *             {@code Long}.
1350      * @throws     NumberFormatException  if the {@code String} does not
1351      *             contain a parsable {@code long}.
1352      *
1353      * @deprecated
1354      * It is rarely appropriate to use this constructor.
1355      * Use {@link #parseLong(String)} to convert a string to a
1356      * {@code long} primitive, or use {@link #valueOf(String)}
1357      * to convert a string to a {@code Long} object.
1358      */
1359     @Deprecated(since="9")
Long(String s)1360     public Long(String s) throws NumberFormatException {
1361         this.value = parseLong(s, 10);
1362     }
1363 
1364     /**
1365      * Returns the value of this {@code Long} as a {@code byte} after
1366      * a narrowing primitive conversion.
1367      * @jls 5.1.3 Narrowing Primitive Conversions
1368      */
byteValue()1369     public byte byteValue() {
1370         return (byte)value;
1371     }
1372 
1373     /**
1374      * Returns the value of this {@code Long} as a {@code short} after
1375      * a narrowing primitive conversion.
1376      * @jls 5.1.3 Narrowing Primitive Conversions
1377      */
shortValue()1378     public short shortValue() {
1379         return (short)value;
1380     }
1381 
1382     /**
1383      * Returns the value of this {@code Long} as an {@code int} after
1384      * a narrowing primitive conversion.
1385      * @jls 5.1.3 Narrowing Primitive Conversions
1386      */
intValue()1387     public int intValue() {
1388         return (int)value;
1389     }
1390 
1391     /**
1392      * Returns the value of this {@code Long} as a
1393      * {@code long} value.
1394      */
1395     @HotSpotIntrinsicCandidate
longValue()1396     public long longValue() {
1397         return value;
1398     }
1399 
1400     /**
1401      * Returns the value of this {@code Long} as a {@code float} after
1402      * a widening primitive conversion.
1403      * @jls 5.1.2 Widening Primitive Conversions
1404      */
floatValue()1405     public float floatValue() {
1406         return (float)value;
1407     }
1408 
1409     /**
1410      * Returns the value of this {@code Long} as a {@code double}
1411      * after a widening primitive conversion.
1412      * @jls 5.1.2 Widening Primitive Conversions
1413      */
doubleValue()1414     public double doubleValue() {
1415         return (double)value;
1416     }
1417 
1418     /**
1419      * Returns a {@code String} object representing this
1420      * {@code Long}'s value.  The value is converted to signed
1421      * decimal representation and returned as a string, exactly as if
1422      * the {@code long} value were given as an argument to the
1423      * {@link java.lang.Long#toString(long)} method.
1424      *
1425      * @return  a string representation of the value of this object in
1426      *          base&nbsp;10.
1427      */
toString()1428     public String toString() {
1429         return toString(value);
1430     }
1431 
1432     /**
1433      * Returns a hash code for this {@code Long}. The result is
1434      * the exclusive OR of the two halves of the primitive
1435      * {@code long} value held by this {@code Long}
1436      * object. That is, the hashcode is the value of the expression:
1437      *
1438      * <blockquote>
1439      *  {@code (int)(this.longValue()^(this.longValue()>>>32))}
1440      * </blockquote>
1441      *
1442      * @return  a hash code value for this object.
1443      */
1444     @Override
hashCode()1445     public int hashCode() {
1446         return Long.hashCode(value);
1447     }
1448 
1449     /**
1450      * Returns a hash code for a {@code long} value; compatible with
1451      * {@code Long.hashCode()}.
1452      *
1453      * @param value the value to hash
1454      * @return a hash code value for a {@code long} value.
1455      * @since 1.8
1456      */
hashCode(long value)1457     public static int hashCode(long value) {
1458         return (int)(value ^ (value >>> 32));
1459     }
1460 
1461     /**
1462      * Compares this object to the specified object.  The result is
1463      * {@code true} if and only if the argument is not
1464      * {@code null} and is a {@code Long} object that
1465      * contains the same {@code long} value as this object.
1466      *
1467      * @param   obj   the object to compare with.
1468      * @return  {@code true} if the objects are the same;
1469      *          {@code false} otherwise.
1470      */
equals(Object obj)1471     public boolean equals(Object obj) {
1472         if (obj instanceof Long) {
1473             return value == ((Long)obj).longValue();
1474         }
1475         return false;
1476     }
1477 
1478     /**
1479      * Determines the {@code long} value of the system property
1480      * with the specified name.
1481      *
1482      * <p>The first argument is treated as the name of a system
1483      * property.  System properties are accessible through the {@link
1484      * java.lang.System#getProperty(java.lang.String)} method. The
1485      * string value of this property is then interpreted as a {@code
1486      * long} value using the grammar supported by {@link Long#decode decode}
1487      * and a {@code Long} object representing this value is returned.
1488      *
1489      * <p>If there is no property with the specified name, if the
1490      * specified name is empty or {@code null}, or if the property
1491      * does not have the correct numeric format, then {@code null} is
1492      * returned.
1493      *
1494      * <p>In other words, this method returns a {@code Long} object
1495      * equal to the value of:
1496      *
1497      * <blockquote>
1498      *  {@code getLong(nm, null)}
1499      * </blockquote>
1500      *
1501      * @param   nm   property name.
1502      * @return  the {@code Long} value of the property.
1503      * @throws  SecurityException for the same reasons as
1504      *          {@link System#getProperty(String) System.getProperty}
1505      * @see     java.lang.System#getProperty(java.lang.String)
1506      * @see     java.lang.System#getProperty(java.lang.String, java.lang.String)
1507      */
getLong(String nm)1508     public static Long getLong(String nm) {
1509         return getLong(nm, null);
1510     }
1511 
1512     /**
1513      * Determines the {@code long} value of the system property
1514      * with the specified name.
1515      *
1516      * <p>The first argument is treated as the name of a system
1517      * property.  System properties are accessible through the {@link
1518      * java.lang.System#getProperty(java.lang.String)} method. The
1519      * string value of this property is then interpreted as a {@code
1520      * long} value using the grammar supported by {@link Long#decode decode}
1521      * and a {@code Long} object representing this value is returned.
1522      *
1523      * <p>The second argument is the default value. A {@code Long} object
1524      * that represents the value of the second argument is returned if there
1525      * is no property of the specified name, if the property does not have
1526      * the correct numeric format, or if the specified name is empty or null.
1527      *
1528      * <p>In other words, this method returns a {@code Long} object equal
1529      * to the value of:
1530      *
1531      * <blockquote>
1532      *  {@code getLong(nm, new Long(val))}
1533      * </blockquote>
1534      *
1535      * but in practice it may be implemented in a manner such as:
1536      *
1537      * <blockquote><pre>
1538      * Long result = getLong(nm, null);
1539      * return (result == null) ? new Long(val) : result;
1540      * </pre></blockquote>
1541      *
1542      * to avoid the unnecessary allocation of a {@code Long} object when
1543      * the default value is not needed.
1544      *
1545      * @param   nm    property name.
1546      * @param   val   default value.
1547      * @return  the {@code Long} value of the property.
1548      * @throws  SecurityException for the same reasons as
1549      *          {@link System#getProperty(String) System.getProperty}
1550      * @see     java.lang.System#getProperty(java.lang.String)
1551      * @see     java.lang.System#getProperty(java.lang.String, java.lang.String)
1552      */
getLong(String nm, long val)1553     public static Long getLong(String nm, long val) {
1554         Long result = Long.getLong(nm, null);
1555         return (result == null) ? Long.valueOf(val) : result;
1556     }
1557 
1558     /**
1559      * Returns the {@code long} value of the system property with
1560      * the specified name.  The first argument is treated as the name
1561      * of a system property.  System properties are accessible through
1562      * the {@link java.lang.System#getProperty(java.lang.String)}
1563      * method. The string value of this property is then interpreted
1564      * as a {@code long} value, as per the
1565      * {@link Long#decode decode} method, and a {@code Long} object
1566      * representing this value is returned; in summary:
1567      *
1568      * <ul>
1569      * <li>If the property value begins with the two ASCII characters
1570      * {@code 0x} or the ASCII character {@code #}, not followed by
1571      * a minus sign, then the rest of it is parsed as a hexadecimal integer
1572      * exactly as for the method {@link #valueOf(java.lang.String, int)}
1573      * with radix 16.
1574      * <li>If the property value begins with the ASCII character
1575      * {@code 0} followed by another character, it is parsed as
1576      * an octal integer exactly as by the method {@link
1577      * #valueOf(java.lang.String, int)} with radix 8.
1578      * <li>Otherwise the property value is parsed as a decimal
1579      * integer exactly as by the method
1580      * {@link #valueOf(java.lang.String, int)} with radix 10.
1581      * </ul>
1582      *
1583      * <p>Note that, in every case, neither {@code L}
1584      * ({@code '\u005Cu004C'}) nor {@code l}
1585      * ({@code '\u005Cu006C'}) is permitted to appear at the end
1586      * of the property value as a type indicator, as would be
1587      * permitted in Java programming language source code.
1588      *
1589      * <p>The second argument is the default value. The default value is
1590      * returned if there is no property of the specified name, if the
1591      * property does not have the correct numeric format, or if the
1592      * specified name is empty or {@code null}.
1593      *
1594      * @param   nm   property name.
1595      * @param   val   default value.
1596      * @return  the {@code Long} value of the property.
1597      * @throws  SecurityException for the same reasons as
1598      *          {@link System#getProperty(String) System.getProperty}
1599      * @see     System#getProperty(java.lang.String)
1600      * @see     System#getProperty(java.lang.String, java.lang.String)
1601      */
getLong(String nm, Long val)1602     public static Long getLong(String nm, Long val) {
1603         String v = null;
1604         try {
1605             v = System.getProperty(nm);
1606         } catch (IllegalArgumentException | NullPointerException e) {
1607         }
1608         if (v != null) {
1609             try {
1610                 return Long.decode(v);
1611             } catch (NumberFormatException e) {
1612             }
1613         }
1614         return val;
1615     }
1616 
1617     /**
1618      * Compares two {@code Long} objects numerically.
1619      *
1620      * @param   anotherLong   the {@code Long} to be compared.
1621      * @return  the value {@code 0} if this {@code Long} is
1622      *          equal to the argument {@code Long}; a value less than
1623      *          {@code 0} if this {@code Long} is numerically less
1624      *          than the argument {@code Long}; and a value greater
1625      *          than {@code 0} if this {@code Long} is numerically
1626      *           greater than the argument {@code Long} (signed
1627      *           comparison).
1628      * @since   1.2
1629      */
compareTo(Long anotherLong)1630     public int compareTo(Long anotherLong) {
1631         return compare(this.value, anotherLong.value);
1632     }
1633 
1634     /**
1635      * Compares two {@code long} values numerically.
1636      * The value returned is identical to what would be returned by:
1637      * <pre>
1638      *    Long.valueOf(x).compareTo(Long.valueOf(y))
1639      * </pre>
1640      *
1641      * @param  x the first {@code long} to compare
1642      * @param  y the second {@code long} to compare
1643      * @return the value {@code 0} if {@code x == y};
1644      *         a value less than {@code 0} if {@code x < y}; and
1645      *         a value greater than {@code 0} if {@code x > y}
1646      * @since 1.7
1647      */
compare(long x, long y)1648     public static int compare(long x, long y) {
1649         return (x < y) ? -1 : ((x == y) ? 0 : 1);
1650     }
1651 
1652     /**
1653      * Compares two {@code long} values numerically treating the values
1654      * as unsigned.
1655      *
1656      * @param  x the first {@code long} to compare
1657      * @param  y the second {@code long} to compare
1658      * @return the value {@code 0} if {@code x == y}; a value less
1659      *         than {@code 0} if {@code x < y} as unsigned values; and
1660      *         a value greater than {@code 0} if {@code x > y} as
1661      *         unsigned values
1662      * @since 1.8
1663      */
compareUnsigned(long x, long y)1664     public static int compareUnsigned(long x, long y) {
1665         return compare(x + MIN_VALUE, y + MIN_VALUE);
1666     }
1667 
1668 
1669     /**
1670      * Returns the unsigned quotient of dividing the first argument by
1671      * the second where each argument and the result is interpreted as
1672      * an unsigned value.
1673      *
1674      * <p>Note that in two's complement arithmetic, the three other
1675      * basic arithmetic operations of add, subtract, and multiply are
1676      * bit-wise identical if the two operands are regarded as both
1677      * being signed or both being unsigned.  Therefore separate {@code
1678      * addUnsigned}, etc. methods are not provided.
1679      *
1680      * @param dividend the value to be divided
1681      * @param divisor the value doing the dividing
1682      * @return the unsigned quotient of the first argument divided by
1683      * the second argument
1684      * @see #remainderUnsigned
1685      * @since 1.8
1686      */
divideUnsigned(long dividend, long divisor)1687     public static long divideUnsigned(long dividend, long divisor) {
1688         if (divisor < 0L) { // signed comparison
1689             // Answer must be 0 or 1 depending on relative magnitude
1690             // of dividend and divisor.
1691             return (compareUnsigned(dividend, divisor)) < 0 ? 0L :1L;
1692         }
1693 
1694         if (dividend > 0) //  Both inputs non-negative
1695             return dividend/divisor;
1696         else {
1697             /*
1698              * For simple code, leveraging BigInteger.  Longer and faster
1699              * code written directly in terms of operations on longs is
1700              * possible; see "Hacker's Delight" for divide and remainder
1701              * algorithms.
1702              */
1703             return toUnsignedBigInteger(dividend).
1704                 divide(toUnsignedBigInteger(divisor)).longValue();
1705         }
1706     }
1707 
1708     /**
1709      * Returns the unsigned remainder from dividing the first argument
1710      * by the second where each argument and the result is interpreted
1711      * as an unsigned value.
1712      *
1713      * @param dividend the value to be divided
1714      * @param divisor the value doing the dividing
1715      * @return the unsigned remainder of the first argument divided by
1716      * the second argument
1717      * @see #divideUnsigned
1718      * @since 1.8
1719      */
remainderUnsigned(long dividend, long divisor)1720     public static long remainderUnsigned(long dividend, long divisor) {
1721         if (dividend > 0 && divisor > 0) { // signed comparisons
1722             return dividend % divisor;
1723         } else {
1724             if (compareUnsigned(dividend, divisor) < 0) // Avoid explicit check for 0 divisor
1725                 return dividend;
1726             else
1727                 return toUnsignedBigInteger(dividend).
1728                     remainder(toUnsignedBigInteger(divisor)).longValue();
1729         }
1730     }
1731 
1732     // Bit Twiddling
1733 
1734     /**
1735      * The number of bits used to represent a {@code long} value in two's
1736      * complement binary form.
1737      *
1738      * @since 1.5
1739      */
1740     @Native public static final int SIZE = 64;
1741 
1742     /**
1743      * The number of bytes used to represent a {@code long} value in two's
1744      * complement binary form.
1745      *
1746      * @since 1.8
1747      */
1748     public static final int BYTES = SIZE / Byte.SIZE;
1749 
1750     /**
1751      * Returns a {@code long} value with at most a single one-bit, in the
1752      * position of the highest-order ("leftmost") one-bit in the specified
1753      * {@code long} value.  Returns zero if the specified value has no
1754      * one-bits in its two's complement binary representation, that is, if it
1755      * is equal to zero.
1756      *
1757      * @param i the value whose highest one bit is to be computed
1758      * @return a {@code long} value with a single one-bit, in the position
1759      *     of the highest-order one-bit in the specified value, or zero if
1760      *     the specified value is itself equal to zero.
1761      * @since 1.5
1762      */
highestOneBit(long i)1763     public static long highestOneBit(long i) {
1764         return i & (MIN_VALUE >>> numberOfLeadingZeros(i));
1765     }
1766 
1767     /**
1768      * Returns a {@code long} value with at most a single one-bit, in the
1769      * position of the lowest-order ("rightmost") one-bit in the specified
1770      * {@code long} value.  Returns zero if the specified value has no
1771      * one-bits in its two's complement binary representation, that is, if it
1772      * is equal to zero.
1773      *
1774      * @param i the value whose lowest one bit is to be computed
1775      * @return a {@code long} value with a single one-bit, in the position
1776      *     of the lowest-order one-bit in the specified value, or zero if
1777      *     the specified value is itself equal to zero.
1778      * @since 1.5
1779      */
lowestOneBit(long i)1780     public static long lowestOneBit(long i) {
1781         // HD, Section 2-1
1782         return i & -i;
1783     }
1784 
1785     /**
1786      * Returns the number of zero bits preceding the highest-order
1787      * ("leftmost") one-bit in the two's complement binary representation
1788      * of the specified {@code long} value.  Returns 64 if the
1789      * specified value has no one-bits in its two's complement representation,
1790      * in other words if it is equal to zero.
1791      *
1792      * <p>Note that this method is closely related to the logarithm base 2.
1793      * For all positive {@code long} values x:
1794      * <ul>
1795      * <li>floor(log<sub>2</sub>(x)) = {@code 63 - numberOfLeadingZeros(x)}
1796      * <li>ceil(log<sub>2</sub>(x)) = {@code 64 - numberOfLeadingZeros(x - 1)}
1797      * </ul>
1798      *
1799      * @param i the value whose number of leading zeros is to be computed
1800      * @return the number of zero bits preceding the highest-order
1801      *     ("leftmost") one-bit in the two's complement binary representation
1802      *     of the specified {@code long} value, or 64 if the value
1803      *     is equal to zero.
1804      * @since 1.5
1805      */
1806     @HotSpotIntrinsicCandidate
numberOfLeadingZeros(long i)1807     public static int numberOfLeadingZeros(long i) {
1808         int x = (int)(i >>> 32);
1809         return x == 0 ? 32 + Integer.numberOfLeadingZeros((int)i)
1810                 : Integer.numberOfLeadingZeros(x);
1811     }
1812 
1813     /**
1814      * Returns the number of zero bits following the lowest-order ("rightmost")
1815      * one-bit in the two's complement binary representation of the specified
1816      * {@code long} value.  Returns 64 if the specified value has no
1817      * one-bits in its two's complement representation, in other words if it is
1818      * equal to zero.
1819      *
1820      * @param i the value whose number of trailing zeros is to be computed
1821      * @return the number of zero bits following the lowest-order ("rightmost")
1822      *     one-bit in the two's complement binary representation of the
1823      *     specified {@code long} value, or 64 if the value is equal
1824      *     to zero.
1825      * @since 1.5
1826      */
1827     @HotSpotIntrinsicCandidate
numberOfTrailingZeros(long i)1828     public static int numberOfTrailingZeros(long i) {
1829         // HD, Figure 5-14
1830         int x, y;
1831         if (i == 0) return 64;
1832         int n = 63;
1833         y = (int)i; if (y != 0) { n = n -32; x = y; } else x = (int)(i>>>32);
1834         y = x <<16; if (y != 0) { n = n -16; x = y; }
1835         y = x << 8; if (y != 0) { n = n - 8; x = y; }
1836         y = x << 4; if (y != 0) { n = n - 4; x = y; }
1837         y = x << 2; if (y != 0) { n = n - 2; x = y; }
1838         return n - ((x << 1) >>> 31);
1839     }
1840 
1841     /**
1842      * Returns the number of one-bits in the two's complement binary
1843      * representation of the specified {@code long} value.  This function is
1844      * sometimes referred to as the <i>population count</i>.
1845      *
1846      * @param i the value whose bits are to be counted
1847      * @return the number of one-bits in the two's complement binary
1848      *     representation of the specified {@code long} value.
1849      * @since 1.5
1850      */
1851      @HotSpotIntrinsicCandidate
bitCount(long i)1852      public static int bitCount(long i) {
1853         // HD, Figure 5-2
1854         i = i - ((i >>> 1) & 0x5555555555555555L);
1855         i = (i & 0x3333333333333333L) + ((i >>> 2) & 0x3333333333333333L);
1856         i = (i + (i >>> 4)) & 0x0f0f0f0f0f0f0f0fL;
1857         i = i + (i >>> 8);
1858         i = i + (i >>> 16);
1859         i = i + (i >>> 32);
1860         return (int)i & 0x7f;
1861      }
1862 
1863     /**
1864      * Returns the value obtained by rotating the two's complement binary
1865      * representation of the specified {@code long} value left by the
1866      * specified number of bits.  (Bits shifted out of the left hand, or
1867      * high-order, side reenter on the right, or low-order.)
1868      *
1869      * <p>Note that left rotation with a negative distance is equivalent to
1870      * right rotation: {@code rotateLeft(val, -distance) == rotateRight(val,
1871      * distance)}.  Note also that rotation by any multiple of 64 is a
1872      * no-op, so all but the last six bits of the rotation distance can be
1873      * ignored, even if the distance is negative: {@code rotateLeft(val,
1874      * distance) == rotateLeft(val, distance & 0x3F)}.
1875      *
1876      * @param i the value whose bits are to be rotated left
1877      * @param distance the number of bit positions to rotate left
1878      * @return the value obtained by rotating the two's complement binary
1879      *     representation of the specified {@code long} value left by the
1880      *     specified number of bits.
1881      * @since 1.5
1882      */
rotateLeft(long i, int distance)1883     public static long rotateLeft(long i, int distance) {
1884         return (i << distance) | (i >>> -distance);
1885     }
1886 
1887     /**
1888      * Returns the value obtained by rotating the two's complement binary
1889      * representation of the specified {@code long} value right by the
1890      * specified number of bits.  (Bits shifted out of the right hand, or
1891      * low-order, side reenter on the left, or high-order.)
1892      *
1893      * <p>Note that right rotation with a negative distance is equivalent to
1894      * left rotation: {@code rotateRight(val, -distance) == rotateLeft(val,
1895      * distance)}.  Note also that rotation by any multiple of 64 is a
1896      * no-op, so all but the last six bits of the rotation distance can be
1897      * ignored, even if the distance is negative: {@code rotateRight(val,
1898      * distance) == rotateRight(val, distance & 0x3F)}.
1899      *
1900      * @param i the value whose bits are to be rotated right
1901      * @param distance the number of bit positions to rotate right
1902      * @return the value obtained by rotating the two's complement binary
1903      *     representation of the specified {@code long} value right by the
1904      *     specified number of bits.
1905      * @since 1.5
1906      */
rotateRight(long i, int distance)1907     public static long rotateRight(long i, int distance) {
1908         return (i >>> distance) | (i << -distance);
1909     }
1910 
1911     /**
1912      * Returns the value obtained by reversing the order of the bits in the
1913      * two's complement binary representation of the specified {@code long}
1914      * value.
1915      *
1916      * @param i the value to be reversed
1917      * @return the value obtained by reversing order of the bits in the
1918      *     specified {@code long} value.
1919      * @since 1.5
1920      */
reverse(long i)1921     public static long reverse(long i) {
1922         // HD, Figure 7-1
1923         i = (i & 0x5555555555555555L) << 1 | (i >>> 1) & 0x5555555555555555L;
1924         i = (i & 0x3333333333333333L) << 2 | (i >>> 2) & 0x3333333333333333L;
1925         i = (i & 0x0f0f0f0f0f0f0f0fL) << 4 | (i >>> 4) & 0x0f0f0f0f0f0f0f0fL;
1926 
1927         return reverseBytes(i);
1928     }
1929 
1930     /**
1931      * Returns the signum function of the specified {@code long} value.  (The
1932      * return value is -1 if the specified value is negative; 0 if the
1933      * specified value is zero; and 1 if the specified value is positive.)
1934      *
1935      * @param i the value whose signum is to be computed
1936      * @return the signum function of the specified {@code long} value.
1937      * @since 1.5
1938      */
signum(long i)1939     public static int signum(long i) {
1940         // HD, Section 2-7
1941         return (int) ((i >> 63) | (-i >>> 63));
1942     }
1943 
1944     /**
1945      * Returns the value obtained by reversing the order of the bytes in the
1946      * two's complement representation of the specified {@code long} value.
1947      *
1948      * @param i the value whose bytes are to be reversed
1949      * @return the value obtained by reversing the bytes in the specified
1950      *     {@code long} value.
1951      * @since 1.5
1952      */
1953     @HotSpotIntrinsicCandidate
reverseBytes(long i)1954     public static long reverseBytes(long i) {
1955         i = (i & 0x00ff00ff00ff00ffL) << 8 | (i >>> 8) & 0x00ff00ff00ff00ffL;
1956         return (i << 48) | ((i & 0xffff0000L) << 16) |
1957             ((i >>> 16) & 0xffff0000L) | (i >>> 48);
1958     }
1959 
1960     /**
1961      * Adds two {@code long} values together as per the + operator.
1962      *
1963      * @param a the first operand
1964      * @param b the second operand
1965      * @return the sum of {@code a} and {@code b}
1966      * @see java.util.function.BinaryOperator
1967      * @since 1.8
1968      */
sum(long a, long b)1969     public static long sum(long a, long b) {
1970         return a + b;
1971     }
1972 
1973     /**
1974      * Returns the greater of two {@code long} values
1975      * as if by calling {@link Math#max(long, long) Math.max}.
1976      *
1977      * @param a the first operand
1978      * @param b the second operand
1979      * @return the greater of {@code a} and {@code b}
1980      * @see java.util.function.BinaryOperator
1981      * @since 1.8
1982      */
max(long a, long b)1983     public static long max(long a, long b) {
1984         return Math.max(a, b);
1985     }
1986 
1987     /**
1988      * Returns the smaller of two {@code long} values
1989      * as if by calling {@link Math#min(long, long) Math.min}.
1990      *
1991      * @param a the first operand
1992      * @param b the second operand
1993      * @return the smaller of {@code a} and {@code b}
1994      * @see java.util.function.BinaryOperator
1995      * @since 1.8
1996      */
min(long a, long b)1997     public static long min(long a, long b) {
1998         return Math.min(a, b);
1999     }
2000 
2001     /** use serialVersionUID from JDK 1.0.2 for interoperability */
2002     @Native private static final long serialVersionUID = 4290774380558885855L;
2003 }
2004