• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2008, 2017, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 
26 package java.lang.invoke;
27 
28 import sun.invoke.util.VerifyAccess;
29 import sun.invoke.util.Wrapper;
30 import sun.reflect.Reflection;
31 
32 import java.lang.reflect.*;
33 import java.nio.ByteOrder;
34 import java.util.List;
35 import java.util.Arrays;
36 import java.util.ArrayList;
37 import java.util.Iterator;
38 import java.util.NoSuchElementException;
39 import java.util.Objects;
40 import java.util.stream.Collectors;
41 import java.util.stream.Stream;
42 
43 import static java.lang.invoke.MethodHandleStatics.*;
44 import static java.lang.invoke.MethodHandleStatics.newIllegalArgumentException;
45 import static java.lang.invoke.MethodType.methodType;
46 
47 /**
48  * This class consists exclusively of static methods that operate on or return
49  * method handles. They fall into several categories:
50  * <ul>
51  * <li>Lookup methods which help create method handles for methods and fields.
52  * <li>Combinator methods, which combine or transform pre-existing method handles into new ones.
53  * <li>Other factory methods to create method handles that emulate other common JVM operations or control flow patterns.
54  * </ul>
55  * <p>
56  * @author John Rose, JSR 292 EG
57  * @since 1.7
58  */
59 public class MethodHandles {
60 
MethodHandles()61     private MethodHandles() { }  // do not instantiate
62 
63     // Android-changed: We do not use MemberName / MethodHandleImpl.
64     //
65     // private static final MemberName.Factory IMPL_NAMES = MemberName.getFactory();
66     // static { MethodHandleImpl.initStatics(); }
67     // See IMPL_LOOKUP below.
68 
69     //// Method handle creation from ordinary methods.
70 
71     /**
72      * Returns a {@link Lookup lookup object} with
73      * full capabilities to emulate all supported bytecode behaviors of the caller.
74      * These capabilities include <a href="MethodHandles.Lookup.html#privacc">private access</a> to the caller.
75      * Factory methods on the lookup object can create
76      * <a href="MethodHandleInfo.html#directmh">direct method handles</a>
77      * for any member that the caller has access to via bytecodes,
78      * including protected and private fields and methods.
79      * This lookup object is a <em>capability</em> which may be delegated to trusted agents.
80      * Do not store it in place where untrusted code can access it.
81      * <p>
82      * This method is caller sensitive, which means that it may return different
83      * values to different callers.
84      * <p>
85      * For any given caller class {@code C}, the lookup object returned by this call
86      * has equivalent capabilities to any lookup object
87      * supplied by the JVM to the bootstrap method of an
88      * <a href="package-summary.html#indyinsn">invokedynamic instruction</a>
89      * executing in the same caller class {@code C}.
90      * @return a lookup object for the caller of this method, with private access
91      */
92     // Android-changed: Remove caller sensitive.
93     // @CallerSensitive
lookup()94     public static Lookup lookup() {
95         return new Lookup(Reflection.getCallerClass());
96     }
97 
98     /**
99      * Returns a {@link Lookup lookup object} which is trusted minimally.
100      * It can only be used to create method handles to
101      * publicly accessible fields and methods.
102      * <p>
103      * As a matter of pure convention, the {@linkplain Lookup#lookupClass lookup class}
104      * of this lookup object will be {@link java.lang.Object}.
105      *
106      * <p style="font-size:smaller;">
107      * <em>Discussion:</em>
108      * The lookup class can be changed to any other class {@code C} using an expression of the form
109      * {@link Lookup#in publicLookup().in(C.class)}.
110      * Since all classes have equal access to public names,
111      * such a change would confer no new access rights.
112      * A public lookup object is always subject to
113      * <a href="MethodHandles.Lookup.html#secmgr">security manager checks</a>.
114      * Also, it cannot access
115      * <a href="MethodHandles.Lookup.html#callsens">caller sensitive methods</a>.
116      * @return a lookup object which is trusted minimally
117      */
publicLookup()118     public static Lookup publicLookup() {
119         return Lookup.PUBLIC_LOOKUP;
120     }
121 
122     // Android-removed: Documentation related to the security manager and module checks
123     /**
124      * Returns a {@link Lookup lookup object} with full capabilities to emulate all
125      * supported bytecode behaviors, including <a href="MethodHandles.Lookup.html#privacc">
126      * private access</a>, on a target class.
127      * @param targetClass the target class
128      * @param lookup the caller lookup object
129      * @return a lookup object for the target class, with private access
130      * @throws IllegalArgumentException if {@code targetClass} is a primitive type or array class
131      * @throws NullPointerException if {@code targetClass} or {@code caller} is {@code null}
132      * @throws IllegalAccessException is not thrown on Android
133      * @since 9
134      */
privateLookupIn(Class<?> targetClass, Lookup lookup)135     public static Lookup privateLookupIn(Class<?> targetClass, Lookup lookup) throws IllegalAccessException {
136         // Android-removed: SecurityManager calls
137         // SecurityManager sm = System.getSecurityManager();
138         // if (sm != null) sm.checkPermission(ACCESS_PERMISSION);
139         if (targetClass.isPrimitive())
140             throw new IllegalArgumentException(targetClass + " is a primitive class");
141         if (targetClass.isArray())
142             throw new IllegalArgumentException(targetClass + " is an array class");
143         // BEGIN Android-removed: There is no module information on Android
144         /**
145          * Module targetModule = targetClass.getModule();
146          * Module callerModule = lookup.lookupClass().getModule();
147          * if (!callerModule.canRead(targetModule))
148          *     throw new IllegalAccessException(callerModule + " does not read " + targetModule);
149          * if (targetModule.isNamed()) {
150          *     String pn = targetClass.getPackageName();
151          *     assert pn.length() > 0 : "unnamed package cannot be in named module";
152          *     if (!targetModule.isOpen(pn, callerModule))
153          *         throw new IllegalAccessException(targetModule + " does not open " + pn + " to " + callerModule);
154          * }
155          * if ((lookup.lookupModes() & Lookup.MODULE) == 0)
156          *     throw new IllegalAccessException("lookup does not have MODULE lookup mode");
157          * if (!callerModule.isNamed() && targetModule.isNamed()) {
158          *     IllegalAccessLogger logger = IllegalAccessLogger.illegalAccessLogger();
159          *     if (logger != null) {
160          *         logger.logIfOpenedForIllegalAccess(lookup, targetClass);
161          *     }
162          * }
163          */
164         // END Android-removed: There is no module information on Android
165         return new Lookup(targetClass);
166     }
167 
168 
169     /**
170      * Performs an unchecked "crack" of a
171      * <a href="MethodHandleInfo.html#directmh">direct method handle</a>.
172      * The result is as if the user had obtained a lookup object capable enough
173      * to crack the target method handle, called
174      * {@link java.lang.invoke.MethodHandles.Lookup#revealDirect Lookup.revealDirect}
175      * on the target to obtain its symbolic reference, and then called
176      * {@link java.lang.invoke.MethodHandleInfo#reflectAs MethodHandleInfo.reflectAs}
177      * to resolve the symbolic reference to a member.
178      * <p>
179      * If there is a security manager, its {@code checkPermission} method
180      * is called with a {@code ReflectPermission("suppressAccessChecks")} permission.
181      * @param <T> the desired type of the result, either {@link Member} or a subtype
182      * @param target a direct method handle to crack into symbolic reference components
183      * @param expected a class object representing the desired result type {@code T}
184      * @return a reference to the method, constructor, or field object
185      * @exception SecurityException if the caller is not privileged to call {@code setAccessible}
186      * @exception NullPointerException if either argument is {@code null}
187      * @exception IllegalArgumentException if the target is not a direct method handle
188      * @exception ClassCastException if the member is not of the expected type
189      * @since 1.8
190      */
191     public static <T extends Member> T
reflectAs(Class<T> expected, MethodHandle target)192     reflectAs(Class<T> expected, MethodHandle target) {
193         MethodHandleImpl directTarget = getMethodHandleImpl(target);
194         // Given that this is specified to be an "unchecked" crack, we can directly allocate
195         // a member from the underlying ArtField / Method and bypass all associated access checks.
196         return expected.cast(directTarget.getMemberInternal());
197     }
198 
199     /**
200      * A <em>lookup object</em> is a factory for creating method handles,
201      * when the creation requires access checking.
202      * Method handles do not perform
203      * access checks when they are called, but rather when they are created.
204      * Therefore, method handle access
205      * restrictions must be enforced when a method handle is created.
206      * The caller class against which those restrictions are enforced
207      * is known as the {@linkplain #lookupClass lookup class}.
208      * <p>
209      * A lookup class which needs to create method handles will call
210      * {@link #lookup MethodHandles.lookup} to create a factory for itself.
211      * When the {@code Lookup} factory object is created, the identity of the lookup class is
212      * determined, and securely stored in the {@code Lookup} object.
213      * The lookup class (or its delegates) may then use factory methods
214      * on the {@code Lookup} object to create method handles for access-checked members.
215      * This includes all methods, constructors, and fields which are allowed to the lookup class,
216      * even private ones.
217      *
218      * <h1><a name="lookups"></a>Lookup Factory Methods</h1>
219      * The factory methods on a {@code Lookup} object correspond to all major
220      * use cases for methods, constructors, and fields.
221      * Each method handle created by a factory method is the functional
222      * equivalent of a particular <em>bytecode behavior</em>.
223      * (Bytecode behaviors are described in section 5.4.3.5 of the Java Virtual Machine Specification.)
224      * Here is a summary of the correspondence between these factory methods and
225      * the behavior the resulting method handles:
226      * <table border=1 cellpadding=5 summary="lookup method behaviors">
227      * <tr>
228      *     <th><a name="equiv"></a>lookup expression</th>
229      *     <th>member</th>
230      *     <th>bytecode behavior</th>
231      * </tr>
232      * <tr>
233      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findGetter lookup.findGetter(C.class,"f",FT.class)}</td>
234      *     <td>{@code FT f;}</td><td>{@code (T) this.f;}</td>
235      * </tr>
236      * <tr>
237      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findStaticGetter lookup.findStaticGetter(C.class,"f",FT.class)}</td>
238      *     <td>{@code static}<br>{@code FT f;}</td><td>{@code (T) C.f;}</td>
239      * </tr>
240      * <tr>
241      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findSetter lookup.findSetter(C.class,"f",FT.class)}</td>
242      *     <td>{@code FT f;}</td><td>{@code this.f = x;}</td>
243      * </tr>
244      * <tr>
245      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findStaticSetter lookup.findStaticSetter(C.class,"f",FT.class)}</td>
246      *     <td>{@code static}<br>{@code FT f;}</td><td>{@code C.f = arg;}</td>
247      * </tr>
248      * <tr>
249      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findVirtual lookup.findVirtual(C.class,"m",MT)}</td>
250      *     <td>{@code T m(A*);}</td><td>{@code (T) this.m(arg*);}</td>
251      * </tr>
252      * <tr>
253      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findStatic lookup.findStatic(C.class,"m",MT)}</td>
254      *     <td>{@code static}<br>{@code T m(A*);}</td><td>{@code (T) C.m(arg*);}</td>
255      * </tr>
256      * <tr>
257      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findSpecial lookup.findSpecial(C.class,"m",MT,this.class)}</td>
258      *     <td>{@code T m(A*);}</td><td>{@code (T) super.m(arg*);}</td>
259      * </tr>
260      * <tr>
261      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#findConstructor lookup.findConstructor(C.class,MT)}</td>
262      *     <td>{@code C(A*);}</td><td>{@code new C(arg*);}</td>
263      * </tr>
264      * <tr>
265      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectGetter lookup.unreflectGetter(aField)}</td>
266      *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code (FT) aField.get(thisOrNull);}</td>
267      * </tr>
268      * <tr>
269      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectSetter lookup.unreflectSetter(aField)}</td>
270      *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code aField.set(thisOrNull, arg);}</td>
271      * </tr>
272      * <tr>
273      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</td>
274      *     <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td>
275      * </tr>
276      * <tr>
277      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflectConstructor lookup.unreflectConstructor(aConstructor)}</td>
278      *     <td>{@code C(A*);}</td><td>{@code (C) aConstructor.newInstance(arg*);}</td>
279      * </tr>
280      * <tr>
281      *     <td>{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</td>
282      *     <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td>
283      * </tr>
284      * </table>
285      *
286      * Here, the type {@code C} is the class or interface being searched for a member,
287      * documented as a parameter named {@code refc} in the lookup methods.
288      * The method type {@code MT} is composed from the return type {@code T}
289      * and the sequence of argument types {@code A*}.
290      * The constructor also has a sequence of argument types {@code A*} and
291      * is deemed to return the newly-created object of type {@code C}.
292      * Both {@code MT} and the field type {@code FT} are documented as a parameter named {@code type}.
293      * The formal parameter {@code this} stands for the self-reference of type {@code C};
294      * if it is present, it is always the leading argument to the method handle invocation.
295      * (In the case of some {@code protected} members, {@code this} may be
296      * restricted in type to the lookup class; see below.)
297      * The name {@code arg} stands for all the other method handle arguments.
298      * In the code examples for the Core Reflection API, the name {@code thisOrNull}
299      * stands for a null reference if the accessed method or field is static,
300      * and {@code this} otherwise.
301      * The names {@code aMethod}, {@code aField}, and {@code aConstructor} stand
302      * for reflective objects corresponding to the given members.
303      * <p>
304      * In cases where the given member is of variable arity (i.e., a method or constructor)
305      * the returned method handle will also be of {@linkplain MethodHandle#asVarargsCollector variable arity}.
306      * In all other cases, the returned method handle will be of fixed arity.
307      * <p style="font-size:smaller;">
308      * <em>Discussion:</em>
309      * The equivalence between looked-up method handles and underlying
310      * class members and bytecode behaviors
311      * can break down in a few ways:
312      * <ul style="font-size:smaller;">
313      * <li>If {@code C} is not symbolically accessible from the lookup class's loader,
314      * the lookup can still succeed, even when there is no equivalent
315      * Java expression or bytecoded constant.
316      * <li>Likewise, if {@code T} or {@code MT}
317      * is not symbolically accessible from the lookup class's loader,
318      * the lookup can still succeed.
319      * For example, lookups for {@code MethodHandle.invokeExact} and
320      * {@code MethodHandle.invoke} will always succeed, regardless of requested type.
321      * <li>If there is a security manager installed, it can forbid the lookup
322      * on various grounds (<a href="MethodHandles.Lookup.html#secmgr">see below</a>).
323      * By contrast, the {@code ldc} instruction on a {@code CONSTANT_MethodHandle}
324      * constant is not subject to security manager checks.
325      * <li>If the looked-up method has a
326      * <a href="MethodHandle.html#maxarity">very large arity</a>,
327      * the method handle creation may fail, due to the method handle
328      * type having too many parameters.
329      * </ul>
330      *
331      * <h1><a name="access"></a>Access checking</h1>
332      * Access checks are applied in the factory methods of {@code Lookup},
333      * when a method handle is created.
334      * This is a key difference from the Core Reflection API, since
335      * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
336      * performs access checking against every caller, on every call.
337      * <p>
338      * All access checks start from a {@code Lookup} object, which
339      * compares its recorded lookup class against all requests to
340      * create method handles.
341      * A single {@code Lookup} object can be used to create any number
342      * of access-checked method handles, all checked against a single
343      * lookup class.
344      * <p>
345      * A {@code Lookup} object can be shared with other trusted code,
346      * such as a metaobject protocol.
347      * A shared {@code Lookup} object delegates the capability
348      * to create method handles on private members of the lookup class.
349      * Even if privileged code uses the {@code Lookup} object,
350      * the access checking is confined to the privileges of the
351      * original lookup class.
352      * <p>
353      * A lookup can fail, because
354      * the containing class is not accessible to the lookup class, or
355      * because the desired class member is missing, or because the
356      * desired class member is not accessible to the lookup class, or
357      * because the lookup object is not trusted enough to access the member.
358      * In any of these cases, a {@code ReflectiveOperationException} will be
359      * thrown from the attempted lookup.  The exact class will be one of
360      * the following:
361      * <ul>
362      * <li>NoSuchMethodException &mdash; if a method is requested but does not exist
363      * <li>NoSuchFieldException &mdash; if a field is requested but does not exist
364      * <li>IllegalAccessException &mdash; if the member exists but an access check fails
365      * </ul>
366      * <p>
367      * In general, the conditions under which a method handle may be
368      * looked up for a method {@code M} are no more restrictive than the conditions
369      * under which the lookup class could have compiled, verified, and resolved a call to {@code M}.
370      * Where the JVM would raise exceptions like {@code NoSuchMethodError},
371      * a method handle lookup will generally raise a corresponding
372      * checked exception, such as {@code NoSuchMethodException}.
373      * And the effect of invoking the method handle resulting from the lookup
374      * is <a href="MethodHandles.Lookup.html#equiv">exactly equivalent</a>
375      * to executing the compiled, verified, and resolved call to {@code M}.
376      * The same point is true of fields and constructors.
377      * <p style="font-size:smaller;">
378      * <em>Discussion:</em>
379      * Access checks only apply to named and reflected methods,
380      * constructors, and fields.
381      * Other method handle creation methods, such as
382      * {@link MethodHandle#asType MethodHandle.asType},
383      * do not require any access checks, and are used
384      * independently of any {@code Lookup} object.
385      * <p>
386      * If the desired member is {@code protected}, the usual JVM rules apply,
387      * including the requirement that the lookup class must be either be in the
388      * same package as the desired member, or must inherit that member.
389      * (See the Java Virtual Machine Specification, sections 4.9.2, 5.4.3.5, and 6.4.)
390      * In addition, if the desired member is a non-static field or method
391      * in a different package, the resulting method handle may only be applied
392      * to objects of the lookup class or one of its subclasses.
393      * This requirement is enforced by narrowing the type of the leading
394      * {@code this} parameter from {@code C}
395      * (which will necessarily be a superclass of the lookup class)
396      * to the lookup class itself.
397      * <p>
398      * The JVM imposes a similar requirement on {@code invokespecial} instruction,
399      * that the receiver argument must match both the resolved method <em>and</em>
400      * the current class.  Again, this requirement is enforced by narrowing the
401      * type of the leading parameter to the resulting method handle.
402      * (See the Java Virtual Machine Specification, section 4.10.1.9.)
403      * <p>
404      * The JVM represents constructors and static initializer blocks as internal methods
405      * with special names ({@code "<init>"} and {@code "<clinit>"}).
406      * The internal syntax of invocation instructions allows them to refer to such internal
407      * methods as if they were normal methods, but the JVM bytecode verifier rejects them.
408      * A lookup of such an internal method will produce a {@code NoSuchMethodException}.
409      * <p>
410      * In some cases, access between nested classes is obtained by the Java compiler by creating
411      * an wrapper method to access a private method of another class
412      * in the same top-level declaration.
413      * For example, a nested class {@code C.D}
414      * can access private members within other related classes such as
415      * {@code C}, {@code C.D.E}, or {@code C.B},
416      * but the Java compiler may need to generate wrapper methods in
417      * those related classes.  In such cases, a {@code Lookup} object on
418      * {@code C.E} would be unable to those private members.
419      * A workaround for this limitation is the {@link Lookup#in Lookup.in} method,
420      * which can transform a lookup on {@code C.E} into one on any of those other
421      * classes, without special elevation of privilege.
422      * <p>
423      * The accesses permitted to a given lookup object may be limited,
424      * according to its set of {@link #lookupModes lookupModes},
425      * to a subset of members normally accessible to the lookup class.
426      * For example, the {@link #publicLookup publicLookup}
427      * method produces a lookup object which is only allowed to access
428      * public members in public classes.
429      * The caller sensitive method {@link #lookup lookup}
430      * produces a lookup object with full capabilities relative to
431      * its caller class, to emulate all supported bytecode behaviors.
432      * Also, the {@link Lookup#in Lookup.in} method may produce a lookup object
433      * with fewer access modes than the original lookup object.
434      *
435      * <p style="font-size:smaller;">
436      * <a name="privacc"></a>
437      * <em>Discussion of private access:</em>
438      * We say that a lookup has <em>private access</em>
439      * if its {@linkplain #lookupModes lookup modes}
440      * include the possibility of accessing {@code private} members.
441      * As documented in the relevant methods elsewhere,
442      * only lookups with private access possess the following capabilities:
443      * <ul style="font-size:smaller;">
444      * <li>access private fields, methods, and constructors of the lookup class
445      * <li>create method handles which invoke <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a> methods,
446      *     such as {@code Class.forName}
447      * <li>create method handles which {@link Lookup#findSpecial emulate invokespecial} instructions
448      * <li>avoid <a href="MethodHandles.Lookup.html#secmgr">package access checks</a>
449      *     for classes accessible to the lookup class
450      * <li>create {@link Lookup#in delegated lookup objects} which have private access to other classes
451      *     within the same package member
452      * </ul>
453      * <p style="font-size:smaller;">
454      * Each of these permissions is a consequence of the fact that a lookup object
455      * with private access can be securely traced back to an originating class,
456      * whose <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> and Java language access permissions
457      * can be reliably determined and emulated by method handles.
458      *
459      * <h1><a name="secmgr"></a>Security manager interactions</h1>
460      * Although bytecode instructions can only refer to classes in
461      * a related class loader, this API can search for methods in any
462      * class, as long as a reference to its {@code Class} object is
463      * available.  Such cross-loader references are also possible with the
464      * Core Reflection API, and are impossible to bytecode instructions
465      * such as {@code invokestatic} or {@code getfield}.
466      * There is a {@linkplain java.lang.SecurityManager security manager API}
467      * to allow applications to check such cross-loader references.
468      * These checks apply to both the {@code MethodHandles.Lookup} API
469      * and the Core Reflection API
470      * (as found on {@link java.lang.Class Class}).
471      * <p>
472      * If a security manager is present, member lookups are subject to
473      * additional checks.
474      * From one to three calls are made to the security manager.
475      * Any of these calls can refuse access by throwing a
476      * {@link java.lang.SecurityException SecurityException}.
477      * Define {@code smgr} as the security manager,
478      * {@code lookc} as the lookup class of the current lookup object,
479      * {@code refc} as the containing class in which the member
480      * is being sought, and {@code defc} as the class in which the
481      * member is actually defined.
482      * The value {@code lookc} is defined as <em>not present</em>
483      * if the current lookup object does not have
484      * <a href="MethodHandles.Lookup.html#privacc">private access</a>.
485      * The calls are made according to the following rules:
486      * <ul>
487      * <li><b>Step 1:</b>
488      *     If {@code lookc} is not present, or if its class loader is not
489      *     the same as or an ancestor of the class loader of {@code refc},
490      *     then {@link SecurityManager#checkPackageAccess
491      *     smgr.checkPackageAccess(refcPkg)} is called,
492      *     where {@code refcPkg} is the package of {@code refc}.
493      * <li><b>Step 2:</b>
494      *     If the retrieved member is not public and
495      *     {@code lookc} is not present, then
496      *     {@link SecurityManager#checkPermission smgr.checkPermission}
497      *     with {@code RuntimePermission("accessDeclaredMembers")} is called.
498      * <li><b>Step 3:</b>
499      *     If the retrieved member is not public,
500      *     and if {@code lookc} is not present,
501      *     and if {@code defc} and {@code refc} are different,
502      *     then {@link SecurityManager#checkPackageAccess
503      *     smgr.checkPackageAccess(defcPkg)} is called,
504      *     where {@code defcPkg} is the package of {@code defc}.
505      * </ul>
506      * Security checks are performed after other access checks have passed.
507      * Therefore, the above rules presuppose a member that is public,
508      * or else that is being accessed from a lookup class that has
509      * rights to access the member.
510      *
511      * <h1><a name="callsens"></a>Caller sensitive methods</h1>
512      * A small number of Java methods have a special property called caller sensitivity.
513      * A <em>caller-sensitive</em> method can behave differently depending on the
514      * identity of its immediate caller.
515      * <p>
516      * If a method handle for a caller-sensitive method is requested,
517      * the general rules for <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> apply,
518      * but they take account of the lookup class in a special way.
519      * The resulting method handle behaves as if it were called
520      * from an instruction contained in the lookup class,
521      * so that the caller-sensitive method detects the lookup class.
522      * (By contrast, the invoker of the method handle is disregarded.)
523      * Thus, in the case of caller-sensitive methods,
524      * different lookup classes may give rise to
525      * differently behaving method handles.
526      * <p>
527      * In cases where the lookup object is
528      * {@link #publicLookup publicLookup()},
529      * or some other lookup object without
530      * <a href="MethodHandles.Lookup.html#privacc">private access</a>,
531      * the lookup class is disregarded.
532      * In such cases, no caller-sensitive method handle can be created,
533      * access is forbidden, and the lookup fails with an
534      * {@code IllegalAccessException}.
535      * <p style="font-size:smaller;">
536      * <em>Discussion:</em>
537      * For example, the caller-sensitive method
538      * {@link java.lang.Class#forName(String) Class.forName(x)}
539      * can return varying classes or throw varying exceptions,
540      * depending on the class loader of the class that calls it.
541      * A public lookup of {@code Class.forName} will fail, because
542      * there is no reasonable way to determine its bytecode behavior.
543      * <p style="font-size:smaller;">
544      * If an application caches method handles for broad sharing,
545      * it should use {@code publicLookup()} to create them.
546      * If there is a lookup of {@code Class.forName}, it will fail,
547      * and the application must take appropriate action in that case.
548      * It may be that a later lookup, perhaps during the invocation of a
549      * bootstrap method, can incorporate the specific identity
550      * of the caller, making the method accessible.
551      * <p style="font-size:smaller;">
552      * The function {@code MethodHandles.lookup} is caller sensitive
553      * so that there can be a secure foundation for lookups.
554      * Nearly all other methods in the JSR 292 API rely on lookup
555      * objects to check access requests.
556      */
557     // Android-changed: Change link targets from MethodHandles#[public]Lookup to
558     // #[public]Lookup to work around complaints from javadoc.
559     public static final
560     class Lookup {
561         /** The class on behalf of whom the lookup is being performed. */
562         /* @NonNull */ private final Class<?> lookupClass;
563 
564         /** The allowed sorts of members which may be looked up (PUBLIC, etc.). */
565         private final int allowedModes;
566 
567         /** A single-bit mask representing {@code public} access,
568          *  which may contribute to the result of {@link #lookupModes lookupModes}.
569          *  The value, {@code 0x01}, happens to be the same as the value of the
570          *  {@code public} {@linkplain java.lang.reflect.Modifier#PUBLIC modifier bit}.
571          */
572         public static final int PUBLIC = Modifier.PUBLIC;
573 
574         /** A single-bit mask representing {@code private} access,
575          *  which may contribute to the result of {@link #lookupModes lookupModes}.
576          *  The value, {@code 0x02}, happens to be the same as the value of the
577          *  {@code private} {@linkplain java.lang.reflect.Modifier#PRIVATE modifier bit}.
578          */
579         public static final int PRIVATE = Modifier.PRIVATE;
580 
581         /** A single-bit mask representing {@code protected} access,
582          *  which may contribute to the result of {@link #lookupModes lookupModes}.
583          *  The value, {@code 0x04}, happens to be the same as the value of the
584          *  {@code protected} {@linkplain java.lang.reflect.Modifier#PROTECTED modifier bit}.
585          */
586         public static final int PROTECTED = Modifier.PROTECTED;
587 
588         /** A single-bit mask representing {@code package} access (default access),
589          *  which may contribute to the result of {@link #lookupModes lookupModes}.
590          *  The value is {@code 0x08}, which does not correspond meaningfully to
591          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
592          */
593         public static final int PACKAGE = Modifier.STATIC;
594 
595         private static final int ALL_MODES = (PUBLIC | PRIVATE | PROTECTED | PACKAGE);
596 
597         // Android-note: Android has no notion of a trusted lookup. If required, such lookups
598         // are performed by the runtime. As a result, we always use lookupClass, which will always
599         // be non-null in our implementation.
600         //
601         // private static final int TRUSTED   = -1;
602 
fixmods(int mods)603         private static int fixmods(int mods) {
604             mods &= (ALL_MODES - PACKAGE);
605             return (mods != 0) ? mods : PACKAGE;
606         }
607 
608         /** Tells which class is performing the lookup.  It is this class against
609          *  which checks are performed for visibility and access permissions.
610          *  <p>
611          *  The class implies a maximum level of access permission,
612          *  but the permissions may be additionally limited by the bitmask
613          *  {@link #lookupModes lookupModes}, which controls whether non-public members
614          *  can be accessed.
615          *  @return the lookup class, on behalf of which this lookup object finds members
616          */
lookupClass()617         public Class<?> lookupClass() {
618             return lookupClass;
619         }
620 
621         /** Tells which access-protection classes of members this lookup object can produce.
622          *  The result is a bit-mask of the bits
623          *  {@linkplain #PUBLIC PUBLIC (0x01)},
624          *  {@linkplain #PRIVATE PRIVATE (0x02)},
625          *  {@linkplain #PROTECTED PROTECTED (0x04)},
626          *  and {@linkplain #PACKAGE PACKAGE (0x08)}.
627          *  <p>
628          *  A freshly-created lookup object
629          *  on the {@linkplain java.lang.invoke.MethodHandles#lookup() caller's class}
630          *  has all possible bits set, since the caller class can access all its own members.
631          *  A lookup object on a new lookup class
632          *  {@linkplain java.lang.invoke.MethodHandles.Lookup#in created from a previous lookup object}
633          *  may have some mode bits set to zero.
634          *  The purpose of this is to restrict access via the new lookup object,
635          *  so that it can access only names which can be reached by the original
636          *  lookup object, and also by the new lookup class.
637          *  @return the lookup modes, which limit the kinds of access performed by this lookup object
638          */
lookupModes()639         public int lookupModes() {
640             return allowedModes & ALL_MODES;
641         }
642 
643         /** Embody the current class (the lookupClass) as a lookup class
644          * for method handle creation.
645          * Must be called by from a method in this package,
646          * which in turn is called by a method not in this package.
647          */
Lookup(Class<?> lookupClass)648         Lookup(Class<?> lookupClass) {
649             this(lookupClass, ALL_MODES);
650             // make sure we haven't accidentally picked up a privileged class:
651             checkUnprivilegedlookupClass(lookupClass, ALL_MODES);
652         }
653 
Lookup(Class<?> lookupClass, int allowedModes)654         private Lookup(Class<?> lookupClass, int allowedModes) {
655             this.lookupClass = lookupClass;
656             this.allowedModes = allowedModes;
657         }
658 
659         /**
660          * Creates a lookup on the specified new lookup class.
661          * The resulting object will report the specified
662          * class as its own {@link #lookupClass lookupClass}.
663          * <p>
664          * However, the resulting {@code Lookup} object is guaranteed
665          * to have no more access capabilities than the original.
666          * In particular, access capabilities can be lost as follows:<ul>
667          * <li>If the new lookup class differs from the old one,
668          * protected members will not be accessible by virtue of inheritance.
669          * (Protected members may continue to be accessible because of package sharing.)
670          * <li>If the new lookup class is in a different package
671          * than the old one, protected and default (package) members will not be accessible.
672          * <li>If the new lookup class is not within the same package member
673          * as the old one, private members will not be accessible.
674          * <li>If the new lookup class is not accessible to the old lookup class,
675          * then no members, not even public members, will be accessible.
676          * (In all other cases, public members will continue to be accessible.)
677          * </ul>
678          *
679          * @param requestedLookupClass the desired lookup class for the new lookup object
680          * @return a lookup object which reports the desired lookup class
681          * @throws NullPointerException if the argument is null
682          */
in(Class<?> requestedLookupClass)683         public Lookup in(Class<?> requestedLookupClass) {
684             requestedLookupClass.getClass();  // null check
685             // Android-changed: There's no notion of a trusted lookup.
686             // if (allowedModes == TRUSTED)  // IMPL_LOOKUP can make any lookup at all
687             //    return new Lookup(requestedLookupClass, ALL_MODES);
688 
689             if (requestedLookupClass == this.lookupClass)
690                 return this;  // keep same capabilities
691             int newModes = (allowedModes & (ALL_MODES & ~PROTECTED));
692             if ((newModes & PACKAGE) != 0
693                 && !VerifyAccess.isSamePackage(this.lookupClass, requestedLookupClass)) {
694                 newModes &= ~(PACKAGE|PRIVATE);
695             }
696             // Allow nestmate lookups to be created without special privilege:
697             if ((newModes & PRIVATE) != 0
698                 && !VerifyAccess.isSamePackageMember(this.lookupClass, requestedLookupClass)) {
699                 newModes &= ~PRIVATE;
700             }
701             if ((newModes & PUBLIC) != 0
702                 && !VerifyAccess.isClassAccessible(requestedLookupClass, this.lookupClass, allowedModes)) {
703                 // The requested class it not accessible from the lookup class.
704                 // No permissions.
705                 newModes = 0;
706             }
707             checkUnprivilegedlookupClass(requestedLookupClass, newModes);
708             return new Lookup(requestedLookupClass, newModes);
709         }
710 
711         // Make sure outer class is initialized first.
712         //
713         // Android-changed: Removed unnecessary reference to IMPL_NAMES.
714         // static { IMPL_NAMES.getClass(); }
715 
716         /** Version of lookup which is trusted minimally.
717          *  It can only be used to create method handles to
718          *  publicly accessible members.
719          */
720         static final Lookup PUBLIC_LOOKUP = new Lookup(Object.class, PUBLIC);
721 
722         /** Package-private version of lookup which is trusted. */
723         static final Lookup IMPL_LOOKUP = new Lookup(Object.class, ALL_MODES);
724 
checkUnprivilegedlookupClass(Class<?> lookupClass, int allowedModes)725         private static void checkUnprivilegedlookupClass(Class<?> lookupClass, int allowedModes) {
726             String name = lookupClass.getName();
727             if (name.startsWith("java.lang.invoke."))
728                 throw newIllegalArgumentException("illegal lookupClass: "+lookupClass);
729 
730             // For caller-sensitive MethodHandles.lookup()
731             // disallow lookup more restricted packages
732             //
733             // Android-changed: The bootstrap classloader isn't null.
734             if (allowedModes == ALL_MODES &&
735                     lookupClass.getClassLoader() == Object.class.getClassLoader()) {
736                 if ((name.startsWith("java.")
737                             && !name.startsWith("java.util.concurrent.")
738                             && !name.equals("java.lang.Thread")) ||
739                         (name.startsWith("sun.")
740                                 && !name.startsWith("sun.invoke.")
741                                 && !name.equals("sun.reflect.ReflectionFactory"))) {
742                     throw newIllegalArgumentException("illegal lookupClass: " + lookupClass);
743                 }
744             }
745         }
746 
747         /**
748          * Displays the name of the class from which lookups are to be made.
749          * (The name is the one reported by {@link java.lang.Class#getName() Class.getName}.)
750          * If there are restrictions on the access permitted to this lookup,
751          * this is indicated by adding a suffix to the class name, consisting
752          * of a slash and a keyword.  The keyword represents the strongest
753          * allowed access, and is chosen as follows:
754          * <ul>
755          * <li>If no access is allowed, the suffix is "/noaccess".
756          * <li>If only public access is allowed, the suffix is "/public".
757          * <li>If only public and package access are allowed, the suffix is "/package".
758          * <li>If only public, package, and private access are allowed, the suffix is "/private".
759          * </ul>
760          * If none of the above cases apply, it is the case that full
761          * access (public, package, private, and protected) is allowed.
762          * In this case, no suffix is added.
763          * This is true only of an object obtained originally from
764          * {@link java.lang.invoke.MethodHandles#lookup MethodHandles.lookup}.
765          * Objects created by {@link java.lang.invoke.MethodHandles.Lookup#in Lookup.in}
766          * always have restricted access, and will display a suffix.
767          * <p>
768          * (It may seem strange that protected access should be
769          * stronger than private access.  Viewed independently from
770          * package access, protected access is the first to be lost,
771          * because it requires a direct subclass relationship between
772          * caller and callee.)
773          * @see #in
774          */
775         @Override
toString()776         public String toString() {
777             String cname = lookupClass.getName();
778             switch (allowedModes) {
779             case 0:  // no privileges
780                 return cname + "/noaccess";
781             case PUBLIC:
782                 return cname + "/public";
783             case PUBLIC|PACKAGE:
784                 return cname + "/package";
785             case ALL_MODES & ~PROTECTED:
786                 return cname + "/private";
787             case ALL_MODES:
788                 return cname;
789             // Android-changed: No support for TRUSTED callers.
790             // case TRUSTED:
791             //    return "/trusted";  // internal only; not exported
792             default:  // Should not happen, but it's a bitfield...
793                 cname = cname + "/" + Integer.toHexString(allowedModes);
794                 assert(false) : cname;
795                 return cname;
796             }
797         }
798 
799         /**
800          * Produces a method handle for a static method.
801          * The type of the method handle will be that of the method.
802          * (Since static methods do not take receivers, there is no
803          * additional receiver argument inserted into the method handle type,
804          * as there would be with {@link #findVirtual findVirtual} or {@link #findSpecial findSpecial}.)
805          * The method and all its argument types must be accessible to the lookup object.
806          * <p>
807          * The returned method handle will have
808          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
809          * the method's variable arity modifier bit ({@code 0x0080}) is set.
810          * <p>
811          * If the returned method handle is invoked, the method's class will
812          * be initialized, if it has not already been initialized.
813          * <p><b>Example:</b>
814          * <blockquote><pre>{@code
815 import static java.lang.invoke.MethodHandles.*;
816 import static java.lang.invoke.MethodType.*;
817 ...
818 MethodHandle MH_asList = publicLookup().findStatic(Arrays.class,
819   "asList", methodType(List.class, Object[].class));
820 assertEquals("[x, y]", MH_asList.invoke("x", "y").toString());
821          * }</pre></blockquote>
822          * @param refc the class from which the method is accessed
823          * @param name the name of the method
824          * @param type the type of the method
825          * @return the desired method handle
826          * @throws NoSuchMethodException if the method does not exist
827          * @throws IllegalAccessException if access checking fails,
828          *                                or if the method is not {@code static},
829          *                                or if the method's variable arity modifier bit
830          *                                is set and {@code asVarargsCollector} fails
831          * @exception SecurityException if a security manager is present and it
832          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
833          * @throws NullPointerException if any argument is null
834          */
835         public
findStatic(Class<?> refc, String name, MethodType type)836         MethodHandle findStatic(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
837             Method method = refc.getDeclaredMethod(name, type.ptypes());
838             final int modifiers = method.getModifiers();
839             if (!Modifier.isStatic(modifiers)) {
840                 throw new IllegalAccessException("Method" + method + " is not static");
841             }
842             checkReturnType(method, type);
843             checkAccess(refc, method.getDeclaringClass(), modifiers, method.getName());
844             return createMethodHandle(method, MethodHandle.INVOKE_STATIC, type);
845         }
846 
findVirtualForMH(String name, MethodType type)847         private MethodHandle findVirtualForMH(String name, MethodType type) {
848             // these names require special lookups because of the implicit MethodType argument
849             if ("invoke".equals(name))
850                 return invoker(type);
851             if ("invokeExact".equals(name))
852                 return exactInvoker(type);
853             return null;
854         }
855 
findVirtualForVH(String name, MethodType type)856         private MethodHandle findVirtualForVH(String name, MethodType type) {
857             VarHandle.AccessMode accessMode;
858             try {
859                 accessMode = VarHandle.AccessMode.valueFromMethodName(name);
860             } catch (IllegalArgumentException e) {
861                 return null;
862             }
863             return varHandleInvoker(accessMode, type);
864         }
865 
createMethodHandle(Method method, int handleKind, MethodType methodType)866         private static MethodHandle createMethodHandle(Method method, int handleKind,
867                                                        MethodType methodType) {
868             MethodHandle mh = new MethodHandleImpl(method.getArtMethod(), handleKind, methodType);
869             if (method.isVarArgs()) {
870                 return new Transformers.VarargsCollector(mh);
871             } else {
872                 return mh;
873             }
874         }
875 
876         /**
877          * Produces a method handle for a virtual method.
878          * The type of the method handle will be that of the method,
879          * with the receiver type (usually {@code refc}) prepended.
880          * The method and all its argument types must be accessible to the lookup object.
881          * <p>
882          * When called, the handle will treat the first argument as a receiver
883          * and dispatch on the receiver's type to determine which method
884          * implementation to enter.
885          * (The dispatching action is identical with that performed by an
886          * {@code invokevirtual} or {@code invokeinterface} instruction.)
887          * <p>
888          * The first argument will be of type {@code refc} if the lookup
889          * class has full privileges to access the member.  Otherwise
890          * the member must be {@code protected} and the first argument
891          * will be restricted in type to the lookup class.
892          * <p>
893          * The returned method handle will have
894          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
895          * the method's variable arity modifier bit ({@code 0x0080}) is set.
896          * <p>
897          * Because of the general <a href="MethodHandles.Lookup.html#equiv">equivalence</a> between {@code invokevirtual}
898          * instructions and method handles produced by {@code findVirtual},
899          * if the class is {@code MethodHandle} and the name string is
900          * {@code invokeExact} or {@code invoke}, the resulting
901          * method handle is equivalent to one produced by
902          * {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker} or
903          * {@link java.lang.invoke.MethodHandles#invoker MethodHandles.invoker}
904          * with the same {@code type} argument.
905          *
906          * <b>Example:</b>
907          * <blockquote><pre>{@code
908 import static java.lang.invoke.MethodHandles.*;
909 import static java.lang.invoke.MethodType.*;
910 ...
911 MethodHandle MH_concat = publicLookup().findVirtual(String.class,
912   "concat", methodType(String.class, String.class));
913 MethodHandle MH_hashCode = publicLookup().findVirtual(Object.class,
914   "hashCode", methodType(int.class));
915 MethodHandle MH_hashCode_String = publicLookup().findVirtual(String.class,
916   "hashCode", methodType(int.class));
917 assertEquals("xy", (String) MH_concat.invokeExact("x", "y"));
918 assertEquals("xy".hashCode(), (int) MH_hashCode.invokeExact((Object)"xy"));
919 assertEquals("xy".hashCode(), (int) MH_hashCode_String.invokeExact("xy"));
920 // interface method:
921 MethodHandle MH_subSequence = publicLookup().findVirtual(CharSequence.class,
922   "subSequence", methodType(CharSequence.class, int.class, int.class));
923 assertEquals("def", MH_subSequence.invoke("abcdefghi", 3, 6).toString());
924 // constructor "internal method" must be accessed differently:
925 MethodType MT_newString = methodType(void.class); //()V for new String()
926 try { assertEquals("impossible", lookup()
927         .findVirtual(String.class, "<init>", MT_newString));
928  } catch (NoSuchMethodException ex) { } // OK
929 MethodHandle MH_newString = publicLookup()
930   .findConstructor(String.class, MT_newString);
931 assertEquals("", (String) MH_newString.invokeExact());
932          * }</pre></blockquote>
933          *
934          * @param refc the class or interface from which the method is accessed
935          * @param name the name of the method
936          * @param type the type of the method, with the receiver argument omitted
937          * @return the desired method handle
938          * @throws NoSuchMethodException if the method does not exist
939          * @throws IllegalAccessException if access checking fails,
940          *                                or if the method is {@code static}
941          *                                or if the method's variable arity modifier bit
942          *                                is set and {@code asVarargsCollector} fails
943          * @exception SecurityException if a security manager is present and it
944          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
945          * @throws NullPointerException if any argument is null
946          */
findVirtual(Class<?> refc, String name, MethodType type)947         public MethodHandle findVirtual(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
948             // Special case : when we're looking up a virtual method on the MethodHandles class
949             // itself, we can return one of our specialized invokers.
950             if (refc == MethodHandle.class) {
951                 MethodHandle mh = findVirtualForMH(name, type);
952                 if (mh != null) {
953                     return mh;
954                 }
955             } else if (refc == VarHandle.class) {
956                 // Returns an non-exact invoker.
957                 MethodHandle mh = findVirtualForVH(name, type);
958                 if (mh != null) {
959                     return mh;
960                 }
961             }
962 
963             Method method = refc.getInstanceMethod(name, type.ptypes());
964             if (method == null) {
965                 // This is pretty ugly and a consequence of the MethodHandles API. We have to throw
966                 // an IAE and not an NSME if the method exists but is static (even though the RI's
967                 // IAE has a message that says "no such method"). We confine the ugliness and
968                 // slowness to the failure case, and allow getInstanceMethod to remain fairly
969                 // general.
970                 try {
971                     Method m = refc.getDeclaredMethod(name, type.ptypes());
972                     if (Modifier.isStatic(m.getModifiers())) {
973                         throw new IllegalAccessException("Method" + m + " is static");
974                     }
975                 } catch (NoSuchMethodException ignored) {
976                 }
977 
978                 throw new NoSuchMethodException(name + " "  + Arrays.toString(type.ptypes()));
979             }
980             checkReturnType(method, type);
981 
982             // We have a valid method, perform access checks.
983             checkAccess(refc, method.getDeclaringClass(), method.getModifiers(), method.getName());
984 
985             // Insert the leading reference parameter.
986             MethodType handleType = type.insertParameterTypes(0, refc);
987             return createMethodHandle(method, MethodHandle.INVOKE_VIRTUAL, handleType);
988         }
989 
990         /**
991          * Produces a method handle which creates an object and initializes it, using
992          * the constructor of the specified type.
993          * The parameter types of the method handle will be those of the constructor,
994          * while the return type will be a reference to the constructor's class.
995          * The constructor and all its argument types must be accessible to the lookup object.
996          * <p>
997          * The requested type must have a return type of {@code void}.
998          * (This is consistent with the JVM's treatment of constructor type descriptors.)
999          * <p>
1000          * The returned method handle will have
1001          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1002          * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
1003          * <p>
1004          * If the returned method handle is invoked, the constructor's class will
1005          * be initialized, if it has not already been initialized.
1006          * <p><b>Example:</b>
1007          * <blockquote><pre>{@code
1008 import static java.lang.invoke.MethodHandles.*;
1009 import static java.lang.invoke.MethodType.*;
1010 ...
1011 MethodHandle MH_newArrayList = publicLookup().findConstructor(
1012   ArrayList.class, methodType(void.class, Collection.class));
1013 Collection orig = Arrays.asList("x", "y");
1014 Collection copy = (ArrayList) MH_newArrayList.invokeExact(orig);
1015 assert(orig != copy);
1016 assertEquals(orig, copy);
1017 // a variable-arity constructor:
1018 MethodHandle MH_newProcessBuilder = publicLookup().findConstructor(
1019   ProcessBuilder.class, methodType(void.class, String[].class));
1020 ProcessBuilder pb = (ProcessBuilder)
1021   MH_newProcessBuilder.invoke("x", "y", "z");
1022 assertEquals("[x, y, z]", pb.command().toString());
1023          * }</pre></blockquote>
1024          * @param refc the class or interface from which the method is accessed
1025          * @param type the type of the method, with the receiver argument omitted, and a void return type
1026          * @return the desired method handle
1027          * @throws NoSuchMethodException if the constructor does not exist
1028          * @throws IllegalAccessException if access checking fails
1029          *                                or if the method's variable arity modifier bit
1030          *                                is set and {@code asVarargsCollector} fails
1031          * @exception SecurityException if a security manager is present and it
1032          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1033          * @throws NullPointerException if any argument is null
1034          */
findConstructor(Class<?> refc, MethodType type)1035         public MethodHandle findConstructor(Class<?> refc, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1036             if (refc.isArray()) {
1037                 throw new NoSuchMethodException("no constructor for array class: " + refc.getName());
1038             }
1039             // The queried |type| is (PT1,PT2,..)V
1040             Constructor constructor = refc.getDeclaredConstructor(type.ptypes());
1041             if (constructor == null) {
1042                 throw new NoSuchMethodException(
1043                     "No constructor for " + constructor.getDeclaringClass() + " matching " + type);
1044             }
1045             checkAccess(refc, constructor.getDeclaringClass(), constructor.getModifiers(),
1046                     constructor.getName());
1047 
1048             return createMethodHandleForConstructor(constructor);
1049         }
1050 
createMethodHandleForConstructor(Constructor constructor)1051         private MethodHandle createMethodHandleForConstructor(Constructor constructor) {
1052             Class<?> refc = constructor.getDeclaringClass();
1053             MethodType constructorType =
1054                     MethodType.methodType(refc, constructor.getParameterTypes());
1055             MethodHandle mh;
1056             if (refc == String.class) {
1057                 // String constructors have optimized StringFactory methods
1058                 // that matches returned type. These factory methods combine the
1059                 // memory allocation and initialization calls for String objects.
1060                 mh = new MethodHandleImpl(constructor.getArtMethod(), MethodHandle.INVOKE_DIRECT,
1061                                           constructorType);
1062             } else {
1063                 // Constructors for all other classes use a Construct transformer to perform
1064                 // their memory allocation and call to <init>.
1065                 MethodType initType = initMethodType(constructorType);
1066                 MethodHandle initHandle = new MethodHandleImpl(
1067                     constructor.getArtMethod(), MethodHandle.INVOKE_DIRECT, initType);
1068                 mh = new Transformers.Construct(initHandle, constructorType);
1069             }
1070 
1071             if (constructor.isVarArgs()) {
1072                 mh = new Transformers.VarargsCollector(mh);
1073             }
1074             return mh;
1075         }
1076 
initMethodType(MethodType constructorType)1077         private static MethodType initMethodType(MethodType constructorType) {
1078             // Returns a MethodType appropriate for class <init>
1079             // methods. Constructor MethodTypes have the form
1080             // (PT1,PT2,...)C and class <init> MethodTypes have the
1081             // form (C,PT1,PT2,...)V.
1082             assert constructorType.rtype() != void.class;
1083 
1084             // Insert constructorType C as the first parameter type in
1085             // the MethodType for <init>.
1086             Class<?> [] initPtypes = new Class<?> [constructorType.ptypes().length + 1];
1087             initPtypes[0] = constructorType.rtype();
1088             System.arraycopy(constructorType.ptypes(), 0, initPtypes, 1,
1089                              constructorType.ptypes().length);
1090 
1091             // Set the return type for the <init> MethodType to be void.
1092             return MethodType.methodType(void.class, initPtypes);
1093         }
1094 
1095         /**
1096          * Produces an early-bound method handle for a virtual method.
1097          * It will bypass checks for overriding methods on the receiver,
1098          * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
1099          * instruction from within the explicitly specified {@code specialCaller}.
1100          * The type of the method handle will be that of the method,
1101          * with a suitably restricted receiver type prepended.
1102          * (The receiver type will be {@code specialCaller} or a subtype.)
1103          * The method and all its argument types must be accessible
1104          * to the lookup object.
1105          * <p>
1106          * Before method resolution,
1107          * if the explicitly specified caller class is not identical with the
1108          * lookup class, or if this lookup object does not have
1109          * <a href="MethodHandles.Lookup.html#privacc">private access</a>
1110          * privileges, the access fails.
1111          * <p>
1112          * The returned method handle will have
1113          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1114          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1115          * <p style="font-size:smaller;">
1116          * <em>(Note:  JVM internal methods named {@code "<init>"} are not visible to this API,
1117          * even though the {@code invokespecial} instruction can refer to them
1118          * in special circumstances.  Use {@link #findConstructor findConstructor}
1119          * to access instance initialization methods in a safe manner.)</em>
1120          * <p><b>Example:</b>
1121          * <blockquote><pre>{@code
1122 import static java.lang.invoke.MethodHandles.*;
1123 import static java.lang.invoke.MethodType.*;
1124 ...
1125 static class Listie extends ArrayList {
1126   public String toString() { return "[wee Listie]"; }
1127   static Lookup lookup() { return MethodHandles.lookup(); }
1128 }
1129 ...
1130 // no access to constructor via invokeSpecial:
1131 MethodHandle MH_newListie = Listie.lookup()
1132   .findConstructor(Listie.class, methodType(void.class));
1133 Listie l = (Listie) MH_newListie.invokeExact();
1134 try { assertEquals("impossible", Listie.lookup().findSpecial(
1135         Listie.class, "<init>", methodType(void.class), Listie.class));
1136  } catch (NoSuchMethodException ex) { } // OK
1137 // access to super and self methods via invokeSpecial:
1138 MethodHandle MH_super = Listie.lookup().findSpecial(
1139   ArrayList.class, "toString" , methodType(String.class), Listie.class);
1140 MethodHandle MH_this = Listie.lookup().findSpecial(
1141   Listie.class, "toString" , methodType(String.class), Listie.class);
1142 MethodHandle MH_duper = Listie.lookup().findSpecial(
1143   Object.class, "toString" , methodType(String.class), Listie.class);
1144 assertEquals("[]", (String) MH_super.invokeExact(l));
1145 assertEquals(""+l, (String) MH_this.invokeExact(l));
1146 assertEquals("[]", (String) MH_duper.invokeExact(l)); // ArrayList method
1147 try { assertEquals("inaccessible", Listie.lookup().findSpecial(
1148         String.class, "toString", methodType(String.class), Listie.class));
1149  } catch (IllegalAccessException ex) { } // OK
1150 Listie subl = new Listie() { public String toString() { return "[subclass]"; } };
1151 assertEquals(""+l, (String) MH_this.invokeExact(subl)); // Listie method
1152          * }</pre></blockquote>
1153          *
1154          * @param refc the class or interface from which the method is accessed
1155          * @param name the name of the method (which must not be "&lt;init&gt;")
1156          * @param type the type of the method, with the receiver argument omitted
1157          * @param specialCaller the proposed calling class to perform the {@code invokespecial}
1158          * @return the desired method handle
1159          * @throws NoSuchMethodException if the method does not exist
1160          * @throws IllegalAccessException if access checking fails
1161          *                                or if the method's variable arity modifier bit
1162          *                                is set and {@code asVarargsCollector} fails
1163          * @exception SecurityException if a security manager is present and it
1164          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1165          * @throws NullPointerException if any argument is null
1166          */
findSpecial(Class<?> refc, String name, MethodType type, Class<?> specialCaller)1167         public MethodHandle findSpecial(Class<?> refc, String name, MethodType type,
1168                                         Class<?> specialCaller) throws NoSuchMethodException, IllegalAccessException {
1169             if (specialCaller == null) {
1170                 throw new NullPointerException("specialCaller == null");
1171             }
1172 
1173             if (type == null) {
1174                 throw new NullPointerException("type == null");
1175             }
1176 
1177             if (name == null) {
1178                 throw new NullPointerException("name == null");
1179             }
1180 
1181             if (refc == null) {
1182                 throw new NullPointerException("ref == null");
1183             }
1184 
1185             // Make sure that the special caller is identical to the lookup class or that we have
1186             // private access.
1187             // Android-changed: Also allow access to any interface methods.
1188             checkSpecialCaller(specialCaller, refc);
1189 
1190             // Even though constructors are invoked using a "special" invoke, handles to them can't
1191             // be created using findSpecial. Callers must use findConstructor instead. Similarly,
1192             // there is no path for calling static class initializers.
1193             if (name.startsWith("<")) {
1194                 throw new NoSuchMethodException(name + " is not a valid method name.");
1195             }
1196 
1197             Method method = refc.getDeclaredMethod(name, type.ptypes());
1198             checkReturnType(method, type);
1199             return findSpecial(method, type, refc, specialCaller);
1200         }
1201 
findSpecial(Method method, MethodType type, Class<?> refc, Class<?> specialCaller)1202         private MethodHandle findSpecial(Method method, MethodType type,
1203                                          Class<?> refc, Class<?> specialCaller)
1204                 throws IllegalAccessException {
1205             if (Modifier.isStatic(method.getModifiers())) {
1206                 throw new IllegalAccessException("expected a non-static method:" + method);
1207             }
1208 
1209             if (Modifier.isPrivate(method.getModifiers())) {
1210                 // Since this is a private method, we'll need to also make sure that the
1211                 // lookup class is the same as the refering class. We've already checked that
1212                 // the specialCaller is the same as the special lookup class, both of these must
1213                 // be the same as the declaring class(*) in order to access the private method.
1214                 //
1215                 // (*) Well, this isn't true for nested classes but OpenJDK doesn't support those
1216                 // either.
1217                 if (refc != lookupClass()) {
1218                     throw new IllegalAccessException("no private access for invokespecial : "
1219                             + refc + ", from" + this);
1220                 }
1221 
1222                 // This is a private method, so there's nothing special to do.
1223                 MethodType handleType = type.insertParameterTypes(0, refc);
1224                 return createMethodHandle(method, MethodHandle.INVOKE_DIRECT, handleType);
1225             }
1226 
1227             // This is a public, protected or package-private method, which means we're expecting
1228             // invoke-super semantics. We'll have to restrict the receiver type appropriately on the
1229             // handle once we check that there really is a "super" relationship between them.
1230             if (!method.getDeclaringClass().isAssignableFrom(specialCaller)) {
1231                 throw new IllegalAccessException(refc + "is not assignable from " + specialCaller);
1232             }
1233 
1234             // Note that we restrict the receiver to "specialCaller" instances.
1235             MethodType handleType = type.insertParameterTypes(0, specialCaller);
1236             return createMethodHandle(method, MethodHandle.INVOKE_SUPER, handleType);
1237         }
1238 
1239         /**
1240          * Produces a method handle giving read access to a non-static field.
1241          * The type of the method handle will have a return type of the field's
1242          * value type.
1243          * The method handle's single argument will be the instance containing
1244          * the field.
1245          * Access checking is performed immediately on behalf of the lookup class.
1246          * @param refc the class or interface from which the method is accessed
1247          * @param name the field's name
1248          * @param type the field's type
1249          * @return a method handle which can load values from the field
1250          * @throws NoSuchFieldException if the field does not exist
1251          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
1252          * @exception SecurityException if a security manager is present and it
1253          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1254          * @throws NullPointerException if any argument is null
1255          */
findGetter(Class<?> refc, String name, Class<?> type)1256         public MethodHandle findGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1257             return findAccessor(refc, name, type, MethodHandle.IGET);
1258         }
1259 
findAccessor(Class<?> refc, String name, Class<?> type, int kind)1260         private MethodHandle findAccessor(Class<?> refc, String name, Class<?> type, int kind)
1261             throws NoSuchFieldException, IllegalAccessException {
1262             final Field field = findFieldOfType(refc, name, type);
1263             return findAccessor(field, refc, type, kind, true /* performAccessChecks */);
1264         }
1265 
findAccessor(Field field, Class<?> refc, Class<?> type, int kind, boolean performAccessChecks)1266         private MethodHandle findAccessor(Field field, Class<?> refc, Class<?> type, int kind,
1267                                           boolean performAccessChecks)
1268                 throws IllegalAccessException {
1269             final boolean isSetterKind = kind == MethodHandle.IPUT || kind == MethodHandle.SPUT;
1270             final boolean isStaticKind = kind == MethodHandle.SGET || kind == MethodHandle.SPUT;
1271             commonFieldChecks(field, refc, type, isStaticKind, performAccessChecks);
1272             if (performAccessChecks) {
1273                 final int modifiers = field.getModifiers();
1274                 if (isSetterKind && Modifier.isFinal(modifiers)) {
1275                     throw new IllegalAccessException("Field " + field + " is final");
1276                 }
1277             }
1278 
1279             final MethodType methodType;
1280             switch (kind) {
1281                 case MethodHandle.SGET:
1282                     methodType = MethodType.methodType(type);
1283                     break;
1284                 case MethodHandle.SPUT:
1285                     methodType = MethodType.methodType(void.class, type);
1286                     break;
1287                 case MethodHandle.IGET:
1288                     methodType = MethodType.methodType(type, refc);
1289                     break;
1290                 case MethodHandle.IPUT:
1291                     methodType = MethodType.methodType(void.class, refc, type);
1292                     break;
1293                 default:
1294                     throw new IllegalArgumentException("Invalid kind " + kind);
1295             }
1296             return new MethodHandleImpl(field.getArtField(), kind, methodType);
1297         }
1298 
1299         /**
1300          * Produces a method handle giving write access to a non-static field.
1301          * The type of the method handle will have a void return type.
1302          * The method handle will take two arguments, the instance containing
1303          * the field, and the value to be stored.
1304          * The second argument will be of the field's value type.
1305          * Access checking is performed immediately on behalf of the lookup class.
1306          * @param refc the class or interface from which the method is accessed
1307          * @param name the field's name
1308          * @param type the field's type
1309          * @return a method handle which can store values into the field
1310          * @throws NoSuchFieldException if the field does not exist
1311          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
1312          * @exception SecurityException if a security manager is present and it
1313          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1314          * @throws NullPointerException if any argument is null
1315          */
findSetter(Class<?> refc, String name, Class<?> type)1316         public MethodHandle findSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1317             return findAccessor(refc, name, type, MethodHandle.IPUT);
1318         }
1319 
1320         // BEGIN Android-changed: OpenJDK 9+181 VarHandle API factory method.
1321         /**
1322          * Produces a VarHandle giving access to a non-static field {@code name}
1323          * of type {@code type} declared in a class of type {@code recv}.
1324          * The VarHandle's variable type is {@code type} and it has one
1325          * coordinate type, {@code recv}.
1326          * <p>
1327          * Access checking is performed immediately on behalf of the lookup
1328          * class.
1329          * <p>
1330          * Certain access modes of the returned VarHandle are unsupported under
1331          * the following conditions:
1332          * <ul>
1333          * <li>if the field is declared {@code final}, then the write, atomic
1334          *     update, numeric atomic update, and bitwise atomic update access
1335          *     modes are unsupported.
1336          * <li>if the field type is anything other than {@code byte},
1337          *     {@code short}, {@code char}, {@code int}, {@code long},
1338          *     {@code float}, or {@code double} then numeric atomic update
1339          *     access modes are unsupported.
1340          * <li>if the field type is anything other than {@code boolean},
1341          *     {@code byte}, {@code short}, {@code char}, {@code int} or
1342          *     {@code long} then bitwise atomic update access modes are
1343          *     unsupported.
1344          * </ul>
1345          * <p>
1346          * If the field is declared {@code volatile} then the returned VarHandle
1347          * will override access to the field (effectively ignore the
1348          * {@code volatile} declaration) in accordance to its specified
1349          * access modes.
1350          * <p>
1351          * If the field type is {@code float} or {@code double} then numeric
1352          * and atomic update access modes compare values using their bitwise
1353          * representation (see {@link Float#floatToRawIntBits} and
1354          * {@link Double#doubleToRawLongBits}, respectively).
1355          * @apiNote
1356          * Bitwise comparison of {@code float} values or {@code double} values,
1357          * as performed by the numeric and atomic update access modes, differ
1358          * from the primitive {@code ==} operator and the {@link Float#equals}
1359          * and {@link Double#equals} methods, specifically with respect to
1360          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
1361          * Care should be taken when performing a compare and set or a compare
1362          * and exchange operation with such values since the operation may
1363          * unexpectedly fail.
1364          * There are many possible NaN values that are considered to be
1365          * {@code NaN} in Java, although no IEEE 754 floating-point operation
1366          * provided by Java can distinguish between them.  Operation failure can
1367          * occur if the expected or witness value is a NaN value and it is
1368          * transformed (perhaps in a platform specific manner) into another NaN
1369          * value, and thus has a different bitwise representation (see
1370          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
1371          * details).
1372          * The values {@code -0.0} and {@code +0.0} have different bitwise
1373          * representations but are considered equal when using the primitive
1374          * {@code ==} operator.  Operation failure can occur if, for example, a
1375          * numeric algorithm computes an expected value to be say {@code -0.0}
1376          * and previously computed the witness value to be say {@code +0.0}.
1377          * @param recv the receiver class, of type {@code R}, that declares the
1378          * non-static field
1379          * @param name the field's name
1380          * @param type the field's type, of type {@code T}
1381          * @return a VarHandle giving access to non-static fields.
1382          * @throws NoSuchFieldException if the field does not exist
1383          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
1384          * @exception SecurityException if a security manager is present and it
1385          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1386          * @throws NullPointerException if any argument is null
1387          * @since 9
1388          */
findVarHandle(Class<?> recv, String name, Class<?> type)1389         public VarHandle findVarHandle(Class<?> recv, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1390             final Field field = findFieldOfType(recv, name, type);
1391             final boolean isStatic = false;
1392             final boolean performAccessChecks = true;
1393             commonFieldChecks(field, recv, type, isStatic, performAccessChecks);
1394             return FieldVarHandle.create(field);
1395         }
1396         // END Android-changed: OpenJDK 9+181 VarHandle API factory method.
1397 
1398         // BEGIN Android-added: Common field resolution and access check methods.
findFieldOfType(final Class<?> refc, String name, Class<?> type)1399         private Field findFieldOfType(final Class<?> refc, String name, Class<?> type)
1400                 throws NoSuchFieldException {
1401             Field field = null;
1402 
1403             // Search refc and super classes for the field.
1404             for (Class<?> cls = refc; cls != null; cls = cls.getSuperclass()) {
1405                 try {
1406                     field = cls.getDeclaredField(name);
1407                     break;
1408                 } catch (NoSuchFieldException e) {
1409                 }
1410             }
1411 
1412             if (field == null) {
1413                 // Force failure citing refc.
1414                 field = refc.getDeclaredField(name);
1415             }
1416 
1417             final Class<?> fieldType = field.getType();
1418             if (fieldType != type) {
1419                 throw new NoSuchFieldException(name);
1420             }
1421             return field;
1422         }
1423 
commonFieldChecks(Field field, Class<?> refc, Class<?> type, boolean isStatic, boolean performAccessChecks)1424         private void commonFieldChecks(Field field, Class<?> refc, Class<?> type,
1425                                        boolean isStatic, boolean performAccessChecks)
1426                 throws IllegalAccessException {
1427             final int modifiers = field.getModifiers();
1428             if (performAccessChecks) {
1429                 checkAccess(refc, field.getDeclaringClass(), modifiers, field.getName());
1430             }
1431             if (Modifier.isStatic(modifiers) != isStatic) {
1432                 String reason = "Field " + field + " is " +
1433                         (isStatic ? "not " : "") + "static";
1434                 throw new IllegalAccessException(reason);
1435             }
1436         }
1437         // END Android-added: Common field resolution and access check methods.
1438 
1439         /**
1440          * Produces a method handle giving read access to a static field.
1441          * The type of the method handle will have a return type of the field's
1442          * value type.
1443          * The method handle will take no arguments.
1444          * Access checking is performed immediately on behalf of the lookup class.
1445          * <p>
1446          * If the returned method handle is invoked, the field's class will
1447          * be initialized, if it has not already been initialized.
1448          * @param refc the class or interface from which the method is accessed
1449          * @param name the field's name
1450          * @param type the field's type
1451          * @return a method handle which can load values from the field
1452          * @throws NoSuchFieldException if the field does not exist
1453          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
1454          * @exception SecurityException if a security manager is present and it
1455          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1456          * @throws NullPointerException if any argument is null
1457          */
findStaticGetter(Class<?> refc, String name, Class<?> type)1458         public MethodHandle findStaticGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1459             return findAccessor(refc, name, type, MethodHandle.SGET);
1460         }
1461 
1462         /**
1463          * Produces a method handle giving write access to a static field.
1464          * The type of the method handle will have a void return type.
1465          * The method handle will take a single
1466          * argument, of the field's value type, the value to be stored.
1467          * Access checking is performed immediately on behalf of the lookup class.
1468          * <p>
1469          * If the returned method handle is invoked, the field's class will
1470          * be initialized, if it has not already been initialized.
1471          * @param refc the class or interface from which the method is accessed
1472          * @param name the field's name
1473          * @param type the field's type
1474          * @return a method handle which can store values into the field
1475          * @throws NoSuchFieldException if the field does not exist
1476          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
1477          * @exception SecurityException if a security manager is present and it
1478          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1479          * @throws NullPointerException if any argument is null
1480          */
findStaticSetter(Class<?> refc, String name, Class<?> type)1481         public MethodHandle findStaticSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1482             return findAccessor(refc, name, type, MethodHandle.SPUT);
1483         }
1484 
1485         // BEGIN Android-changed: OpenJDK 9+181 VarHandle API factory method.
1486         /**
1487          * Produces a VarHandle giving access to a static field {@code name} of
1488          * type {@code type} declared in a class of type {@code decl}.
1489          * The VarHandle's variable type is {@code type} and it has no
1490          * coordinate types.
1491          * <p>
1492          * Access checking is performed immediately on behalf of the lookup
1493          * class.
1494          * <p>
1495          * If the returned VarHandle is operated on, the declaring class will be
1496          * initialized, if it has not already been initialized.
1497          * <p>
1498          * Certain access modes of the returned VarHandle are unsupported under
1499          * the following conditions:
1500          * <ul>
1501          * <li>if the field is declared {@code final}, then the write, atomic
1502          *     update, numeric atomic update, and bitwise atomic update access
1503          *     modes are unsupported.
1504          * <li>if the field type is anything other than {@code byte},
1505          *     {@code short}, {@code char}, {@code int}, {@code long},
1506          *     {@code float}, or {@code double}, then numeric atomic update
1507          *     access modes are unsupported.
1508          * <li>if the field type is anything other than {@code boolean},
1509          *     {@code byte}, {@code short}, {@code char}, {@code int} or
1510          *     {@code long} then bitwise atomic update access modes are
1511          *     unsupported.
1512          * </ul>
1513          * <p>
1514          * If the field is declared {@code volatile} then the returned VarHandle
1515          * will override access to the field (effectively ignore the
1516          * {@code volatile} declaration) in accordance to its specified
1517          * access modes.
1518          * <p>
1519          * If the field type is {@code float} or {@code double} then numeric
1520          * and atomic update access modes compare values using their bitwise
1521          * representation (see {@link Float#floatToRawIntBits} and
1522          * {@link Double#doubleToRawLongBits}, respectively).
1523          * @apiNote
1524          * Bitwise comparison of {@code float} values or {@code double} values,
1525          * as performed by the numeric and atomic update access modes, differ
1526          * from the primitive {@code ==} operator and the {@link Float#equals}
1527          * and {@link Double#equals} methods, specifically with respect to
1528          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
1529          * Care should be taken when performing a compare and set or a compare
1530          * and exchange operation with such values since the operation may
1531          * unexpectedly fail.
1532          * There are many possible NaN values that are considered to be
1533          * {@code NaN} in Java, although no IEEE 754 floating-point operation
1534          * provided by Java can distinguish between them.  Operation failure can
1535          * occur if the expected or witness value is a NaN value and it is
1536          * transformed (perhaps in a platform specific manner) into another NaN
1537          * value, and thus has a different bitwise representation (see
1538          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
1539          * details).
1540          * The values {@code -0.0} and {@code +0.0} have different bitwise
1541          * representations but are considered equal when using the primitive
1542          * {@code ==} operator.  Operation failure can occur if, for example, a
1543          * numeric algorithm computes an expected value to be say {@code -0.0}
1544          * and previously computed the witness value to be say {@code +0.0}.
1545          * @param decl the class that declares the static field
1546          * @param name the field's name
1547          * @param type the field's type, of type {@code T}
1548          * @return a VarHandle giving access to a static field
1549          * @throws NoSuchFieldException if the field does not exist
1550          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
1551          * @exception SecurityException if a security manager is present and it
1552          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1553          * @throws NullPointerException if any argument is null
1554          * @since 9
1555          */
findStaticVarHandle(Class<?> decl, String name, Class<?> type)1556         public VarHandle findStaticVarHandle(Class<?> decl, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1557             final Field field = findFieldOfType(decl, name, type);
1558             final boolean isStatic = true;
1559             final boolean performAccessChecks = true;
1560             commonFieldChecks(field, decl, type, isStatic, performAccessChecks);
1561             return StaticFieldVarHandle.create(field);
1562         }
1563         // END Android-changed: OpenJDK 9+181 VarHandle API factory method.
1564 
1565         /**
1566          * Produces an early-bound method handle for a non-static method.
1567          * The receiver must have a supertype {@code defc} in which a method
1568          * of the given name and type is accessible to the lookup class.
1569          * The method and all its argument types must be accessible to the lookup object.
1570          * The type of the method handle will be that of the method,
1571          * without any insertion of an additional receiver parameter.
1572          * The given receiver will be bound into the method handle,
1573          * so that every call to the method handle will invoke the
1574          * requested method on the given receiver.
1575          * <p>
1576          * The returned method handle will have
1577          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1578          * the method's variable arity modifier bit ({@code 0x0080}) is set
1579          * <em>and</em> the trailing array argument is not the only argument.
1580          * (If the trailing array argument is the only argument,
1581          * the given receiver value will be bound to it.)
1582          * <p>
1583          * This is equivalent to the following code:
1584          * <blockquote><pre>{@code
1585 import static java.lang.invoke.MethodHandles.*;
1586 import static java.lang.invoke.MethodType.*;
1587 ...
1588 MethodHandle mh0 = lookup().findVirtual(defc, name, type);
1589 MethodHandle mh1 = mh0.bindTo(receiver);
1590 MethodType mt1 = mh1.type();
1591 if (mh0.isVarargsCollector())
1592   mh1 = mh1.asVarargsCollector(mt1.parameterType(mt1.parameterCount()-1));
1593 return mh1;
1594          * }</pre></blockquote>
1595          * where {@code defc} is either {@code receiver.getClass()} or a super
1596          * type of that class, in which the requested method is accessible
1597          * to the lookup class.
1598          * (Note that {@code bindTo} does not preserve variable arity.)
1599          * @param receiver the object from which the method is accessed
1600          * @param name the name of the method
1601          * @param type the type of the method, with the receiver argument omitted
1602          * @return the desired method handle
1603          * @throws NoSuchMethodException if the method does not exist
1604          * @throws IllegalAccessException if access checking fails
1605          *                                or if the method's variable arity modifier bit
1606          *                                is set and {@code asVarargsCollector} fails
1607          * @exception SecurityException if a security manager is present and it
1608          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1609          * @throws NullPointerException if any argument is null
1610          * @see MethodHandle#bindTo
1611          * @see #findVirtual
1612          */
bind(Object receiver, String name, MethodType type)1613         public MethodHandle bind(Object receiver, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1614             MethodHandle handle = findVirtual(receiver.getClass(), name, type);
1615             MethodHandle adapter = handle.bindTo(receiver);
1616             MethodType adapterType = adapter.type();
1617             if (handle.isVarargsCollector()) {
1618                 adapter = adapter.asVarargsCollector(
1619                         adapterType.parameterType(adapterType.parameterCount() - 1));
1620             }
1621 
1622             return adapter;
1623         }
1624 
1625         /**
1626          * Makes a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
1627          * to <i>m</i>, if the lookup class has permission.
1628          * If <i>m</i> is non-static, the receiver argument is treated as an initial argument.
1629          * If <i>m</i> is virtual, overriding is respected on every call.
1630          * Unlike the Core Reflection API, exceptions are <em>not</em> wrapped.
1631          * The type of the method handle will be that of the method,
1632          * with the receiver type prepended (but only if it is non-static).
1633          * If the method's {@code accessible} flag is not set,
1634          * access checking is performed immediately on behalf of the lookup class.
1635          * If <i>m</i> is not public, do not share the resulting handle with untrusted parties.
1636          * <p>
1637          * The returned method handle will have
1638          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1639          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1640          * <p>
1641          * If <i>m</i> is static, and
1642          * if the returned method handle is invoked, the method's class will
1643          * be initialized, if it has not already been initialized.
1644          * @param m the reflected method
1645          * @return a method handle which can invoke the reflected method
1646          * @throws IllegalAccessException if access checking fails
1647          *                                or if the method's variable arity modifier bit
1648          *                                is set and {@code asVarargsCollector} fails
1649          * @throws NullPointerException if the argument is null
1650          */
unreflect(Method m)1651         public MethodHandle unreflect(Method m) throws IllegalAccessException {
1652             if (m == null) {
1653                 throw new NullPointerException("m == null");
1654             }
1655 
1656             MethodType methodType = MethodType.methodType(m.getReturnType(),
1657                     m.getParameterTypes());
1658 
1659             // We should only perform access checks if setAccessible hasn't been called yet.
1660             if (!m.isAccessible()) {
1661                 checkAccess(m.getDeclaringClass(), m.getDeclaringClass(), m.getModifiers(),
1662                         m.getName());
1663             }
1664 
1665             if (Modifier.isStatic(m.getModifiers())) {
1666                 return createMethodHandle(m, MethodHandle.INVOKE_STATIC, methodType);
1667             } else {
1668                 methodType = methodType.insertParameterTypes(0, m.getDeclaringClass());
1669                 return createMethodHandle(m, MethodHandle.INVOKE_VIRTUAL, methodType);
1670             }
1671         }
1672 
1673         /**
1674          * Produces a method handle for a reflected method.
1675          * It will bypass checks for overriding methods on the receiver,
1676          * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
1677          * instruction from within the explicitly specified {@code specialCaller}.
1678          * The type of the method handle will be that of the method,
1679          * with a suitably restricted receiver type prepended.
1680          * (The receiver type will be {@code specialCaller} or a subtype.)
1681          * If the method's {@code accessible} flag is not set,
1682          * access checking is performed immediately on behalf of the lookup class,
1683          * as if {@code invokespecial} instruction were being linked.
1684          * <p>
1685          * Before method resolution,
1686          * if the explicitly specified caller class is not identical with the
1687          * lookup class, or if this lookup object does not have
1688          * <a href="MethodHandles.Lookup.html#privacc">private access</a>
1689          * privileges, the access fails.
1690          * <p>
1691          * The returned method handle will have
1692          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1693          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1694          * @param m the reflected method
1695          * @param specialCaller the class nominally calling the method
1696          * @return a method handle which can invoke the reflected method
1697          * @throws IllegalAccessException if access checking fails
1698          *                                or if the method's variable arity modifier bit
1699          *                                is set and {@code asVarargsCollector} fails
1700          * @throws NullPointerException if any argument is null
1701          */
unreflectSpecial(Method m, Class<?> specialCaller)1702         public MethodHandle unreflectSpecial(Method m, Class<?> specialCaller) throws IllegalAccessException {
1703             if (m == null) {
1704                 throw new NullPointerException("m == null");
1705             }
1706 
1707             if (specialCaller == null) {
1708                 throw new NullPointerException("specialCaller == null");
1709             }
1710 
1711             if (!m.isAccessible()) {
1712                 // Android-changed: Match Java language 9 behavior where unreflectSpecial continues
1713                 // to require exact caller lookupClass match.
1714                 checkSpecialCaller(specialCaller, null);
1715             }
1716 
1717             final MethodType methodType = MethodType.methodType(m.getReturnType(),
1718                     m.getParameterTypes());
1719             return findSpecial(m, methodType, m.getDeclaringClass() /* refc */, specialCaller);
1720         }
1721 
1722         /**
1723          * Produces a method handle for a reflected constructor.
1724          * The type of the method handle will be that of the constructor,
1725          * with the return type changed to the declaring class.
1726          * The method handle will perform a {@code newInstance} operation,
1727          * creating a new instance of the constructor's class on the
1728          * arguments passed to the method handle.
1729          * <p>
1730          * If the constructor's {@code accessible} flag is not set,
1731          * access checking is performed immediately on behalf of the lookup class.
1732          * <p>
1733          * The returned method handle will have
1734          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1735          * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
1736          * <p>
1737          * If the returned method handle is invoked, the constructor's class will
1738          * be initialized, if it has not already been initialized.
1739          * @param c the reflected constructor
1740          * @return a method handle which can invoke the reflected constructor
1741          * @throws IllegalAccessException if access checking fails
1742          *                                or if the method's variable arity modifier bit
1743          *                                is set and {@code asVarargsCollector} fails
1744          * @throws NullPointerException if the argument is null
1745          */
unreflectConstructor(Constructor<?> c)1746         public MethodHandle unreflectConstructor(Constructor<?> c) throws IllegalAccessException {
1747             if (c == null) {
1748                 throw new NullPointerException("c == null");
1749             }
1750 
1751             if (!c.isAccessible()) {
1752                 checkAccess(c.getDeclaringClass(), c.getDeclaringClass(), c.getModifiers(),
1753                         c.getName());
1754             }
1755 
1756             return createMethodHandleForConstructor(c);
1757         }
1758 
1759         /**
1760          * Produces a method handle giving read access to a reflected field.
1761          * The type of the method handle will have a return type of the field's
1762          * value type.
1763          * If the field is static, the method handle will take no arguments.
1764          * Otherwise, its single argument will be the instance containing
1765          * the field.
1766          * If the field's {@code accessible} flag is not set,
1767          * access checking is performed immediately on behalf of the lookup class.
1768          * <p>
1769          * If the field is static, and
1770          * if the returned method handle is invoked, the field's class will
1771          * be initialized, if it has not already been initialized.
1772          * @param f the reflected field
1773          * @return a method handle which can load values from the reflected field
1774          * @throws IllegalAccessException if access checking fails
1775          * @throws NullPointerException if the argument is null
1776          */
unreflectGetter(Field f)1777         public MethodHandle unreflectGetter(Field f) throws IllegalAccessException {
1778             return findAccessor(f, f.getDeclaringClass(), f.getType(),
1779                     Modifier.isStatic(f.getModifiers()) ? MethodHandle.SGET : MethodHandle.IGET,
1780                     !f.isAccessible() /* performAccessChecks */);
1781         }
1782 
1783         /**
1784          * Produces a method handle giving write access to a reflected field.
1785          * The type of the method handle will have a void return type.
1786          * If the field is static, the method handle will take a single
1787          * argument, of the field's value type, the value to be stored.
1788          * Otherwise, the two arguments will be the instance containing
1789          * the field, and the value to be stored.
1790          * If the field's {@code accessible} flag is not set,
1791          * access checking is performed immediately on behalf of the lookup class.
1792          * <p>
1793          * If the field is static, and
1794          * if the returned method handle is invoked, the field's class will
1795          * be initialized, if it has not already been initialized.
1796          * @param f the reflected field
1797          * @return a method handle which can store values into the reflected field
1798          * @throws IllegalAccessException if access checking fails
1799          * @throws NullPointerException if the argument is null
1800          */
unreflectSetter(Field f)1801         public MethodHandle unreflectSetter(Field f) throws IllegalAccessException {
1802             return findAccessor(f, f.getDeclaringClass(), f.getType(),
1803                     Modifier.isStatic(f.getModifiers()) ? MethodHandle.SPUT : MethodHandle.IPUT,
1804                     !f.isAccessible() /* performAccessChecks */);
1805         }
1806 
1807         // BEGIN Android-changed: OpenJDK 9+181 VarHandle API factory method.
1808         /**
1809          * Produces a VarHandle giving access to a reflected field {@code f}
1810          * of type {@code T} declared in a class of type {@code R}.
1811          * The VarHandle's variable type is {@code T}.
1812          * If the field is non-static the VarHandle has one coordinate type,
1813          * {@code R}.  Otherwise, the field is static, and the VarHandle has no
1814          * coordinate types.
1815          * <p>
1816          * Access checking is performed immediately on behalf of the lookup
1817          * class, regardless of the value of the field's {@code accessible}
1818          * flag.
1819          * <p>
1820          * If the field is static, and if the returned VarHandle is operated
1821          * on, the field's declaring class will be initialized, if it has not
1822          * already been initialized.
1823          * <p>
1824          * Certain access modes of the returned VarHandle are unsupported under
1825          * the following conditions:
1826          * <ul>
1827          * <li>if the field is declared {@code final}, then the write, atomic
1828          *     update, numeric atomic update, and bitwise atomic update access
1829          *     modes are unsupported.
1830          * <li>if the field type is anything other than {@code byte},
1831          *     {@code short}, {@code char}, {@code int}, {@code long},
1832          *     {@code float}, or {@code double} then numeric atomic update
1833          *     access modes are unsupported.
1834          * <li>if the field type is anything other than {@code boolean},
1835          *     {@code byte}, {@code short}, {@code char}, {@code int} or
1836          *     {@code long} then bitwise atomic update access modes are
1837          *     unsupported.
1838          * </ul>
1839          * <p>
1840          * If the field is declared {@code volatile} then the returned VarHandle
1841          * will override access to the field (effectively ignore the
1842          * {@code volatile} declaration) in accordance to its specified
1843          * access modes.
1844          * <p>
1845          * If the field type is {@code float} or {@code double} then numeric
1846          * and atomic update access modes compare values using their bitwise
1847          * representation (see {@link Float#floatToRawIntBits} and
1848          * {@link Double#doubleToRawLongBits}, respectively).
1849          * @apiNote
1850          * Bitwise comparison of {@code float} values or {@code double} values,
1851          * as performed by the numeric and atomic update access modes, differ
1852          * from the primitive {@code ==} operator and the {@link Float#equals}
1853          * and {@link Double#equals} methods, specifically with respect to
1854          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
1855          * Care should be taken when performing a compare and set or a compare
1856          * and exchange operation with such values since the operation may
1857          * unexpectedly fail.
1858          * There are many possible NaN values that are considered to be
1859          * {@code NaN} in Java, although no IEEE 754 floating-point operation
1860          * provided by Java can distinguish between them.  Operation failure can
1861          * occur if the expected or witness value is a NaN value and it is
1862          * transformed (perhaps in a platform specific manner) into another NaN
1863          * value, and thus has a different bitwise representation (see
1864          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
1865          * details).
1866          * The values {@code -0.0} and {@code +0.0} have different bitwise
1867          * representations but are considered equal when using the primitive
1868          * {@code ==} operator.  Operation failure can occur if, for example, a
1869          * numeric algorithm computes an expected value to be say {@code -0.0}
1870          * and previously computed the witness value to be say {@code +0.0}.
1871          * @param f the reflected field, with a field of type {@code T}, and
1872          * a declaring class of type {@code R}
1873          * @return a VarHandle giving access to non-static fields or a static
1874          * field
1875          * @throws IllegalAccessException if access checking fails
1876          * @throws NullPointerException if the argument is null
1877          * @since 9
1878          */
unreflectVarHandle(Field f)1879         public VarHandle unreflectVarHandle(Field f) throws IllegalAccessException {
1880             final boolean isStatic = Modifier.isStatic(f.getModifiers());
1881             final boolean performAccessChecks = true;
1882             commonFieldChecks(f, f.getDeclaringClass(), f.getType(), isStatic, performAccessChecks);
1883             return isStatic ? StaticFieldVarHandle.create(f) : FieldVarHandle.create(f);
1884         }
1885         // END Android-changed: OpenJDK 9+181 VarHandle API factory method.
1886 
1887         /**
1888          * Cracks a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
1889          * created by this lookup object or a similar one.
1890          * Security and access checks are performed to ensure that this lookup object
1891          * is capable of reproducing the target method handle.
1892          * This means that the cracking may fail if target is a direct method handle
1893          * but was created by an unrelated lookup object.
1894          * This can happen if the method handle is <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a>
1895          * and was created by a lookup object for a different class.
1896          * @param target a direct method handle to crack into symbolic reference components
1897          * @return a symbolic reference which can be used to reconstruct this method handle from this lookup object
1898          * @exception SecurityException if a security manager is present and it
1899          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1900          * @throws IllegalArgumentException if the target is not a direct method handle or if access checking fails
1901          * @exception NullPointerException if the target is {@code null}
1902          * @see MethodHandleInfo
1903          * @since 1.8
1904          */
revealDirect(MethodHandle target)1905         public MethodHandleInfo revealDirect(MethodHandle target) {
1906             MethodHandleImpl directTarget = getMethodHandleImpl(target);
1907             MethodHandleInfo info = directTarget.reveal();
1908 
1909             try {
1910                 checkAccess(lookupClass(), info.getDeclaringClass(), info.getModifiers(),
1911                         info.getName());
1912             } catch (IllegalAccessException exception) {
1913                 throw new IllegalArgumentException("Unable to access memeber.", exception);
1914             }
1915 
1916             return info;
1917         }
1918 
hasPrivateAccess()1919         private boolean hasPrivateAccess() {
1920             return (allowedModes & PRIVATE) != 0;
1921         }
1922 
1923         /** Check public/protected/private bits on the symbolic reference class and its member. */
checkAccess(Class<?> refc, Class<?> defc, int mods, String methName)1924         void checkAccess(Class<?> refc, Class<?> defc, int mods, String methName)
1925                 throws IllegalAccessException {
1926             int allowedModes = this.allowedModes;
1927 
1928             if (Modifier.isProtected(mods) &&
1929                     defc == Object.class &&
1930                     "clone".equals(methName) &&
1931                     refc.isArray()) {
1932                 // The JVM does this hack also.
1933                 // (See ClassVerifier::verify_invoke_instructions
1934                 // and LinkResolver::check_method_accessability.)
1935                 // Because the JVM does not allow separate methods on array types,
1936                 // there is no separate method for int[].clone.
1937                 // All arrays simply inherit Object.clone.
1938                 // But for access checking logic, we make Object.clone
1939                 // (normally protected) appear to be public.
1940                 // Later on, when the DirectMethodHandle is created,
1941                 // its leading argument will be restricted to the
1942                 // requested array type.
1943                 // N.B. The return type is not adjusted, because
1944                 // that is *not* the bytecode behavior.
1945                 mods ^= Modifier.PROTECTED | Modifier.PUBLIC;
1946             }
1947 
1948             if (Modifier.isProtected(mods) && Modifier.isConstructor(mods)) {
1949                 // cannot "new" a protected ctor in a different package
1950                 mods ^= Modifier.PROTECTED;
1951             }
1952 
1953             if (Modifier.isPublic(mods) && Modifier.isPublic(refc.getModifiers()) && allowedModes != 0)
1954                 return;  // common case
1955             int requestedModes = fixmods(mods);  // adjust 0 => PACKAGE
1956             if ((requestedModes & allowedModes) != 0) {
1957                 if (VerifyAccess.isMemberAccessible(refc, defc, mods, lookupClass(), allowedModes))
1958                     return;
1959             } else {
1960                 // Protected members can also be checked as if they were package-private.
1961                 if ((requestedModes & PROTECTED) != 0 && (allowedModes & PACKAGE) != 0
1962                         && VerifyAccess.isSamePackage(defc, lookupClass()))
1963                     return;
1964             }
1965 
1966             throwMakeAccessException(accessFailedMessage(refc, defc, mods), this);
1967         }
1968 
accessFailedMessage(Class<?> refc, Class<?> defc, int mods)1969         String accessFailedMessage(Class<?> refc, Class<?> defc, int mods) {
1970             // check the class first:
1971             boolean classOK = (Modifier.isPublic(defc.getModifiers()) &&
1972                     (defc == refc ||
1973                             Modifier.isPublic(refc.getModifiers())));
1974             if (!classOK && (allowedModes & PACKAGE) != 0) {
1975                 classOK = (VerifyAccess.isClassAccessible(defc, lookupClass(), ALL_MODES) &&
1976                         (defc == refc ||
1977                                 VerifyAccess.isClassAccessible(refc, lookupClass(), ALL_MODES)));
1978             }
1979             if (!classOK)
1980                 return "class is not public";
1981             if (Modifier.isPublic(mods))
1982                 return "access to public member failed";  // (how?)
1983             if (Modifier.isPrivate(mods))
1984                 return "member is private";
1985             if (Modifier.isProtected(mods))
1986                 return "member is protected";
1987             return "member is private to package";
1988         }
1989 
1990         // Android-changed: checkSpecialCaller assumes that ALLOW_NESTMATE_ACCESS = false,
1991         // as in upstream OpenJDK.
1992         //
1993         // private static final boolean ALLOW_NESTMATE_ACCESS = false;
1994 
1995         // Android-changed: Match java language 9 behavior allowing special access if the reflected
1996         // class (called 'refc', the class from which the method is being accessed) is an interface
1997         // and is implemented by the caller.
checkSpecialCaller(Class<?> specialCaller, Class<?> refc)1998         private void checkSpecialCaller(Class<?> specialCaller, Class<?> refc) throws IllegalAccessException {
1999             // Android-changed: No support for TRUSTED lookups. Also construct the
2000             // IllegalAccessException by hand because the upstream code implicitly assumes
2001             // that the lookupClass == specialCaller.
2002             //
2003             // if (allowedModes == TRUSTED)  return;
2004             boolean isInterfaceLookup = (refc != null &&
2005                                          refc.isInterface() &&
2006                                          refc.isAssignableFrom(specialCaller));
2007             if (!hasPrivateAccess() || (specialCaller != lookupClass() && !isInterfaceLookup)) {
2008                 throw new IllegalAccessException("no private access for invokespecial : "
2009                         + specialCaller + ", from" + this);
2010             }
2011         }
2012 
throwMakeAccessException(String message, Object from)2013         private void throwMakeAccessException(String message, Object from) throws
2014                 IllegalAccessException{
2015             message = message + ": "+ toString();
2016             if (from != null)  message += ", from " + from;
2017             throw new IllegalAccessException(message);
2018         }
2019 
checkReturnType(Method method, MethodType methodType)2020         private void checkReturnType(Method method, MethodType methodType)
2021                 throws NoSuchMethodException {
2022             if (method.getReturnType() != methodType.rtype()) {
2023                 throw new NoSuchMethodException(method.getName() + methodType);
2024             }
2025         }
2026     }
2027 
2028     /**
2029      * "Cracks" {@code target} to reveal the underlying {@code MethodHandleImpl}.
2030      */
getMethodHandleImpl(MethodHandle target)2031     private static MethodHandleImpl getMethodHandleImpl(MethodHandle target) {
2032         // Special case : We implement handles to constructors as transformers,
2033         // so we must extract the underlying handle from the transformer.
2034         if (target instanceof Transformers.Construct) {
2035             target = ((Transformers.Construct) target).getConstructorHandle();
2036         }
2037 
2038         // Special case: Var-args methods are also implemented as Transformers,
2039         // so we should get the underlying handle in that case as well.
2040         if (target instanceof Transformers.VarargsCollector) {
2041             target = target.asFixedArity();
2042         }
2043 
2044         if (target instanceof MethodHandleImpl) {
2045             return (MethodHandleImpl) target;
2046         }
2047 
2048         throw new IllegalArgumentException(target + " is not a direct handle");
2049     }
2050 
2051     // Android-removed: unsupported @jvms tag in doc-comment.
2052     /**
2053      * Produces a method handle constructing arrays of a desired type,
2054      * as if by the {@code anewarray} bytecode.
2055      * The return type of the method handle will be the array type.
2056      * The type of its sole argument will be {@code int}, which specifies the size of the array.
2057      *
2058      * <p> If the returned method handle is invoked with a negative
2059      * array size, a {@code NegativeArraySizeException} will be thrown.
2060      *
2061      * @param arrayClass an array type
2062      * @return a method handle which can create arrays of the given type
2063      * @throws NullPointerException if the argument is {@code null}
2064      * @throws IllegalArgumentException if {@code arrayClass} is not an array type
2065      * @see java.lang.reflect.Array#newInstance(Class, int)
2066      * @since 9
2067      */
2068     public static
arrayConstructor(Class<?> arrayClass)2069     MethodHandle arrayConstructor(Class<?> arrayClass) throws IllegalArgumentException {
2070         if (!arrayClass.isArray()) {
2071             throw newIllegalArgumentException("not an array class: " + arrayClass.getName());
2072         }
2073         // Android-changed: transformer based implementation.
2074         // MethodHandle ani = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_Array_newInstance).
2075         // bindTo(arrayClass.getComponentType());
2076         // return ani.asType(ani.type().changeReturnType(arrayClass))
2077         return new Transformers.ArrayConstructor(arrayClass);
2078     }
2079 
2080     // Android-removed: unsupported @jvms tag in doc-comment.
2081     /**
2082      * Produces a method handle returning the length of an array,
2083      * as if by the {@code arraylength} bytecode.
2084      * The type of the method handle will have {@code int} as return type,
2085      * and its sole argument will be the array type.
2086      *
2087      * <p> If the returned method handle is invoked with a {@code null}
2088      * array reference, a {@code NullPointerException} will be thrown.
2089      *
2090      * @param arrayClass an array type
2091      * @return a method handle which can retrieve the length of an array of the given array type
2092      * @throws NullPointerException if the argument is {@code null}
2093      * @throws IllegalArgumentException if arrayClass is not an array type
2094      * @since 9
2095      */
2096     public static
arrayLength(Class<?> arrayClass)2097     MethodHandle arrayLength(Class<?> arrayClass) throws IllegalArgumentException {
2098         // Android-changed: transformer based implementation.
2099         // return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.LENGTH);
2100         if (!arrayClass.isArray()) {
2101             throw newIllegalArgumentException("not an array class: " + arrayClass.getName());
2102         }
2103         return new Transformers.ArrayLength(arrayClass);
2104     }
2105 
2106     // BEGIN Android-added: method to check if a class is an array.
checkClassIsArray(Class<?> c)2107     private static void checkClassIsArray(Class<?> c) {
2108         if (!c.isArray()) {
2109             throw new IllegalArgumentException("Not an array type: " + c);
2110         }
2111     }
2112 
checkTypeIsViewable(Class<?> componentType)2113     private static void checkTypeIsViewable(Class<?> componentType) {
2114         if (componentType == short.class ||
2115             componentType == char.class ||
2116             componentType == int.class ||
2117             componentType == long.class ||
2118             componentType == float.class ||
2119             componentType == double.class) {
2120             return;
2121         }
2122         throw new UnsupportedOperationException("Component type not supported: " + componentType);
2123     }
2124     // END Android-added: method to check if a class is an array.
2125 
2126     /**
2127      * Produces a method handle giving read access to elements of an array.
2128      * The type of the method handle will have a return type of the array's
2129      * element type.  Its first argument will be the array type,
2130      * and the second will be {@code int}.
2131      * @param arrayClass an array type
2132      * @return a method handle which can load values from the given array type
2133      * @throws NullPointerException if the argument is null
2134      * @throws  IllegalArgumentException if arrayClass is not an array type
2135      */
2136     public static
arrayElementGetter(Class<?> arrayClass)2137     MethodHandle arrayElementGetter(Class<?> arrayClass) throws IllegalArgumentException {
2138         checkClassIsArray(arrayClass);
2139         final Class<?> componentType = arrayClass.getComponentType();
2140         if (componentType.isPrimitive()) {
2141             try {
2142                 return Lookup.PUBLIC_LOOKUP.findStatic(MethodHandles.class,
2143                         "arrayElementGetter",
2144                         MethodType.methodType(componentType, arrayClass, int.class));
2145             } catch (NoSuchMethodException | IllegalAccessException exception) {
2146                 throw new AssertionError(exception);
2147             }
2148         }
2149 
2150         return new Transformers.ReferenceArrayElementGetter(arrayClass);
2151     }
2152 
arrayElementGetter(byte[] array, int i)2153     /** @hide */ public static byte arrayElementGetter(byte[] array, int i) { return array[i]; }
arrayElementGetter(boolean[] array, int i)2154     /** @hide */ public static boolean arrayElementGetter(boolean[] array, int i) { return array[i]; }
arrayElementGetter(char[] array, int i)2155     /** @hide */ public static char arrayElementGetter(char[] array, int i) { return array[i]; }
arrayElementGetter(short[] array, int i)2156     /** @hide */ public static short arrayElementGetter(short[] array, int i) { return array[i]; }
arrayElementGetter(int[] array, int i)2157     /** @hide */ public static int arrayElementGetter(int[] array, int i) { return array[i]; }
arrayElementGetter(long[] array, int i)2158     /** @hide */ public static long arrayElementGetter(long[] array, int i) { return array[i]; }
arrayElementGetter(float[] array, int i)2159     /** @hide */ public static float arrayElementGetter(float[] array, int i) { return array[i]; }
arrayElementGetter(double[] array, int i)2160     /** @hide */ public static double arrayElementGetter(double[] array, int i) { return array[i]; }
2161 
2162     /**
2163      * Produces a method handle giving write access to elements of an array.
2164      * The type of the method handle will have a void return type.
2165      * Its last argument will be the array's element type.
2166      * The first and second arguments will be the array type and int.
2167      * @param arrayClass the class of an array
2168      * @return a method handle which can store values into the array type
2169      * @throws NullPointerException if the argument is null
2170      * @throws IllegalArgumentException if arrayClass is not an array type
2171      */
2172     public static
arrayElementSetter(Class<?> arrayClass)2173     MethodHandle arrayElementSetter(Class<?> arrayClass) throws IllegalArgumentException {
2174         checkClassIsArray(arrayClass);
2175         final Class<?> componentType = arrayClass.getComponentType();
2176         if (componentType.isPrimitive()) {
2177             try {
2178                 return Lookup.PUBLIC_LOOKUP.findStatic(MethodHandles.class,
2179                         "arrayElementSetter",
2180                         MethodType.methodType(void.class, arrayClass, int.class, componentType));
2181             } catch (NoSuchMethodException | IllegalAccessException exception) {
2182                 throw new AssertionError(exception);
2183             }
2184         }
2185 
2186         return new Transformers.ReferenceArrayElementSetter(arrayClass);
2187     }
2188 
2189     /** @hide */
arrayElementSetter(byte[] array, int i, byte val)2190     public static void arrayElementSetter(byte[] array, int i, byte val) { array[i] = val; }
2191     /** @hide */
arrayElementSetter(boolean[] array, int i, boolean val)2192     public static void arrayElementSetter(boolean[] array, int i, boolean val) { array[i] = val; }
2193     /** @hide */
arrayElementSetter(char[] array, int i, char val)2194     public static void arrayElementSetter(char[] array, int i, char val) { array[i] = val; }
2195     /** @hide */
arrayElementSetter(short[] array, int i, short val)2196     public static void arrayElementSetter(short[] array, int i, short val) { array[i] = val; }
2197     /** @hide */
arrayElementSetter(int[] array, int i, int val)2198     public static void arrayElementSetter(int[] array, int i, int val) { array[i] = val; }
2199     /** @hide */
arrayElementSetter(long[] array, int i, long val)2200     public static void arrayElementSetter(long[] array, int i, long val) { array[i] = val; }
2201     /** @hide */
arrayElementSetter(float[] array, int i, float val)2202     public static void arrayElementSetter(float[] array, int i, float val) { array[i] = val; }
2203     /** @hide */
arrayElementSetter(double[] array, int i, double val)2204     public static void arrayElementSetter(double[] array, int i, double val) { array[i] = val; }
2205 
2206     // BEGIN Android-changed: OpenJDK 9+181 VarHandle API factory methods.
2207     /**
2208      * Produces a VarHandle giving access to elements of an array of type
2209      * {@code arrayClass}.  The VarHandle's variable type is the component type
2210      * of {@code arrayClass} and the list of coordinate types is
2211      * {@code (arrayClass, int)}, where the {@code int} coordinate type
2212      * corresponds to an argument that is an index into an array.
2213      * <p>
2214      * Certain access modes of the returned VarHandle are unsupported under
2215      * the following conditions:
2216      * <ul>
2217      * <li>if the component type is anything other than {@code byte},
2218      *     {@code short}, {@code char}, {@code int}, {@code long},
2219      *     {@code float}, or {@code double} then numeric atomic update access
2220      *     modes are unsupported.
2221      * <li>if the field type is anything other than {@code boolean},
2222      *     {@code byte}, {@code short}, {@code char}, {@code int} or
2223      *     {@code long} then bitwise atomic update access modes are
2224      *     unsupported.
2225      * </ul>
2226      * <p>
2227      * If the component type is {@code float} or {@code double} then numeric
2228      * and atomic update access modes compare values using their bitwise
2229      * representation (see {@link Float#floatToRawIntBits} and
2230      * {@link Double#doubleToRawLongBits}, respectively).
2231      * @apiNote
2232      * Bitwise comparison of {@code float} values or {@code double} values,
2233      * as performed by the numeric and atomic update access modes, differ
2234      * from the primitive {@code ==} operator and the {@link Float#equals}
2235      * and {@link Double#equals} methods, specifically with respect to
2236      * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
2237      * Care should be taken when performing a compare and set or a compare
2238      * and exchange operation with such values since the operation may
2239      * unexpectedly fail.
2240      * There are many possible NaN values that are considered to be
2241      * {@code NaN} in Java, although no IEEE 754 floating-point operation
2242      * provided by Java can distinguish between them.  Operation failure can
2243      * occur if the expected or witness value is a NaN value and it is
2244      * transformed (perhaps in a platform specific manner) into another NaN
2245      * value, and thus has a different bitwise representation (see
2246      * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
2247      * details).
2248      * The values {@code -0.0} and {@code +0.0} have different bitwise
2249      * representations but are considered equal when using the primitive
2250      * {@code ==} operator.  Operation failure can occur if, for example, a
2251      * numeric algorithm computes an expected value to be say {@code -0.0}
2252      * and previously computed the witness value to be say {@code +0.0}.
2253      * @param arrayClass the class of an array, of type {@code T[]}
2254      * @return a VarHandle giving access to elements of an array
2255      * @throws NullPointerException if the arrayClass is null
2256      * @throws IllegalArgumentException if arrayClass is not an array type
2257      * @since 9
2258      */
2259     public static
arrayElementVarHandle(Class<?> arrayClass)2260     VarHandle arrayElementVarHandle(Class<?> arrayClass) throws IllegalArgumentException {
2261         checkClassIsArray(arrayClass);
2262         return ArrayElementVarHandle.create(arrayClass);
2263     }
2264 
2265     /**
2266      * Produces a VarHandle giving access to elements of a {@code byte[]} array
2267      * viewed as if it were a different primitive array type, such as
2268      * {@code int[]} or {@code long[]}.
2269      * The VarHandle's variable type is the component type of
2270      * {@code viewArrayClass} and the list of coordinate types is
2271      * {@code (byte[], int)}, where the {@code int} coordinate type
2272      * corresponds to an argument that is an index into a {@code byte[]} array.
2273      * The returned VarHandle accesses bytes at an index in a {@code byte[]}
2274      * array, composing bytes to or from a value of the component type of
2275      * {@code viewArrayClass} according to the given endianness.
2276      * <p>
2277      * The supported component types (variables types) are {@code short},
2278      * {@code char}, {@code int}, {@code long}, {@code float} and
2279      * {@code double}.
2280      * <p>
2281      * Access of bytes at a given index will result in an
2282      * {@code IndexOutOfBoundsException} if the index is less than {@code 0}
2283      * or greater than the {@code byte[]} array length minus the size (in bytes)
2284      * of {@code T}.
2285      * <p>
2286      * Access of bytes at an index may be aligned or misaligned for {@code T},
2287      * with respect to the underlying memory address, {@code A} say, associated
2288      * with the array and index.
2289      * If access is misaligned then access for anything other than the
2290      * {@code get} and {@code set} access modes will result in an
2291      * {@code IllegalStateException}.  In such cases atomic access is only
2292      * guaranteed with respect to the largest power of two that divides the GCD
2293      * of {@code A} and the size (in bytes) of {@code T}.
2294      * If access is aligned then following access modes are supported and are
2295      * guaranteed to support atomic access:
2296      * <ul>
2297      * <li>read write access modes for all {@code T}, with the exception of
2298      *     access modes {@code get} and {@code set} for {@code long} and
2299      *     {@code double} on 32-bit platforms.
2300      * <li>atomic update access modes for {@code int}, {@code long},
2301      *     {@code float} or {@code double}.
2302      *     (Future major platform releases of the JDK may support additional
2303      *     types for certain currently unsupported access modes.)
2304      * <li>numeric atomic update access modes for {@code int} and {@code long}.
2305      *     (Future major platform releases of the JDK may support additional
2306      *     numeric types for certain currently unsupported access modes.)
2307      * <li>bitwise atomic update access modes for {@code int} and {@code long}.
2308      *     (Future major platform releases of the JDK may support additional
2309      *     numeric types for certain currently unsupported access modes.)
2310      * </ul>
2311      * <p>
2312      * Misaligned access, and therefore atomicity guarantees, may be determined
2313      * for {@code byte[]} arrays without operating on a specific array.  Given
2314      * an {@code index}, {@code T} and it's corresponding boxed type,
2315      * {@code T_BOX}, misalignment may be determined as follows:
2316      * <pre>{@code
2317      * int sizeOfT = T_BOX.BYTES;  // size in bytes of T
2318      * int misalignedAtZeroIndex = ByteBuffer.wrap(new byte[0]).
2319      *     alignmentOffset(0, sizeOfT);
2320      * int misalignedAtIndex = (misalignedAtZeroIndex + index) % sizeOfT;
2321      * boolean isMisaligned = misalignedAtIndex != 0;
2322      * }</pre>
2323      * <p>
2324      * If the variable type is {@code float} or {@code double} then atomic
2325      * update access modes compare values using their bitwise representation
2326      * (see {@link Float#floatToRawIntBits} and
2327      * {@link Double#doubleToRawLongBits}, respectively).
2328      * @param viewArrayClass the view array class, with a component type of
2329      * type {@code T}
2330      * @param byteOrder the endianness of the view array elements, as
2331      * stored in the underlying {@code byte} array
2332      * @return a VarHandle giving access to elements of a {@code byte[]} array
2333      * viewed as if elements corresponding to the components type of the view
2334      * array class
2335      * @throws NullPointerException if viewArrayClass or byteOrder is null
2336      * @throws IllegalArgumentException if viewArrayClass is not an array type
2337      * @throws UnsupportedOperationException if the component type of
2338      * viewArrayClass is not supported as a variable type
2339      * @since 9
2340      */
2341     public static
byteArrayViewVarHandle(Class<?> viewArrayClass, ByteOrder byteOrder)2342     VarHandle byteArrayViewVarHandle(Class<?> viewArrayClass,
2343                                      ByteOrder byteOrder) throws IllegalArgumentException {
2344         checkClassIsArray(viewArrayClass);
2345         checkTypeIsViewable(viewArrayClass.getComponentType());
2346         return ByteArrayViewVarHandle.create(viewArrayClass, byteOrder);
2347     }
2348 
2349     /**
2350      * Produces a VarHandle giving access to elements of a {@code ByteBuffer}
2351      * viewed as if it were an array of elements of a different primitive
2352      * component type to that of {@code byte}, such as {@code int[]} or
2353      * {@code long[]}.
2354      * The VarHandle's variable type is the component type of
2355      * {@code viewArrayClass} and the list of coordinate types is
2356      * {@code (ByteBuffer, int)}, where the {@code int} coordinate type
2357      * corresponds to an argument that is an index into a {@code byte[]} array.
2358      * The returned VarHandle accesses bytes at an index in a
2359      * {@code ByteBuffer}, composing bytes to or from a value of the component
2360      * type of {@code viewArrayClass} according to the given endianness.
2361      * <p>
2362      * The supported component types (variables types) are {@code short},
2363      * {@code char}, {@code int}, {@code long}, {@code float} and
2364      * {@code double}.
2365      * <p>
2366      * Access will result in a {@code ReadOnlyBufferException} for anything
2367      * other than the read access modes if the {@code ByteBuffer} is read-only.
2368      * <p>
2369      * Access of bytes at a given index will result in an
2370      * {@code IndexOutOfBoundsException} if the index is less than {@code 0}
2371      * or greater than the {@code ByteBuffer} limit minus the size (in bytes) of
2372      * {@code T}.
2373      * <p>
2374      * Access of bytes at an index may be aligned or misaligned for {@code T},
2375      * with respect to the underlying memory address, {@code A} say, associated
2376      * with the {@code ByteBuffer} and index.
2377      * If access is misaligned then access for anything other than the
2378      * {@code get} and {@code set} access modes will result in an
2379      * {@code IllegalStateException}.  In such cases atomic access is only
2380      * guaranteed with respect to the largest power of two that divides the GCD
2381      * of {@code A} and the size (in bytes) of {@code T}.
2382      * If access is aligned then following access modes are supported and are
2383      * guaranteed to support atomic access:
2384      * <ul>
2385      * <li>read write access modes for all {@code T}, with the exception of
2386      *     access modes {@code get} and {@code set} for {@code long} and
2387      *     {@code double} on 32-bit platforms.
2388      * <li>atomic update access modes for {@code int}, {@code long},
2389      *     {@code float} or {@code double}.
2390      *     (Future major platform releases of the JDK may support additional
2391      *     types for certain currently unsupported access modes.)
2392      * <li>numeric atomic update access modes for {@code int} and {@code long}.
2393      *     (Future major platform releases of the JDK may support additional
2394      *     numeric types for certain currently unsupported access modes.)
2395      * <li>bitwise atomic update access modes for {@code int} and {@code long}.
2396      *     (Future major platform releases of the JDK may support additional
2397      *     numeric types for certain currently unsupported access modes.)
2398      * </ul>
2399      * <p>
2400      * Misaligned access, and therefore atomicity guarantees, may be determined
2401      * for a {@code ByteBuffer}, {@code bb} (direct or otherwise), an
2402      * {@code index}, {@code T} and it's corresponding boxed type,
2403      * {@code T_BOX}, as follows:
2404      * <pre>{@code
2405      * int sizeOfT = T_BOX.BYTES;  // size in bytes of T
2406      * ByteBuffer bb = ...
2407      * int misalignedAtIndex = bb.alignmentOffset(index, sizeOfT);
2408      * boolean isMisaligned = misalignedAtIndex != 0;
2409      * }</pre>
2410      * <p>
2411      * If the variable type is {@code float} or {@code double} then atomic
2412      * update access modes compare values using their bitwise representation
2413      * (see {@link Float#floatToRawIntBits} and
2414      * {@link Double#doubleToRawLongBits}, respectively).
2415      * @param viewArrayClass the view array class, with a component type of
2416      * type {@code T}
2417      * @param byteOrder the endianness of the view array elements, as
2418      * stored in the underlying {@code ByteBuffer} (Note this overrides the
2419      * endianness of a {@code ByteBuffer})
2420      * @return a VarHandle giving access to elements of a {@code ByteBuffer}
2421      * viewed as if elements corresponding to the components type of the view
2422      * array class
2423      * @throws NullPointerException if viewArrayClass or byteOrder is null
2424      * @throws IllegalArgumentException if viewArrayClass is not an array type
2425      * @throws UnsupportedOperationException if the component type of
2426      * viewArrayClass is not supported as a variable type
2427      * @since 9
2428      */
2429     public static
byteBufferViewVarHandle(Class<?> viewArrayClass, ByteOrder byteOrder)2430     VarHandle byteBufferViewVarHandle(Class<?> viewArrayClass,
2431                                       ByteOrder byteOrder) throws IllegalArgumentException {
2432         checkClassIsArray(viewArrayClass);
2433         checkTypeIsViewable(viewArrayClass.getComponentType());
2434         return ByteBufferViewVarHandle.create(viewArrayClass, byteOrder);
2435     }
2436     // END Android-changed: OpenJDK 9+181 VarHandle API factory methods.
2437 
2438     /// method handle invocation (reflective style)
2439 
2440     /**
2441      * Produces a method handle which will invoke any method handle of the
2442      * given {@code type}, with a given number of trailing arguments replaced by
2443      * a single trailing {@code Object[]} array.
2444      * The resulting invoker will be a method handle with the following
2445      * arguments:
2446      * <ul>
2447      * <li>a single {@code MethodHandle} target
2448      * <li>zero or more leading values (counted by {@code leadingArgCount})
2449      * <li>an {@code Object[]} array containing trailing arguments
2450      * </ul>
2451      * <p>
2452      * The invoker will invoke its target like a call to {@link MethodHandle#invoke invoke} with
2453      * the indicated {@code type}.
2454      * That is, if the target is exactly of the given {@code type}, it will behave
2455      * like {@code invokeExact}; otherwise it behave as if {@link MethodHandle#asType asType}
2456      * is used to convert the target to the required {@code type}.
2457      * <p>
2458      * The type of the returned invoker will not be the given {@code type}, but rather
2459      * will have all parameters except the first {@code leadingArgCount}
2460      * replaced by a single array of type {@code Object[]}, which will be
2461      * the final parameter.
2462      * <p>
2463      * Before invoking its target, the invoker will spread the final array, apply
2464      * reference casts as necessary, and unbox and widen primitive arguments.
2465      * If, when the invoker is called, the supplied array argument does
2466      * not have the correct number of elements, the invoker will throw
2467      * an {@link IllegalArgumentException} instead of invoking the target.
2468      * <p>
2469      * This method is equivalent to the following code (though it may be more efficient):
2470      * <blockquote><pre>{@code
2471 MethodHandle invoker = MethodHandles.invoker(type);
2472 int spreadArgCount = type.parameterCount() - leadingArgCount;
2473 invoker = invoker.asSpreader(Object[].class, spreadArgCount);
2474 return invoker;
2475      * }</pre></blockquote>
2476      * This method throws no reflective or security exceptions.
2477      * @param type the desired target type
2478      * @param leadingArgCount number of fixed arguments, to be passed unchanged to the target
2479      * @return a method handle suitable for invoking any method handle of the given type
2480      * @throws NullPointerException if {@code type} is null
2481      * @throws IllegalArgumentException if {@code leadingArgCount} is not in
2482      *                  the range from 0 to {@code type.parameterCount()} inclusive,
2483      *                  or if the resulting method handle's type would have
2484      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
2485      */
2486     static public
spreadInvoker(MethodType type, int leadingArgCount)2487     MethodHandle spreadInvoker(MethodType type, int leadingArgCount) {
2488         if (leadingArgCount < 0 || leadingArgCount > type.parameterCount())
2489             throw newIllegalArgumentException("bad argument count", leadingArgCount);
2490 
2491         MethodHandle invoker = MethodHandles.invoker(type);
2492         int spreadArgCount = type.parameterCount() - leadingArgCount;
2493         invoker = invoker.asSpreader(Object[].class, spreadArgCount);
2494         return invoker;
2495     }
2496 
2497     /**
2498      * Produces a special <em>invoker method handle</em> which can be used to
2499      * invoke any method handle of the given type, as if by {@link MethodHandle#invokeExact invokeExact}.
2500      * The resulting invoker will have a type which is
2501      * exactly equal to the desired type, except that it will accept
2502      * an additional leading argument of type {@code MethodHandle}.
2503      * <p>
2504      * This method is equivalent to the following code (though it may be more efficient):
2505      * {@code publicLookup().findVirtual(MethodHandle.class, "invokeExact", type)}
2506      *
2507      * <p style="font-size:smaller;">
2508      * <em>Discussion:</em>
2509      * Invoker method handles can be useful when working with variable method handles
2510      * of unknown types.
2511      * For example, to emulate an {@code invokeExact} call to a variable method
2512      * handle {@code M}, extract its type {@code T},
2513      * look up the invoker method {@code X} for {@code T},
2514      * and call the invoker method, as {@code X.invoke(T, A...)}.
2515      * (It would not work to call {@code X.invokeExact}, since the type {@code T}
2516      * is unknown.)
2517      * If spreading, collecting, or other argument transformations are required,
2518      * they can be applied once to the invoker {@code X} and reused on many {@code M}
2519      * method handle values, as long as they are compatible with the type of {@code X}.
2520      * <p style="font-size:smaller;">
2521      * <em>(Note:  The invoker method is not available via the Core Reflection API.
2522      * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
2523      * on the declared {@code invokeExact} or {@code invoke} method will raise an
2524      * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
2525      * <p>
2526      * This method throws no reflective or security exceptions.
2527      * @param type the desired target type
2528      * @return a method handle suitable for invoking any method handle of the given type
2529      * @throws IllegalArgumentException if the resulting method handle's type would have
2530      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
2531      */
2532     static public
exactInvoker(MethodType type)2533     MethodHandle exactInvoker(MethodType type) {
2534         return new Transformers.Invoker(type, true /* isExactInvoker */);
2535     }
2536 
2537     /**
2538      * Produces a special <em>invoker method handle</em> which can be used to
2539      * invoke any method handle compatible with the given type, as if by {@link MethodHandle#invoke invoke}.
2540      * The resulting invoker will have a type which is
2541      * exactly equal to the desired type, except that it will accept
2542      * an additional leading argument of type {@code MethodHandle}.
2543      * <p>
2544      * Before invoking its target, if the target differs from the expected type,
2545      * the invoker will apply reference casts as
2546      * necessary and box, unbox, or widen primitive values, as if by {@link MethodHandle#asType asType}.
2547      * Similarly, the return value will be converted as necessary.
2548      * If the target is a {@linkplain MethodHandle#asVarargsCollector variable arity method handle},
2549      * the required arity conversion will be made, again as if by {@link MethodHandle#asType asType}.
2550      * <p>
2551      * This method is equivalent to the following code (though it may be more efficient):
2552      * {@code publicLookup().findVirtual(MethodHandle.class, "invoke", type)}
2553      * <p style="font-size:smaller;">
2554      * <em>Discussion:</em>
2555      * A {@linkplain MethodType#genericMethodType general method type} is one which
2556      * mentions only {@code Object} arguments and return values.
2557      * An invoker for such a type is capable of calling any method handle
2558      * of the same arity as the general type.
2559      * <p style="font-size:smaller;">
2560      * <em>(Note:  The invoker method is not available via the Core Reflection API.
2561      * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
2562      * on the declared {@code invokeExact} or {@code invoke} method will raise an
2563      * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
2564      * <p>
2565      * This method throws no reflective or security exceptions.
2566      * @param type the desired target type
2567      * @return a method handle suitable for invoking any method handle convertible to the given type
2568      * @throws IllegalArgumentException if the resulting method handle's type would have
2569      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
2570      */
2571     static public
invoker(MethodType type)2572     MethodHandle invoker(MethodType type) {
2573         return new Transformers.Invoker(type, false /* isExactInvoker */);
2574     }
2575 
2576     // BEGIN Android-added: resolver for VarHandle accessor methods.
methodHandleForVarHandleAccessor(VarHandle.AccessMode accessMode, MethodType type, boolean isExactInvoker)2577     static private MethodHandle methodHandleForVarHandleAccessor(VarHandle.AccessMode accessMode,
2578                                                                  MethodType type,
2579                                                                  boolean isExactInvoker) {
2580         Class<?> refc = VarHandle.class;
2581         Method method;
2582         try {
2583             method = refc.getDeclaredMethod(accessMode.methodName(), Object[].class);
2584         } catch (NoSuchMethodException e) {
2585             throw new InternalError("No method for AccessMode " + accessMode, e);
2586         }
2587         MethodType methodType = type.insertParameterTypes(0, VarHandle.class);
2588         int kind = isExactInvoker ? MethodHandle.INVOKE_VAR_HANDLE_EXACT
2589                                   : MethodHandle.INVOKE_VAR_HANDLE;
2590         return new MethodHandleImpl(method.getArtMethod(), kind, methodType);
2591     }
2592     // END Android-added: resolver for VarHandle accessor methods.
2593 
2594     /**
2595      * Produces a special <em>invoker method handle</em> which can be used to
2596      * invoke a signature-polymorphic access mode method on any VarHandle whose
2597      * associated access mode type is compatible with the given type.
2598      * The resulting invoker will have a type which is exactly equal to the
2599      * desired given type, except that it will accept an additional leading
2600      * argument of type {@code VarHandle}.
2601      *
2602      * @param accessMode the VarHandle access mode
2603      * @param type the desired target type
2604      * @return a method handle suitable for invoking an access mode method of
2605      *         any VarHandle whose access mode type is of the given type.
2606      * @since 9
2607      */
2608     static public
varHandleExactInvoker(VarHandle.AccessMode accessMode, MethodType type)2609     MethodHandle varHandleExactInvoker(VarHandle.AccessMode accessMode, MethodType type) {
2610         return methodHandleForVarHandleAccessor(accessMode, type, true /* isExactInvoker */);
2611     }
2612 
2613     /**
2614      * Produces a special <em>invoker method handle</em> which can be used to
2615      * invoke a signature-polymorphic access mode method on any VarHandle whose
2616      * associated access mode type is compatible with the given type.
2617      * The resulting invoker will have a type which is exactly equal to the
2618      * desired given type, except that it will accept an additional leading
2619      * argument of type {@code VarHandle}.
2620      * <p>
2621      * Before invoking its target, if the access mode type differs from the
2622      * desired given type, the invoker will apply reference casts as necessary
2623      * and box, unbox, or widen primitive values, as if by
2624      * {@link MethodHandle#asType asType}.  Similarly, the return value will be
2625      * converted as necessary.
2626      * <p>
2627      * This method is equivalent to the following code (though it may be more
2628      * efficient): {@code publicLookup().findVirtual(VarHandle.class, accessMode.name(), type)}
2629      *
2630      * @param accessMode the VarHandle access mode
2631      * @param type the desired target type
2632      * @return a method handle suitable for invoking an access mode method of
2633      *         any VarHandle whose access mode type is convertible to the given
2634      *         type.
2635      * @since 9
2636      */
2637     static public
varHandleInvoker(VarHandle.AccessMode accessMode, MethodType type)2638     MethodHandle varHandleInvoker(VarHandle.AccessMode accessMode, MethodType type) {
2639         return methodHandleForVarHandleAccessor(accessMode, type, false /* isExactInvoker */);
2640     }
2641 
2642     // Android-changed: Basic invokers are not supported.
2643     //
2644     // static /*non-public*/
2645     // MethodHandle basicInvoker(MethodType type) {
2646     //     return type.invokers().basicInvoker();
2647     // }
2648 
2649      /// method handle modification (creation from other method handles)
2650 
2651     /**
2652      * Produces a method handle which adapts the type of the
2653      * given method handle to a new type by pairwise argument and return type conversion.
2654      * The original type and new type must have the same number of arguments.
2655      * The resulting method handle is guaranteed to report a type
2656      * which is equal to the desired new type.
2657      * <p>
2658      * If the original type and new type are equal, returns target.
2659      * <p>
2660      * The same conversions are allowed as for {@link MethodHandle#asType MethodHandle.asType},
2661      * and some additional conversions are also applied if those conversions fail.
2662      * Given types <em>T0</em>, <em>T1</em>, one of the following conversions is applied
2663      * if possible, before or instead of any conversions done by {@code asType}:
2664      * <ul>
2665      * <li>If <em>T0</em> and <em>T1</em> are references, and <em>T1</em> is an interface type,
2666      *     then the value of type <em>T0</em> is passed as a <em>T1</em> without a cast.
2667      *     (This treatment of interfaces follows the usage of the bytecode verifier.)
2668      * <li>If <em>T0</em> is boolean and <em>T1</em> is another primitive,
2669      *     the boolean is converted to a byte value, 1 for true, 0 for false.
2670      *     (This treatment follows the usage of the bytecode verifier.)
2671      * <li>If <em>T1</em> is boolean and <em>T0</em> is another primitive,
2672      *     <em>T0</em> is converted to byte via Java casting conversion (JLS 5.5),
2673      *     and the low order bit of the result is tested, as if by {@code (x & 1) != 0}.
2674      * <li>If <em>T0</em> and <em>T1</em> are primitives other than boolean,
2675      *     then a Java casting conversion (JLS 5.5) is applied.
2676      *     (Specifically, <em>T0</em> will convert to <em>T1</em> by
2677      *     widening and/or narrowing.)
2678      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, an unboxing
2679      *     conversion will be applied at runtime, possibly followed
2680      *     by a Java casting conversion (JLS 5.5) on the primitive value,
2681      *     possibly followed by a conversion from byte to boolean by testing
2682      *     the low-order bit.
2683      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive,
2684      *     and if the reference is null at runtime, a zero value is introduced.
2685      * </ul>
2686      * @param target the method handle to invoke after arguments are retyped
2687      * @param newType the expected type of the new method handle
2688      * @return a method handle which delegates to the target after performing
2689      *           any necessary argument conversions, and arranges for any
2690      *           necessary return value conversions
2691      * @throws NullPointerException if either argument is null
2692      * @throws WrongMethodTypeException if the conversion cannot be made
2693      * @see MethodHandle#asType
2694      */
2695     public static
explicitCastArguments(MethodHandle target, MethodType newType)2696     MethodHandle explicitCastArguments(MethodHandle target, MethodType newType) {
2697         explicitCastArgumentsChecks(target, newType);
2698         // use the asTypeCache when possible:
2699         MethodType oldType = target.type();
2700         if (oldType == newType) return target;
2701         if (oldType.explicitCastEquivalentToAsType(newType)) {
2702             if (Transformers.Transformer.class.isAssignableFrom(target.getClass())) {
2703                 // The StackFrameReader and StackFrameWriter used to perform transforms on
2704                 // EmulatedStackFrames (in Transformers.java) do not how to perform asType()
2705                 // conversions, but we know here that an explicit cast transform is the same as
2706                 // having called asType() on the method handle.
2707                 return new Transformers.ExplicitCastArguments(target.asFixedArity(), newType);
2708             } else {
2709                 // Runtime will perform asType() conversion during invocation.
2710                 return target.asFixedArity().asType(newType);
2711             }
2712         }
2713         return new Transformers.ExplicitCastArguments(target, newType);
2714     }
2715 
explicitCastArgumentsChecks(MethodHandle target, MethodType newType)2716     private static void explicitCastArgumentsChecks(MethodHandle target, MethodType newType) {
2717         if (target.type().parameterCount() != newType.parameterCount()) {
2718             throw new WrongMethodTypeException("cannot explicitly cast " + target +
2719                                                " to " + newType);
2720         }
2721     }
2722 
2723     /**
2724      * Produces a method handle which adapts the calling sequence of the
2725      * given method handle to a new type, by reordering the arguments.
2726      * The resulting method handle is guaranteed to report a type
2727      * which is equal to the desired new type.
2728      * <p>
2729      * The given array controls the reordering.
2730      * Call {@code #I} the number of incoming parameters (the value
2731      * {@code newType.parameterCount()}, and call {@code #O} the number
2732      * of outgoing parameters (the value {@code target.type().parameterCount()}).
2733      * Then the length of the reordering array must be {@code #O},
2734      * and each element must be a non-negative number less than {@code #I}.
2735      * For every {@code N} less than {@code #O}, the {@code N}-th
2736      * outgoing argument will be taken from the {@code I}-th incoming
2737      * argument, where {@code I} is {@code reorder[N]}.
2738      * <p>
2739      * No argument or return value conversions are applied.
2740      * The type of each incoming argument, as determined by {@code newType},
2741      * must be identical to the type of the corresponding outgoing parameter
2742      * or parameters in the target method handle.
2743      * The return type of {@code newType} must be identical to the return
2744      * type of the original target.
2745      * <p>
2746      * The reordering array need not specify an actual permutation.
2747      * An incoming argument will be duplicated if its index appears
2748      * more than once in the array, and an incoming argument will be dropped
2749      * if its index does not appear in the array.
2750      * As in the case of {@link #dropArguments(MethodHandle,int,List) dropArguments},
2751      * incoming arguments which are not mentioned in the reordering array
2752      * are may be any type, as determined only by {@code newType}.
2753      * <blockquote><pre>{@code
2754 import static java.lang.invoke.MethodHandles.*;
2755 import static java.lang.invoke.MethodType.*;
2756 ...
2757 MethodType intfn1 = methodType(int.class, int.class);
2758 MethodType intfn2 = methodType(int.class, int.class, int.class);
2759 MethodHandle sub = ... (int x, int y) -> (x-y) ...;
2760 assert(sub.type().equals(intfn2));
2761 MethodHandle sub1 = permuteArguments(sub, intfn2, 0, 1);
2762 MethodHandle rsub = permuteArguments(sub, intfn2, 1, 0);
2763 assert((int)rsub.invokeExact(1, 100) == 99);
2764 MethodHandle add = ... (int x, int y) -> (x+y) ...;
2765 assert(add.type().equals(intfn2));
2766 MethodHandle twice = permuteArguments(add, intfn1, 0, 0);
2767 assert(twice.type().equals(intfn1));
2768 assert((int)twice.invokeExact(21) == 42);
2769      * }</pre></blockquote>
2770      * @param target the method handle to invoke after arguments are reordered
2771      * @param newType the expected type of the new method handle
2772      * @param reorder an index array which controls the reordering
2773      * @return a method handle which delegates to the target after it
2774      *           drops unused arguments and moves and/or duplicates the other arguments
2775      * @throws NullPointerException if any argument is null
2776      * @throws IllegalArgumentException if the index array length is not equal to
2777      *                  the arity of the target, or if any index array element
2778      *                  not a valid index for a parameter of {@code newType},
2779      *                  or if two corresponding parameter types in
2780      *                  {@code target.type()} and {@code newType} are not identical,
2781      */
2782     public static
permuteArguments(MethodHandle target, MethodType newType, int... reorder)2783     MethodHandle permuteArguments(MethodHandle target, MethodType newType, int... reorder) {
2784         reorder = reorder.clone();  // get a private copy
2785         MethodType oldType = target.type();
2786         permuteArgumentChecks(reorder, newType, oldType);
2787 
2788         return new Transformers.PermuteArguments(newType, target, reorder);
2789     }
2790 
2791     // Android-changed: findFirstDupOrDrop is unused and removed.
2792     // private static int findFirstDupOrDrop(int[] reorder, int newArity);
2793 
permuteArgumentChecks(int[] reorder, MethodType newType, MethodType oldType)2794     private static boolean permuteArgumentChecks(int[] reorder, MethodType newType, MethodType oldType) {
2795         if (newType.returnType() != oldType.returnType())
2796             throw newIllegalArgumentException("return types do not match",
2797                     oldType, newType);
2798         if (reorder.length == oldType.parameterCount()) {
2799             int limit = newType.parameterCount();
2800             boolean bad = false;
2801             for (int j = 0; j < reorder.length; j++) {
2802                 int i = reorder[j];
2803                 if (i < 0 || i >= limit) {
2804                     bad = true; break;
2805                 }
2806                 Class<?> src = newType.parameterType(i);
2807                 Class<?> dst = oldType.parameterType(j);
2808                 if (src != dst)
2809                     throw newIllegalArgumentException("parameter types do not match after reorder",
2810                             oldType, newType);
2811             }
2812             if (!bad)  return true;
2813         }
2814         throw newIllegalArgumentException("bad reorder array: "+Arrays.toString(reorder));
2815     }
2816 
2817     /**
2818      * Produces a method handle of the requested return type which returns the given
2819      * constant value every time it is invoked.
2820      * <p>
2821      * Before the method handle is returned, the passed-in value is converted to the requested type.
2822      * If the requested type is primitive, widening primitive conversions are attempted,
2823      * else reference conversions are attempted.
2824      * <p>The returned method handle is equivalent to {@code identity(type).bindTo(value)}.
2825      * @param type the return type of the desired method handle
2826      * @param value the value to return
2827      * @return a method handle of the given return type and no arguments, which always returns the given value
2828      * @throws NullPointerException if the {@code type} argument is null
2829      * @throws ClassCastException if the value cannot be converted to the required return type
2830      * @throws IllegalArgumentException if the given type is {@code void.class}
2831      */
2832     public static
constant(Class<?> type, Object value)2833     MethodHandle constant(Class<?> type, Object value) {
2834         if (type.isPrimitive()) {
2835             if (type == void.class)
2836                 throw newIllegalArgumentException("void type");
2837             Wrapper w = Wrapper.forPrimitiveType(type);
2838             value = w.convert(value, type);
2839             if (w.zero().equals(value))
2840                 return zero(w, type);
2841             return insertArguments(identity(type), 0, value);
2842         } else {
2843             if (value == null)
2844                 return zero(Wrapper.OBJECT, type);
2845             return identity(type).bindTo(value);
2846         }
2847     }
2848 
2849     /**
2850      * Produces a method handle which returns its sole argument when invoked.
2851      * @param type the type of the sole parameter and return value of the desired method handle
2852      * @return a unary method handle which accepts and returns the given type
2853      * @throws NullPointerException if the argument is null
2854      * @throws IllegalArgumentException if the given type is {@code void.class}
2855      */
2856     public static
identity(Class<?> type)2857     MethodHandle identity(Class<?> type) {
2858         // Android-added: explicit non-null check.
2859         Objects.requireNonNull(type);
2860         Wrapper btw = (type.isPrimitive() ? Wrapper.forPrimitiveType(type) : Wrapper.OBJECT);
2861         int pos = btw.ordinal();
2862         MethodHandle ident = IDENTITY_MHS[pos];
2863         if (ident == null) {
2864             ident = setCachedMethodHandle(IDENTITY_MHS, pos, makeIdentity(btw.primitiveType()));
2865         }
2866         if (ident.type().returnType() == type)
2867             return ident;
2868         // something like identity(Foo.class); do not bother to intern these
2869         assert (btw == Wrapper.OBJECT);
2870         return makeIdentity(type);
2871     }
2872 
2873     /**
2874      * Produces a constant method handle of the requested return type which
2875      * returns the default value for that type every time it is invoked.
2876      * The resulting constant method handle will have no side effects.
2877      * <p>The returned method handle is equivalent to {@code empty(methodType(type))}.
2878      * It is also equivalent to {@code explicitCastArguments(constant(Object.class, null), methodType(type))},
2879      * since {@code explicitCastArguments} converts {@code null} to default values.
2880      * @param type the expected return type of the desired method handle
2881      * @return a constant method handle that takes no arguments
2882      *         and returns the default value of the given type (or void, if the type is void)
2883      * @throws NullPointerException if the argument is null
2884      * @see MethodHandles#constant
2885      * @see MethodHandles#empty
2886      * @see MethodHandles#explicitCastArguments
2887      * @since 9
2888      */
zero(Class<?> type)2889     public static MethodHandle zero(Class<?> type) {
2890         Objects.requireNonNull(type);
2891         return type.isPrimitive() ?  zero(Wrapper.forPrimitiveType(type), type) : zero(Wrapper.OBJECT, type);
2892     }
2893 
identityOrVoid(Class<?> type)2894     private static MethodHandle identityOrVoid(Class<?> type) {
2895         return type == void.class ? zero(type) : identity(type);
2896     }
2897 
2898     /**
2899      * Produces a method handle of the requested type which ignores any arguments, does nothing,
2900      * and returns a suitable default depending on the return type.
2901      * That is, it returns a zero primitive value, a {@code null}, or {@code void}.
2902      * <p>The returned method handle is equivalent to
2903      * {@code dropArguments(zero(type.returnType()), 0, type.parameterList())}.
2904      *
2905      * @apiNote Given a predicate and target, a useful "if-then" construct can be produced as
2906      * {@code guardWithTest(pred, target, empty(target.type())}.
2907      * @param type the type of the desired method handle
2908      * @return a constant method handle of the given type, which returns a default value of the given return type
2909      * @throws NullPointerException if the argument is null
2910      * @see MethodHandles#zero
2911      * @see MethodHandles#constant
2912      * @since 9
2913      */
empty(MethodType type)2914     public static  MethodHandle empty(MethodType type) {
2915         Objects.requireNonNull(type);
2916         return dropArguments(zero(type.returnType()), 0, type.parameterList());
2917     }
2918 
2919     private static final MethodHandle[] IDENTITY_MHS = new MethodHandle[Wrapper.COUNT];
makeIdentity(Class<?> ptype)2920     private static MethodHandle makeIdentity(Class<?> ptype) {
2921         // Android-changed: Android implementation using identity() functions and transformers.
2922         // MethodType mtype = methodType(ptype, ptype);
2923         // LambdaForm lform = LambdaForm.identityForm(BasicType.basicType(ptype));
2924         // return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.IDENTITY);
2925         if (ptype.isPrimitive()) {
2926             try {
2927                 final MethodType mt = methodType(ptype, ptype);
2928                 return Lookup.PUBLIC_LOOKUP.findStatic(MethodHandles.class, "identity", mt);
2929             } catch (NoSuchMethodException | IllegalAccessException e) {
2930                 throw new AssertionError(e);
2931             }
2932         } else {
2933             return new Transformers.ReferenceIdentity(ptype);
2934         }
2935     }
2936 
2937     // Android-added: helper methods for identity().
identity(byte val)2938     /** @hide */ public static byte identity(byte val) { return val; }
identity(boolean val)2939     /** @hide */ public static boolean identity(boolean val) { return val; }
identity(char val)2940     /** @hide */ public static char identity(char val) { return val; }
identity(short val)2941     /** @hide */ public static short identity(short val) { return val; }
identity(int val)2942     /** @hide */ public static int identity(int val) { return val; }
identity(long val)2943     /** @hide */ public static long identity(long val) { return val; }
identity(float val)2944     /** @hide */ public static float identity(float val) { return val; }
identity(double val)2945     /** @hide */ public static double identity(double val) { return val; }
2946 
zero(Wrapper btw, Class<?> rtype)2947     private static MethodHandle zero(Wrapper btw, Class<?> rtype) {
2948         int pos = btw.ordinal();
2949         MethodHandle zero = ZERO_MHS[pos];
2950         if (zero == null) {
2951             zero = setCachedMethodHandle(ZERO_MHS, pos, makeZero(btw.primitiveType()));
2952         }
2953         if (zero.type().returnType() == rtype)
2954             return zero;
2955         assert(btw == Wrapper.OBJECT);
2956         return makeZero(rtype);
2957     }
2958     private static final MethodHandle[] ZERO_MHS = new MethodHandle[Wrapper.COUNT];
makeZero(Class<?> rtype)2959     private static MethodHandle makeZero(Class<?> rtype) {
2960         // Android-changed: use Android specific implementation.
2961         // MethodType mtype = methodType(rtype);
2962         // LambdaForm lform = LambdaForm.zeroForm(BasicType.basicType(rtype));
2963         // return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.ZERO);
2964         return new Transformers.ZeroValue(rtype);
2965     }
2966 
setCachedMethodHandle(MethodHandle[] cache, int pos, MethodHandle value)2967     private static synchronized MethodHandle setCachedMethodHandle(MethodHandle[] cache, int pos, MethodHandle value) {
2968         // Simulate a CAS, to avoid racy duplication of results.
2969         MethodHandle prev = cache[pos];
2970         if (prev != null) return prev;
2971         return cache[pos] = value;
2972     }
2973 
2974     /**
2975      * Provides a target method handle with one or more <em>bound arguments</em>
2976      * in advance of the method handle's invocation.
2977      * The formal parameters to the target corresponding to the bound
2978      * arguments are called <em>bound parameters</em>.
2979      * Returns a new method handle which saves away the bound arguments.
2980      * When it is invoked, it receives arguments for any non-bound parameters,
2981      * binds the saved arguments to their corresponding parameters,
2982      * and calls the original target.
2983      * <p>
2984      * The type of the new method handle will drop the types for the bound
2985      * parameters from the original target type, since the new method handle
2986      * will no longer require those arguments to be supplied by its callers.
2987      * <p>
2988      * Each given argument object must match the corresponding bound parameter type.
2989      * If a bound parameter type is a primitive, the argument object
2990      * must be a wrapper, and will be unboxed to produce the primitive value.
2991      * <p>
2992      * The {@code pos} argument selects which parameters are to be bound.
2993      * It may range between zero and <i>N-L</i> (inclusively),
2994      * where <i>N</i> is the arity of the target method handle
2995      * and <i>L</i> is the length of the values array.
2996      * @param target the method handle to invoke after the argument is inserted
2997      * @param pos where to insert the argument (zero for the first)
2998      * @param values the series of arguments to insert
2999      * @return a method handle which inserts an additional argument,
3000      *         before calling the original method handle
3001      * @throws NullPointerException if the target or the {@code values} array is null
3002      * @see MethodHandle#bindTo
3003      */
3004     public static
insertArguments(MethodHandle target, int pos, Object... values)3005     MethodHandle insertArguments(MethodHandle target, int pos, Object... values) {
3006         int insCount = values.length;
3007         Class<?>[] ptypes = insertArgumentsChecks(target, insCount, pos);
3008         if (insCount == 0)  {
3009             return target;
3010         }
3011 
3012         // Throw ClassCastExceptions early if we can't cast any of the provided values
3013         // to the required type.
3014         for (int i = 0; i < insCount; i++) {
3015             final Class<?> ptype = ptypes[pos + i];
3016             if (!ptype.isPrimitive()) {
3017                 ptypes[pos + i].cast(values[i]);
3018             } else {
3019                 // Will throw a ClassCastException if something terrible happens.
3020                 values[i] = Wrapper.forPrimitiveType(ptype).convert(values[i], ptype);
3021             }
3022         }
3023 
3024         return new Transformers.InsertArguments(target, pos, values);
3025     }
3026 
3027     // Android-changed: insertArgumentPrimitive is unused.
3028     //
3029     // private static BoundMethodHandle insertArgumentPrimitive(BoundMethodHandle result, int pos,
3030     //                                                          Class<?> ptype, Object value) {
3031     //     Wrapper w = Wrapper.forPrimitiveType(ptype);
3032     //     // perform unboxing and/or primitive conversion
3033     //     value = w.convert(value, ptype);
3034     //     switch (w) {
3035     //     case INT:     return result.bindArgumentI(pos, (int)value);
3036     //     case LONG:    return result.bindArgumentJ(pos, (long)value);
3037     //     case FLOAT:   return result.bindArgumentF(pos, (float)value);
3038     //     case DOUBLE:  return result.bindArgumentD(pos, (double)value);
3039     //     default:      return result.bindArgumentI(pos, ValueConversions.widenSubword(value));
3040     //     }
3041     // }
3042 
insertArgumentsChecks(MethodHandle target, int insCount, int pos)3043     private static Class<?>[] insertArgumentsChecks(MethodHandle target, int insCount, int pos) throws RuntimeException {
3044         MethodType oldType = target.type();
3045         int outargs = oldType.parameterCount();
3046         int inargs  = outargs - insCount;
3047         if (inargs < 0)
3048             throw newIllegalArgumentException("too many values to insert");
3049         if (pos < 0 || pos > inargs)
3050             throw newIllegalArgumentException("no argument type to append");
3051         return oldType.ptypes();
3052     }
3053 
3054     // Android-changed: inclusive language preference for 'placeholder'.
3055     /**
3056      * Produces a method handle which will discard some placeholder arguments
3057      * before calling some other specified <i>target</i> method handle.
3058      * The type of the new method handle will be the same as the target's type,
3059      * except it will also include the placeholder argument types,
3060      * at some given position.
3061      * <p>
3062      * The {@code pos} argument may range between zero and <i>N</i>,
3063      * where <i>N</i> is the arity of the target.
3064      * If {@code pos} is zero, the placeholder arguments will precede
3065      * the target's real arguments; if {@code pos} is <i>N</i>
3066      * they will come after.
3067      * <p>
3068      * <b>Example:</b>
3069      * <blockquote><pre>{@code
3070 import static java.lang.invoke.MethodHandles.*;
3071 import static java.lang.invoke.MethodType.*;
3072 ...
3073 MethodHandle cat = lookup().findVirtual(String.class,
3074   "concat", methodType(String.class, String.class));
3075 assertEquals("xy", (String) cat.invokeExact("x", "y"));
3076 MethodType bigType = cat.type().insertParameterTypes(0, int.class, String.class);
3077 MethodHandle d0 = dropArguments(cat, 0, bigType.parameterList().subList(0,2));
3078 assertEquals(bigType, d0.type());
3079 assertEquals("yz", (String) d0.invokeExact(123, "x", "y", "z"));
3080      * }</pre></blockquote>
3081      * <p>
3082      * This method is also equivalent to the following code:
3083      * <blockquote><pre>
3084      * {@link #dropArguments(MethodHandle,int,Class...) dropArguments}{@code (target, pos, valueTypes.toArray(new Class[0]))}
3085      * </pre></blockquote>
3086      * @param target the method handle to invoke after the arguments are dropped
3087      * @param valueTypes the type(s) of the argument(s) to drop
3088      * @param pos position of first argument to drop (zero for the leftmost)
3089      * @return a method handle which drops arguments of the given types,
3090      *         before calling the original method handle
3091      * @throws NullPointerException if the target is null,
3092      *                              or if the {@code valueTypes} list or any of its elements is null
3093      * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
3094      *                  or if {@code pos} is negative or greater than the arity of the target,
3095      *                  or if the new method handle's type would have too many parameters
3096      */
3097     public static
dropArguments(MethodHandle target, int pos, List<Class<?>> valueTypes)3098     MethodHandle dropArguments(MethodHandle target, int pos, List<Class<?>> valueTypes) {
3099         return dropArguments0(target, pos, copyTypes(valueTypes.toArray()));
3100     }
3101 
copyTypes(Object[] array)3102     private static List<Class<?>> copyTypes(Object[] array) {
3103         return Arrays.asList(Arrays.copyOf(array, array.length, Class[].class));
3104     }
3105 
3106     private static
dropArguments0(MethodHandle target, int pos, List<Class<?>> valueTypes)3107     MethodHandle dropArguments0(MethodHandle target, int pos, List<Class<?>> valueTypes) {
3108         MethodType oldType = target.type();  // get NPE
3109         int dropped = dropArgumentChecks(oldType, pos, valueTypes);
3110         MethodType newType = oldType.insertParameterTypes(pos, valueTypes);
3111         if (dropped == 0)  return target;
3112         // Android-changed: transformer implementation.
3113         // BoundMethodHandle result = target.rebind();
3114         // LambdaForm lform = result.form;
3115         // int insertFormArg = 1 + pos;
3116         // for (Class<?> ptype : valueTypes) {
3117         //     lform = lform.editor().addArgumentForm(insertFormArg++, BasicType.basicType(ptype));
3118         // }
3119         // result = result.copyWith(newType, lform);
3120         // return result;
3121         return new Transformers.DropArguments(newType, target, pos, dropped);
3122     }
3123 
dropArgumentChecks(MethodType oldType, int pos, List<Class<?>> valueTypes)3124     private static int dropArgumentChecks(MethodType oldType, int pos, List<Class<?>> valueTypes) {
3125         int dropped = valueTypes.size();
3126         MethodType.checkSlotCount(dropped);
3127         int outargs = oldType.parameterCount();
3128         int inargs  = outargs + dropped;
3129         if (pos < 0 || pos > outargs)
3130             throw newIllegalArgumentException("no argument type to remove"
3131                     + Arrays.asList(oldType, pos, valueTypes, inargs, outargs)
3132                     );
3133         return dropped;
3134     }
3135 
3136     // Android-changed: inclusive language preference for 'placeholder'.
3137     /**
3138      * Produces a method handle which will discard some placeholder arguments
3139      * before calling some other specified <i>target</i> method handle.
3140      * The type of the new method handle will be the same as the target's type,
3141      * except it will also include the placeholder argument types,
3142      * at some given position.
3143      * <p>
3144      * The {@code pos} argument may range between zero and <i>N</i>,
3145      * where <i>N</i> is the arity of the target.
3146      * If {@code pos} is zero, the placeholder arguments will precede
3147      * the target's real arguments; if {@code pos} is <i>N</i>
3148      * they will come after.
3149      * @apiNote
3150      * <blockquote><pre>{@code
3151 import static java.lang.invoke.MethodHandles.*;
3152 import static java.lang.invoke.MethodType.*;
3153 ...
3154 MethodHandle cat = lookup().findVirtual(String.class,
3155   "concat", methodType(String.class, String.class));
3156 assertEquals("xy", (String) cat.invokeExact("x", "y"));
3157 MethodHandle d0 = dropArguments(cat, 0, String.class);
3158 assertEquals("yz", (String) d0.invokeExact("x", "y", "z"));
3159 MethodHandle d1 = dropArguments(cat, 1, String.class);
3160 assertEquals("xz", (String) d1.invokeExact("x", "y", "z"));
3161 MethodHandle d2 = dropArguments(cat, 2, String.class);
3162 assertEquals("xy", (String) d2.invokeExact("x", "y", "z"));
3163 MethodHandle d12 = dropArguments(cat, 1, int.class, boolean.class);
3164 assertEquals("xz", (String) d12.invokeExact("x", 12, true, "z"));
3165      * }</pre></blockquote>
3166      * <p>
3167      * This method is also equivalent to the following code:
3168      * <blockquote><pre>
3169      * {@link #dropArguments(MethodHandle,int,List) dropArguments}{@code (target, pos, Arrays.asList(valueTypes))}
3170      * </pre></blockquote>
3171      * @param target the method handle to invoke after the arguments are dropped
3172      * @param valueTypes the type(s) of the argument(s) to drop
3173      * @param pos position of first argument to drop (zero for the leftmost)
3174      * @return a method handle which drops arguments of the given types,
3175      *         before calling the original method handle
3176      * @throws NullPointerException if the target is null,
3177      *                              or if the {@code valueTypes} array or any of its elements is null
3178      * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
3179      *                  or if {@code pos} is negative or greater than the arity of the target,
3180      *                  or if the new method handle's type would have
3181      *                  <a href="MethodHandle.html#maxarity">too many parameters</a>
3182      */
3183     public static
dropArguments(MethodHandle target, int pos, Class<?>... valueTypes)3184     MethodHandle dropArguments(MethodHandle target, int pos, Class<?>... valueTypes) {
3185         return dropArguments0(target, pos, copyTypes(valueTypes));
3186     }
3187 
3188     // private version which allows caller some freedom with error handling
dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos, boolean nullOnFailure)3189     private static MethodHandle dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos,
3190                                       boolean nullOnFailure) {
3191         newTypes = copyTypes(newTypes.toArray());
3192         List<Class<?>> oldTypes = target.type().parameterList();
3193         int match = oldTypes.size();
3194         if (skip != 0) {
3195             if (skip < 0 || skip > match) {
3196                 throw newIllegalArgumentException("illegal skip", skip, target);
3197             }
3198             oldTypes = oldTypes.subList(skip, match);
3199             match -= skip;
3200         }
3201         List<Class<?>> addTypes = newTypes;
3202         int add = addTypes.size();
3203         if (pos != 0) {
3204             if (pos < 0 || pos > add) {
3205                 throw newIllegalArgumentException("illegal pos", pos, newTypes);
3206             }
3207             addTypes = addTypes.subList(pos, add);
3208             add -= pos;
3209             assert(addTypes.size() == add);
3210         }
3211         // Do not add types which already match the existing arguments.
3212         if (match > add || !oldTypes.equals(addTypes.subList(0, match))) {
3213             if (nullOnFailure) {
3214                 return null;
3215             }
3216             throw newIllegalArgumentException("argument lists do not match", oldTypes, newTypes);
3217         }
3218         addTypes = addTypes.subList(match, add);
3219         add -= match;
3220         assert(addTypes.size() == add);
3221         // newTypes:     (   P*[pos], M*[match], A*[add] )
3222         // target: ( S*[skip],        M*[match]  )
3223         MethodHandle adapter = target;
3224         if (add > 0) {
3225             adapter = dropArguments0(adapter, skip+ match, addTypes);
3226         }
3227         // adapter: (S*[skip],        M*[match], A*[add] )
3228         if (pos > 0) {
3229             adapter = dropArguments0(adapter, skip, newTypes.subList(0, pos));
3230         }
3231         // adapter: (S*[skip], P*[pos], M*[match], A*[add] )
3232         return adapter;
3233     }
3234 
3235     // Android-changed: inclusive language preference for 'placeholder'.
3236     /**
3237      * Adapts a target method handle to match the given parameter type list. If necessary, adds placeholder arguments. Some
3238      * leading parameters can be skipped before matching begins. The remaining types in the {@code target}'s parameter
3239      * type list must be a sub-list of the {@code newTypes} type list at the starting position {@code pos}. The
3240      * resulting handle will have the target handle's parameter type list, with any non-matching parameter types (before
3241      * or after the matching sub-list) inserted in corresponding positions of the target's original parameters, as if by
3242      * {@link #dropArguments(MethodHandle, int, Class[])}.
3243      * <p>
3244      * The resulting handle will have the same return type as the target handle.
3245      * <p>
3246      * In more formal terms, assume these two type lists:<ul>
3247      * <li>The target handle has the parameter type list {@code S..., M...}, with as many types in {@code S} as
3248      * indicated by {@code skip}. The {@code M} types are those that are supposed to match part of the given type list,
3249      * {@code newTypes}.
3250      * <li>The {@code newTypes} list contains types {@code P..., M..., A...}, with as many types in {@code P} as
3251      * indicated by {@code pos}. The {@code M} types are precisely those that the {@code M} types in the target handle's
3252      * parameter type list are supposed to match. The types in {@code A} are additional types found after the matching
3253      * sub-list.
3254      * </ul>
3255      * Given these assumptions, the result of an invocation of {@code dropArgumentsToMatch} will have the parameter type
3256      * list {@code S..., P..., M..., A...}, with the {@code P} and {@code A} types inserted as if by
3257      * {@link #dropArguments(MethodHandle, int, Class[])}.
3258      *
3259      * @apiNote
3260      * Two method handles whose argument lists are "effectively identical" (i.e., identical in a common prefix) may be
3261      * mutually converted to a common type by two calls to {@code dropArgumentsToMatch}, as follows:
3262      * <blockquote><pre>{@code
3263 import static java.lang.invoke.MethodHandles.*;
3264 import static java.lang.invoke.MethodType.*;
3265 ...
3266 ...
3267 MethodHandle h0 = constant(boolean.class, true);
3268 MethodHandle h1 = lookup().findVirtual(String.class, "concat", methodType(String.class, String.class));
3269 MethodType bigType = h1.type().insertParameterTypes(1, String.class, int.class);
3270 MethodHandle h2 = dropArguments(h1, 0, bigType.parameterList());
3271 if (h1.type().parameterCount() < h2.type().parameterCount())
3272     h1 = dropArgumentsToMatch(h1, 0, h2.type().parameterList(), 0);  // lengthen h1
3273 else
3274     h2 = dropArgumentsToMatch(h2, 0, h1.type().parameterList(), 0);    // lengthen h2
3275 MethodHandle h3 = guardWithTest(h0, h1, h2);
3276 assertEquals("xy", h3.invoke("x", "y", 1, "a", "b", "c"));
3277      * }</pre></blockquote>
3278      * @param target the method handle to adapt
3279      * @param skip number of targets parameters to disregard (they will be unchanged)
3280      * @param newTypes the list of types to match {@code target}'s parameter type list to
3281      * @param pos place in {@code newTypes} where the non-skipped target parameters must occur
3282      * @return a possibly adapted method handle
3283      * @throws NullPointerException if either argument is null
3284      * @throws IllegalArgumentException if any element of {@code newTypes} is {@code void.class},
3285      *         or if {@code skip} is negative or greater than the arity of the target,
3286      *         or if {@code pos} is negative or greater than the newTypes list size,
3287      *         or if {@code newTypes} does not contain the {@code target}'s non-skipped parameter types at position
3288      *         {@code pos}.
3289      * @since 9
3290      */
3291     public static
dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos)3292     MethodHandle dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos) {
3293         Objects.requireNonNull(target);
3294         Objects.requireNonNull(newTypes);
3295         return dropArgumentsToMatch(target, skip, newTypes, pos, false);
3296     }
3297 
3298     /**
3299      * Adapts a target method handle by pre-processing
3300      * one or more of its arguments, each with its own unary filter function,
3301      * and then calling the target with each pre-processed argument
3302      * replaced by the result of its corresponding filter function.
3303      * <p>
3304      * The pre-processing is performed by one or more method handles,
3305      * specified in the elements of the {@code filters} array.
3306      * The first element of the filter array corresponds to the {@code pos}
3307      * argument of the target, and so on in sequence.
3308      * The filter functions are invoked in left to right order.
3309      * <p>
3310      * Null arguments in the array are treated as identity functions,
3311      * and the corresponding arguments left unchanged.
3312      * (If there are no non-null elements in the array, the original target is returned.)
3313      * Each filter is applied to the corresponding argument of the adapter.
3314      * <p>
3315      * If a filter {@code F} applies to the {@code N}th argument of
3316      * the target, then {@code F} must be a method handle which
3317      * takes exactly one argument.  The type of {@code F}'s sole argument
3318      * replaces the corresponding argument type of the target
3319      * in the resulting adapted method handle.
3320      * The return type of {@code F} must be identical to the corresponding
3321      * parameter type of the target.
3322      * <p>
3323      * It is an error if there are elements of {@code filters}
3324      * (null or not)
3325      * which do not correspond to argument positions in the target.
3326      * <p><b>Example:</b>
3327      * <blockquote><pre>{@code
3328 import static java.lang.invoke.MethodHandles.*;
3329 import static java.lang.invoke.MethodType.*;
3330 ...
3331 MethodHandle cat = lookup().findVirtual(String.class,
3332   "concat", methodType(String.class, String.class));
3333 MethodHandle upcase = lookup().findVirtual(String.class,
3334   "toUpperCase", methodType(String.class));
3335 assertEquals("xy", (String) cat.invokeExact("x", "y"));
3336 MethodHandle f0 = filterArguments(cat, 0, upcase);
3337 assertEquals("Xy", (String) f0.invokeExact("x", "y")); // Xy
3338 MethodHandle f1 = filterArguments(cat, 1, upcase);
3339 assertEquals("xY", (String) f1.invokeExact("x", "y")); // xY
3340 MethodHandle f2 = filterArguments(cat, 0, upcase, upcase);
3341 assertEquals("XY", (String) f2.invokeExact("x", "y")); // XY
3342      * }</pre></blockquote>
3343      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
3344      * denotes the return type of both the {@code target} and resulting adapter.
3345      * {@code P}/{@code p} and {@code B}/{@code b} represent the types and values
3346      * of the parameters and arguments that precede and follow the filter position
3347      * {@code pos}, respectively. {@code A[i]}/{@code a[i]} stand for the types and
3348      * values of the filtered parameters and arguments; they also represent the
3349      * return types of the {@code filter[i]} handles. The latter accept arguments
3350      * {@code v[i]} of type {@code V[i]}, which also appear in the signature of
3351      * the resulting adapter.
3352      * <blockquote><pre>{@code
3353      * T target(P... p, A[i]... a[i], B... b);
3354      * A[i] filter[i](V[i]);
3355      * T adapter(P... p, V[i]... v[i], B... b) {
3356      *   return target(p..., filter[i](v[i])..., b...);
3357      * }
3358      * }</pre></blockquote>
3359      * <p>
3360      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
3361      * variable-arity method handle}, even if the original target method handle was.
3362      *
3363      * @param target the method handle to invoke after arguments are filtered
3364      * @param pos the position of the first argument to filter
3365      * @param filters method handles to call initially on filtered arguments
3366      * @return method handle which incorporates the specified argument filtering logic
3367      * @throws NullPointerException if the target is null
3368      *                              or if the {@code filters} array is null
3369      * @throws IllegalArgumentException if a non-null element of {@code filters}
3370      *          does not match a corresponding argument type of target as described above,
3371      *          or if the {@code pos+filters.length} is greater than {@code target.type().parameterCount()},
3372      *          or if the resulting method handle's type would have
3373      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
3374      */
3375     public static
filterArguments(MethodHandle target, int pos, MethodHandle... filters)3376     MethodHandle filterArguments(MethodHandle target, int pos, MethodHandle... filters) {
3377         filterArgumentsCheckArity(target, pos, filters);
3378         MethodHandle adapter = target;
3379         // Android-changed: transformer implementation.
3380         // process filters in reverse order so that the invocation of
3381         // the resulting adapter will invoke the filters in left-to-right order
3382         // for (int i = filters.length - 1; i >= 0; --i) {
3383         //     MethodHandle filter = filters[i];
3384         //     if (filter == null)  continue;  // ignore null elements of filters
3385         //     adapter = filterArgument(adapter, pos + i, filter);
3386         // }
3387         // return adapter;
3388         for (int i = 0; i < filters.length; ++i) {
3389             filterArgumentChecks(target, i + pos, filters[i]);
3390         }
3391         return new Transformers.FilterArguments(target, pos, filters);
3392     }
3393 
3394     /*non-public*/ static
filterArgument(MethodHandle target, int pos, MethodHandle filter)3395     MethodHandle filterArgument(MethodHandle target, int pos, MethodHandle filter) {
3396         filterArgumentChecks(target, pos, filter);
3397         // Android-changed: use Transformer implementation.
3398         // MethodType targetType = target.type();
3399         // MethodType filterType = filter.type();
3400         // BoundMethodHandle result = target.rebind();
3401         // Class<?> newParamType = filterType.parameterType(0);
3402         // LambdaForm lform = result.editor().filterArgumentForm(1 + pos, BasicType.basicType(newParamType));
3403         // MethodType newType = targetType.changeParameterType(pos, newParamType);
3404         // result = result.copyWithExtendL(newType, lform, filter);
3405         // return result;
3406         return new Transformers.FilterArguments(target, pos, filter);
3407     }
3408 
filterArgumentsCheckArity(MethodHandle target, int pos, MethodHandle[] filters)3409     private static void filterArgumentsCheckArity(MethodHandle target, int pos, MethodHandle[] filters) {
3410         MethodType targetType = target.type();
3411         int maxPos = targetType.parameterCount();
3412         if (pos + filters.length > maxPos)
3413             throw newIllegalArgumentException("too many filters");
3414     }
3415 
filterArgumentChecks(MethodHandle target, int pos, MethodHandle filter)3416     private static void filterArgumentChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException {
3417         MethodType targetType = target.type();
3418         MethodType filterType = filter.type();
3419         if (filterType.parameterCount() != 1
3420             || filterType.returnType() != targetType.parameterType(pos))
3421             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
3422     }
3423 
3424     /**
3425      * Adapts a target method handle by pre-processing
3426      * a sub-sequence of its arguments with a filter (another method handle).
3427      * The pre-processed arguments are replaced by the result (if any) of the
3428      * filter function.
3429      * The target is then called on the modified (usually shortened) argument list.
3430      * <p>
3431      * If the filter returns a value, the target must accept that value as
3432      * its argument in position {@code pos}, preceded and/or followed by
3433      * any arguments not passed to the filter.
3434      * If the filter returns void, the target must accept all arguments
3435      * not passed to the filter.
3436      * No arguments are reordered, and a result returned from the filter
3437      * replaces (in order) the whole subsequence of arguments originally
3438      * passed to the adapter.
3439      * <p>
3440      * The argument types (if any) of the filter
3441      * replace zero or one argument types of the target, at position {@code pos},
3442      * in the resulting adapted method handle.
3443      * The return type of the filter (if any) must be identical to the
3444      * argument type of the target at position {@code pos}, and that target argument
3445      * is supplied by the return value of the filter.
3446      * <p>
3447      * In all cases, {@code pos} must be greater than or equal to zero, and
3448      * {@code pos} must also be less than or equal to the target's arity.
3449      * <p><b>Example:</b>
3450      * <blockquote><pre>{@code
3451 import static java.lang.invoke.MethodHandles.*;
3452 import static java.lang.invoke.MethodType.*;
3453 ...
3454 MethodHandle deepToString = publicLookup()
3455   .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));
3456 
3457 MethodHandle ts1 = deepToString.asCollector(String[].class, 1);
3458 assertEquals("[strange]", (String) ts1.invokeExact("strange"));
3459 
3460 MethodHandle ts2 = deepToString.asCollector(String[].class, 2);
3461 assertEquals("[up, down]", (String) ts2.invokeExact("up", "down"));
3462 
3463 MethodHandle ts3 = deepToString.asCollector(String[].class, 3);
3464 MethodHandle ts3_ts2 = collectArguments(ts3, 1, ts2);
3465 assertEquals("[top, [up, down], strange]",
3466              (String) ts3_ts2.invokeExact("top", "up", "down", "strange"));
3467 
3468 MethodHandle ts3_ts2_ts1 = collectArguments(ts3_ts2, 3, ts1);
3469 assertEquals("[top, [up, down], [strange]]",
3470              (String) ts3_ts2_ts1.invokeExact("top", "up", "down", "strange"));
3471 
3472 MethodHandle ts3_ts2_ts3 = collectArguments(ts3_ts2, 1, ts3);
3473 assertEquals("[top, [[up, down, strange], charm], bottom]",
3474              (String) ts3_ts2_ts3.invokeExact("top", "up", "down", "strange", "charm", "bottom"));
3475      * }</pre></blockquote>
3476      * <p> Here is pseudocode for the resulting adapter:
3477      * <blockquote><pre>{@code
3478      * T target(A...,V,C...);
3479      * V filter(B...);
3480      * T adapter(A... a,B... b,C... c) {
3481      *   V v = filter(b...);
3482      *   return target(a...,v,c...);
3483      * }
3484      * // and if the filter has no arguments:
3485      * T target2(A...,V,C...);
3486      * V filter2();
3487      * T adapter2(A... a,C... c) {
3488      *   V v = filter2();
3489      *   return target2(a...,v,c...);
3490      * }
3491      * // and if the filter has a void return:
3492      * T target3(A...,C...);
3493      * void filter3(B...);
3494      * void adapter3(A... a,B... b,C... c) {
3495      *   filter3(b...);
3496      *   return target3(a...,c...);
3497      * }
3498      * }</pre></blockquote>
3499      * <p>
3500      * A collection adapter {@code collectArguments(mh, 0, coll)} is equivalent to
3501      * one which first "folds" the affected arguments, and then drops them, in separate
3502      * steps as follows:
3503      * <blockquote><pre>{@code
3504      * mh = MethodHandles.dropArguments(mh, 1, coll.type().parameterList()); //step 2
3505      * mh = MethodHandles.foldArguments(mh, coll); //step 1
3506      * }</pre></blockquote>
3507      * If the target method handle consumes no arguments besides than the result
3508      * (if any) of the filter {@code coll}, then {@code collectArguments(mh, 0, coll)}
3509      * is equivalent to {@code filterReturnValue(coll, mh)}.
3510      * If the filter method handle {@code coll} consumes one argument and produces
3511      * a non-void result, then {@code collectArguments(mh, N, coll)}
3512      * is equivalent to {@code filterArguments(mh, N, coll)}.
3513      * Other equivalences are possible but would require argument permutation.
3514      *
3515      * @param target the method handle to invoke after filtering the subsequence of arguments
3516      * @param pos the position of the first adapter argument to pass to the filter,
3517      *            and/or the target argument which receives the result of the filter
3518      * @param filter method handle to call on the subsequence of arguments
3519      * @return method handle which incorporates the specified argument subsequence filtering logic
3520      * @throws NullPointerException if either argument is null
3521      * @throws IllegalArgumentException if the return type of {@code filter}
3522      *          is non-void and is not the same as the {@code pos} argument of the target,
3523      *          or if {@code pos} is not between 0 and the target's arity, inclusive,
3524      *          or if the resulting method handle's type would have
3525      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
3526      * @see MethodHandles#foldArguments
3527      * @see MethodHandles#filterArguments
3528      * @see MethodHandles#filterReturnValue
3529      */
3530     public static
collectArguments(MethodHandle target, int pos, MethodHandle filter)3531     MethodHandle collectArguments(MethodHandle target, int pos, MethodHandle filter) {
3532         MethodType newType = collectArgumentsChecks(target, pos, filter);
3533         return new Transformers.CollectArguments(target, filter, pos, newType);
3534     }
3535 
collectArgumentsChecks(MethodHandle target, int pos, MethodHandle filter)3536     private static MethodType collectArgumentsChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException {
3537         MethodType targetType = target.type();
3538         MethodType filterType = filter.type();
3539         Class<?> rtype = filterType.returnType();
3540         List<Class<?>> filterArgs = filterType.parameterList();
3541         if (rtype == void.class) {
3542             return targetType.insertParameterTypes(pos, filterArgs);
3543         }
3544         if (rtype != targetType.parameterType(pos)) {
3545             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
3546         }
3547         return targetType.dropParameterTypes(pos, pos+1).insertParameterTypes(pos, filterArgs);
3548     }
3549 
3550     /**
3551      * Adapts a target method handle by post-processing
3552      * its return value (if any) with a filter (another method handle).
3553      * The result of the filter is returned from the adapter.
3554      * <p>
3555      * If the target returns a value, the filter must accept that value as
3556      * its only argument.
3557      * If the target returns void, the filter must accept no arguments.
3558      * <p>
3559      * The return type of the filter
3560      * replaces the return type of the target
3561      * in the resulting adapted method handle.
3562      * The argument type of the filter (if any) must be identical to the
3563      * return type of the target.
3564      * <p><b>Example:</b>
3565      * <blockquote><pre>{@code
3566 import static java.lang.invoke.MethodHandles.*;
3567 import static java.lang.invoke.MethodType.*;
3568 ...
3569 MethodHandle cat = lookup().findVirtual(String.class,
3570   "concat", methodType(String.class, String.class));
3571 MethodHandle length = lookup().findVirtual(String.class,
3572   "length", methodType(int.class));
3573 System.out.println((String) cat.invokeExact("x", "y")); // xy
3574 MethodHandle f0 = filterReturnValue(cat, length);
3575 System.out.println((int) f0.invokeExact("x", "y")); // 2
3576      * }</pre></blockquote>
3577      * <p>Here is pseudocode for the resulting adapter. In the code,
3578      * {@code T}/{@code t} represent the result type and value of the
3579      * {@code target}; {@code V}, the result type of the {@code filter}; and
3580      * {@code A}/{@code a}, the types and values of the parameters and arguments
3581      * of the {@code target} as well as the resulting adapter.
3582      * <blockquote><pre>{@code
3583      * T target(A...);
3584      * V filter(T);
3585      * V adapter(A... a) {
3586      *   T t = target(a...);
3587      *   return filter(t);
3588      * }
3589      * // and if the target has a void return:
3590      * void target2(A...);
3591      * V filter2();
3592      * V adapter2(A... a) {
3593      *   target2(a...);
3594      *   return filter2();
3595      * }
3596      * // and if the filter has a void return:
3597      * T target3(A...);
3598      * void filter3(V);
3599      * void adapter3(A... a) {
3600      *   T t = target3(a...);
3601      *   filter3(t);
3602      * }
3603      * }</pre></blockquote>
3604      * <p>
3605      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
3606      * variable-arity method handle}, even if the original target method handle was.
3607      * @param target the method handle to invoke before filtering the return value
3608      * @param filter method handle to call on the return value
3609      * @return method handle which incorporates the specified return value filtering logic
3610      * @throws NullPointerException if either argument is null
3611      * @throws IllegalArgumentException if the argument list of {@code filter}
3612      *          does not match the return type of target as described above
3613      */
3614     public static
filterReturnValue(MethodHandle target, MethodHandle filter)3615     MethodHandle filterReturnValue(MethodHandle target, MethodHandle filter) {
3616         MethodType targetType = target.type();
3617         MethodType filterType = filter.type();
3618         filterReturnValueChecks(targetType, filterType);
3619         // Android-changed: use a transformer.
3620         // BoundMethodHandle result = target.rebind();
3621         // BasicType rtype = BasicType.basicType(filterType.returnType());
3622         // LambdaForm lform = result.editor().filterReturnForm(rtype, false);
3623         // MethodType newType = targetType.changeReturnType(filterType.returnType());
3624         // result = result.copyWithExtendL(newType, lform, filter);
3625         // return result;
3626         return new Transformers.FilterReturnValue(target, filter);
3627     }
3628 
filterReturnValueChecks(MethodType targetType, MethodType filterType)3629     private static void filterReturnValueChecks(MethodType targetType, MethodType filterType) throws RuntimeException {
3630         Class<?> rtype = targetType.returnType();
3631         int filterValues = filterType.parameterCount();
3632         if (filterValues == 0
3633                 ? (rtype != void.class)
3634                 : (rtype != filterType.parameterType(0) || filterValues != 1))
3635             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
3636     }
3637 
3638     /**
3639      * Adapts a target method handle by pre-processing
3640      * some of its arguments, and then calling the target with
3641      * the result of the pre-processing, inserted into the original
3642      * sequence of arguments.
3643      * <p>
3644      * The pre-processing is performed by {@code combiner}, a second method handle.
3645      * Of the arguments passed to the adapter, the first {@code N} arguments
3646      * are copied to the combiner, which is then called.
3647      * (Here, {@code N} is defined as the parameter count of the combiner.)
3648      * After this, control passes to the target, with any result
3649      * from the combiner inserted before the original {@code N} incoming
3650      * arguments.
3651      * <p>
3652      * If the combiner returns a value, the first parameter type of the target
3653      * must be identical with the return type of the combiner, and the next
3654      * {@code N} parameter types of the target must exactly match the parameters
3655      * of the combiner.
3656      * <p>
3657      * If the combiner has a void return, no result will be inserted,
3658      * and the first {@code N} parameter types of the target
3659      * must exactly match the parameters of the combiner.
3660      * <p>
3661      * The resulting adapter is the same type as the target, except that the
3662      * first parameter type is dropped,
3663      * if it corresponds to the result of the combiner.
3664      * <p>
3665      * (Note that {@link #dropArguments(MethodHandle,int,List) dropArguments} can be used to remove any arguments
3666      * that either the combiner or the target does not wish to receive.
3667      * If some of the incoming arguments are destined only for the combiner,
3668      * consider using {@link MethodHandle#asCollector asCollector} instead, since those
3669      * arguments will not need to be live on the stack on entry to the
3670      * target.)
3671      * <p><b>Example:</b>
3672      * <blockquote><pre>{@code
3673 import static java.lang.invoke.MethodHandles.*;
3674 import static java.lang.invoke.MethodType.*;
3675 ...
3676 MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
3677   "println", methodType(void.class, String.class))
3678     .bindTo(System.out);
3679 MethodHandle cat = lookup().findVirtual(String.class,
3680   "concat", methodType(String.class, String.class));
3681 assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
3682 MethodHandle catTrace = foldArguments(cat, trace);
3683 // also prints "boo":
3684 assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
3685      * }</pre></blockquote>
3686      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
3687      * represents the result type of the {@code target} and resulting adapter.
3688      * {@code V}/{@code v} represent the type and value of the parameter and argument
3689      * of {@code target} that precedes the folding position; {@code V} also is
3690      * the result type of the {@code combiner}. {@code A}/{@code a} denote the
3691      * types and values of the {@code N} parameters and arguments at the folding
3692      * position. {@code B}/{@code b} represent the types and values of the
3693      * {@code target} parameters and arguments that follow the folded parameters
3694      * and arguments.
3695      * <blockquote><pre>{@code
3696      * // there are N arguments in A...
3697      * T target(V, A[N]..., B...);
3698      * V combiner(A...);
3699      * T adapter(A... a, B... b) {
3700      *   V v = combiner(a...);
3701      *   return target(v, a..., b...);
3702      * }
3703      * // and if the combiner has a void return:
3704      * T target2(A[N]..., B...);
3705      * void combiner2(A...);
3706      * T adapter2(A... a, B... b) {
3707      *   combiner2(a...);
3708      *   return target2(a..., b...);
3709      * }
3710      * }</pre></blockquote>
3711      * <p>
3712      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
3713      * variable-arity method handle}, even if the original target method handle was.
3714      * @param target the method handle to invoke after arguments are combined
3715      * @param combiner method handle to call initially on the incoming arguments
3716      * @return method handle which incorporates the specified argument folding logic
3717      * @throws NullPointerException if either argument is null
3718      * @throws IllegalArgumentException if {@code combiner}'s return type
3719      *          is non-void and not the same as the first argument type of
3720      *          the target, or if the initial {@code N} argument types
3721      *          of the target
3722      *          (skipping one matching the {@code combiner}'s return type)
3723      *          are not identical with the argument types of {@code combiner}
3724      */
3725     public static
foldArguments(MethodHandle target, MethodHandle combiner)3726     MethodHandle foldArguments(MethodHandle target, MethodHandle combiner) {
3727         return foldArguments(target, 0, combiner);
3728     }
3729 
3730     /**
3731      * Adapts a target method handle by pre-processing some of its arguments, starting at a given position, and then
3732      * calling the target with the result of the pre-processing, inserted into the original sequence of arguments just
3733      * before the folded arguments.
3734      * <p>
3735      * This method is closely related to {@link #foldArguments(MethodHandle, MethodHandle)}, but allows to control the
3736      * position in the parameter list at which folding takes place. The argument controlling this, {@code pos}, is a
3737      * zero-based index. The aforementioned method {@link #foldArguments(MethodHandle, MethodHandle)} assumes position
3738      * 0.
3739      *
3740      * @apiNote Example:
3741      * <blockquote><pre>{@code
3742     import static java.lang.invoke.MethodHandles.*;
3743     import static java.lang.invoke.MethodType.*;
3744     ...
3745     MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
3746     "println", methodType(void.class, String.class))
3747     .bindTo(System.out);
3748     MethodHandle cat = lookup().findVirtual(String.class,
3749     "concat", methodType(String.class, String.class));
3750     assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
3751     MethodHandle catTrace = foldArguments(cat, 1, trace);
3752     // also prints "jum":
3753     assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
3754      * }</pre></blockquote>
3755      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
3756      * represents the result type of the {@code target} and resulting adapter.
3757      * {@code V}/{@code v} represent the type and value of the parameter and argument
3758      * of {@code target} that precedes the folding position; {@code V} also is
3759      * the result type of the {@code combiner}. {@code A}/{@code a} denote the
3760      * types and values of the {@code N} parameters and arguments at the folding
3761      * position. {@code Z}/{@code z} and {@code B}/{@code b} represent the types
3762      * and values of the {@code target} parameters and arguments that precede and
3763      * follow the folded parameters and arguments starting at {@code pos},
3764      * respectively.
3765      * <blockquote><pre>{@code
3766      * // there are N arguments in A...
3767      * T target(Z..., V, A[N]..., B...);
3768      * V combiner(A...);
3769      * T adapter(Z... z, A... a, B... b) {
3770      *   V v = combiner(a...);
3771      *   return target(z..., v, a..., b...);
3772      * }
3773      * // and if the combiner has a void return:
3774      * T target2(Z..., A[N]..., B...);
3775      * void combiner2(A...);
3776      * T adapter2(Z... z, A... a, B... b) {
3777      *   combiner2(a...);
3778      *   return target2(z..., a..., b...);
3779      * }
3780      * }</pre></blockquote>
3781      * <p>
3782      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
3783      * variable-arity method handle}, even if the original target method handle was.
3784      *
3785      * @param target the method handle to invoke after arguments are combined
3786      * @param pos the position at which to start folding and at which to insert the folding result; if this is {@code
3787      *            0}, the effect is the same as for {@link #foldArguments(MethodHandle, MethodHandle)}.
3788      * @param combiner method handle to call initially on the incoming arguments
3789      * @return method handle which incorporates the specified argument folding logic
3790      * @throws NullPointerException if either argument is null
3791      * @throws IllegalArgumentException if either of the following two conditions holds:
3792      *          (1) {@code combiner}'s return type is non-{@code void} and not the same as the argument type at position
3793      *              {@code pos} of the target signature;
3794      *          (2) the {@code N} argument types at position {@code pos} of the target signature (skipping one matching
3795      *              the {@code combiner}'s return type) are not identical with the argument types of {@code combiner}.
3796      *
3797      * @see #foldArguments(MethodHandle, MethodHandle)
3798      * @since 9
3799      */
3800     public static
foldArguments(MethodHandle target, int pos, MethodHandle combiner)3801     MethodHandle foldArguments(MethodHandle target, int pos, MethodHandle combiner) {
3802         MethodType targetType = target.type();
3803         MethodType combinerType = combiner.type();
3804         Class<?> rtype = foldArgumentChecks(pos, targetType, combinerType);
3805         // Android-changed: // Android-changed: transformer implementation.
3806         // BoundMethodHandle result = target.rebind();
3807         // boolean dropResult = rtype == void.class;
3808         // LambdaForm lform = result.editor().foldArgumentsForm(1 + pos, dropResult, combinerType.basicType());
3809         // MethodType newType = targetType;
3810         // if (!dropResult) {
3811         //     newType = newType.dropParameterTypes(pos, pos + 1);
3812         // }
3813         // result = result.copyWithExtendL(newType, lform, combiner);
3814         // return result;
3815 
3816         return new Transformers.FoldArguments(target, pos, combiner);
3817     }
3818 
foldArgumentChecks(int foldPos, MethodType targetType, MethodType combinerType)3819     private static Class<?> foldArgumentChecks(int foldPos, MethodType targetType, MethodType combinerType) {
3820         int foldArgs   = combinerType.parameterCount();
3821         Class<?> rtype = combinerType.returnType();
3822         int foldVals = rtype == void.class ? 0 : 1;
3823         int afterInsertPos = foldPos + foldVals;
3824         boolean ok = (targetType.parameterCount() >= afterInsertPos + foldArgs);
3825         if (ok) {
3826             for (int i = 0; i < foldArgs; i++) {
3827                 if (combinerType.parameterType(i) != targetType.parameterType(i + afterInsertPos)) {
3828                     ok = false;
3829                     break;
3830                 }
3831             }
3832         }
3833         if (ok && foldVals != 0 && combinerType.returnType() != targetType.parameterType(foldPos))
3834             ok = false;
3835         if (!ok)
3836             throw misMatchedTypes("target and combiner types", targetType, combinerType);
3837         return rtype;
3838     }
3839 
3840     /**
3841      * Makes a method handle which adapts a target method handle,
3842      * by guarding it with a test, a boolean-valued method handle.
3843      * If the guard fails, a fallback handle is called instead.
3844      * All three method handles must have the same corresponding
3845      * argument and return types, except that the return type
3846      * of the test must be boolean, and the test is allowed
3847      * to have fewer arguments than the other two method handles.
3848      * <p> Here is pseudocode for the resulting adapter:
3849      * <blockquote><pre>{@code
3850      * boolean test(A...);
3851      * T target(A...,B...);
3852      * T fallback(A...,B...);
3853      * T adapter(A... a,B... b) {
3854      *   if (test(a...))
3855      *     return target(a..., b...);
3856      *   else
3857      *     return fallback(a..., b...);
3858      * }
3859      * }</pre></blockquote>
3860      * Note that the test arguments ({@code a...} in the pseudocode) cannot
3861      * be modified by execution of the test, and so are passed unchanged
3862      * from the caller to the target or fallback as appropriate.
3863      * @param test method handle used for test, must return boolean
3864      * @param target method handle to call if test passes
3865      * @param fallback method handle to call if test fails
3866      * @return method handle which incorporates the specified if/then/else logic
3867      * @throws NullPointerException if any argument is null
3868      * @throws IllegalArgumentException if {@code test} does not return boolean,
3869      *          or if all three method types do not match (with the return
3870      *          type of {@code test} changed to match that of the target).
3871      */
3872     public static
guardWithTest(MethodHandle test, MethodHandle target, MethodHandle fallback)3873     MethodHandle guardWithTest(MethodHandle test,
3874                                MethodHandle target,
3875                                MethodHandle fallback) {
3876         MethodType gtype = test.type();
3877         MethodType ttype = target.type();
3878         MethodType ftype = fallback.type();
3879         if (!ttype.equals(ftype))
3880             throw misMatchedTypes("target and fallback types", ttype, ftype);
3881         if (gtype.returnType() != boolean.class)
3882             throw newIllegalArgumentException("guard type is not a predicate "+gtype);
3883         List<Class<?>> targs = ttype.parameterList();
3884         List<Class<?>> gargs = gtype.parameterList();
3885         if (!targs.equals(gargs)) {
3886             int gpc = gargs.size(), tpc = targs.size();
3887             if (gpc >= tpc || !targs.subList(0, gpc).equals(gargs))
3888                 throw misMatchedTypes("target and test types", ttype, gtype);
3889             test = dropArguments(test, gpc, targs.subList(gpc, tpc));
3890             gtype = test.type();
3891         }
3892 
3893         return new Transformers.GuardWithTest(test, target, fallback);
3894     }
3895 
misMatchedTypes(String what, T t1, T t2)3896     static <T> RuntimeException misMatchedTypes(String what, T t1, T t2) {
3897         return newIllegalArgumentException(what + " must match: " + t1 + " != " + t2);
3898     }
3899 
3900     /**
3901      * Makes a method handle which adapts a target method handle,
3902      * by running it inside an exception handler.
3903      * If the target returns normally, the adapter returns that value.
3904      * If an exception matching the specified type is thrown, the fallback
3905      * handle is called instead on the exception, plus the original arguments.
3906      * <p>
3907      * The target and handler must have the same corresponding
3908      * argument and return types, except that handler may omit trailing arguments
3909      * (similarly to the predicate in {@link #guardWithTest guardWithTest}).
3910      * Also, the handler must have an extra leading parameter of {@code exType} or a supertype.
3911      * <p>
3912      * Here is pseudocode for the resulting adapter. In the code, {@code T}
3913      * represents the return type of the {@code target} and {@code handler},
3914      * and correspondingly that of the resulting adapter; {@code A}/{@code a},
3915      * the types and values of arguments to the resulting handle consumed by
3916      * {@code handler}; and {@code B}/{@code b}, those of arguments to the
3917      * resulting handle discarded by {@code handler}.
3918      * <blockquote><pre>{@code
3919      * T target(A..., B...);
3920      * T handler(ExType, A...);
3921      * T adapter(A... a, B... b) {
3922      *   try {
3923      *     return target(a..., b...);
3924      *   } catch (ExType ex) {
3925      *     return handler(ex, a...);
3926      *   }
3927      * }
3928      * }</pre></blockquote>
3929      * Note that the saved arguments ({@code a...} in the pseudocode) cannot
3930      * be modified by execution of the target, and so are passed unchanged
3931      * from the caller to the handler, if the handler is invoked.
3932      * <p>
3933      * The target and handler must return the same type, even if the handler
3934      * always throws.  (This might happen, for instance, because the handler
3935      * is simulating a {@code finally} clause).
3936      * To create such a throwing handler, compose the handler creation logic
3937      * with {@link #throwException throwException},
3938      * in order to create a method handle of the correct return type.
3939      * @param target method handle to call
3940      * @param exType the type of exception which the handler will catch
3941      * @param handler method handle to call if a matching exception is thrown
3942      * @return method handle which incorporates the specified try/catch logic
3943      * @throws NullPointerException if any argument is null
3944      * @throws IllegalArgumentException if {@code handler} does not accept
3945      *          the given exception type, or if the method handle types do
3946      *          not match in their return types and their
3947      *          corresponding parameters
3948      * @see MethodHandles#tryFinally(MethodHandle, MethodHandle)
3949      */
3950     public static
catchException(MethodHandle target, Class<? extends Throwable> exType, MethodHandle handler)3951     MethodHandle catchException(MethodHandle target,
3952                                 Class<? extends Throwable> exType,
3953                                 MethodHandle handler) {
3954         MethodType ttype = target.type();
3955         MethodType htype = handler.type();
3956         if (!Throwable.class.isAssignableFrom(exType))
3957             throw new ClassCastException(exType.getName());
3958         if (htype.parameterCount() < 1 ||
3959             !htype.parameterType(0).isAssignableFrom(exType))
3960             throw newIllegalArgumentException("handler does not accept exception type "+exType);
3961         if (htype.returnType() != ttype.returnType())
3962             throw misMatchedTypes("target and handler return types", ttype, htype);
3963         handler = dropArgumentsToMatch(handler, 1, ttype.parameterList(), 0, true);
3964         if (handler == null) {
3965             throw misMatchedTypes("target and handler types", ttype, htype);
3966         }
3967         // Android-changed: use Transformer implementation.
3968         // return MethodHandleImpl.makeGuardWithCatch(target, exType, handler);
3969         return new Transformers.CatchException(target, handler, exType);
3970     }
3971 
3972     /**
3973      * Produces a method handle which will throw exceptions of the given {@code exType}.
3974      * The method handle will accept a single argument of {@code exType},
3975      * and immediately throw it as an exception.
3976      * The method type will nominally specify a return of {@code returnType}.
3977      * The return type may be anything convenient:  It doesn't matter to the
3978      * method handle's behavior, since it will never return normally.
3979      * @param returnType the return type of the desired method handle
3980      * @param exType the parameter type of the desired method handle
3981      * @return method handle which can throw the given exceptions
3982      * @throws NullPointerException if either argument is null
3983      */
3984     public static
throwException(Class<?> returnType, Class<? extends Throwable> exType)3985     MethodHandle throwException(Class<?> returnType, Class<? extends Throwable> exType) {
3986         if (!Throwable.class.isAssignableFrom(exType))
3987             throw new ClassCastException(exType.getName());
3988         // Android-changed: use Transformer implementation.
3989         // return MethodHandleImpl.throwException(methodType(returnType, exType));
3990         return new Transformers.AlwaysThrow(returnType, exType);
3991     }
3992 
3993     /**
3994      * Constructs a method handle representing a loop with several loop variables that are updated and checked upon each
3995      * iteration. Upon termination of the loop due to one of the predicates, a corresponding finalizer is run and
3996      * delivers the loop's result, which is the return value of the resulting handle.
3997      * <p>
3998      * Intuitively, every loop is formed by one or more "clauses", each specifying a local <em>iteration variable</em> and/or a loop
3999      * exit. Each iteration of the loop executes each clause in order. A clause can optionally update its iteration
4000      * variable; it can also optionally perform a test and conditional loop exit. In order to express this logic in
4001      * terms of method handles, each clause will specify up to four independent actions:<ul>
4002      * <li><em>init:</em> Before the loop executes, the initialization of an iteration variable {@code v} of type {@code V}.
4003      * <li><em>step:</em> When a clause executes, an update step for the iteration variable {@code v}.
4004      * <li><em>pred:</em> When a clause executes, a predicate execution to test for loop exit.
4005      * <li><em>fini:</em> If a clause causes a loop exit, a finalizer execution to compute the loop's return value.
4006      * </ul>
4007      * The full sequence of all iteration variable types, in clause order, will be notated as {@code (V...)}.
4008      * The values themselves will be {@code (v...)}.  When we speak of "parameter lists", we will usually
4009      * be referring to types, but in some contexts (describing execution) the lists will be of actual values.
4010      * <p>
4011      * Some of these clause parts may be omitted according to certain rules, and useful default behavior is provided in
4012      * this case. See below for a detailed description.
4013      * <p>
4014      * <em>Parameters optional everywhere:</em>
4015      * Each clause function is allowed but not required to accept a parameter for each iteration variable {@code v}.
4016      * As an exception, the init functions cannot take any {@code v} parameters,
4017      * because those values are not yet computed when the init functions are executed.
4018      * Any clause function may neglect to take any trailing subsequence of parameters it is entitled to take.
4019      * In fact, any clause function may take no arguments at all.
4020      * <p>
4021      * <em>Loop parameters:</em>
4022      * A clause function may take all the iteration variable values it is entitled to, in which case
4023      * it may also take more trailing parameters. Such extra values are called <em>loop parameters</em>,
4024      * with their types and values notated as {@code (A...)} and {@code (a...)}.
4025      * These become the parameters of the resulting loop handle, to be supplied whenever the loop is executed.
4026      * (Since init functions do not accept iteration variables {@code v}, any parameter to an
4027      * init function is automatically a loop parameter {@code a}.)
4028      * As with iteration variables, clause functions are allowed but not required to accept loop parameters.
4029      * These loop parameters act as loop-invariant values visible across the whole loop.
4030      * <p>
4031      * <em>Parameters visible everywhere:</em>
4032      * Each non-init clause function is permitted to observe the entire loop state, because it can be passed the full
4033      * list {@code (v... a...)} of current iteration variable values and incoming loop parameters.
4034      * The init functions can observe initial pre-loop state, in the form {@code (a...)}.
4035      * Most clause functions will not need all of this information, but they will be formally connected to it
4036      * as if by {@link #dropArguments}.
4037      * <a id="astar"></a>
4038      * More specifically, we shall use the notation {@code (V*)} to express an arbitrary prefix of a full
4039      * sequence {@code (V...)} (and likewise for {@code (v*)}, {@code (A*)}, {@code (a*)}).
4040      * In that notation, the general form of an init function parameter list
4041      * is {@code (A*)}, and the general form of a non-init function parameter list is {@code (V*)} or {@code (V... A*)}.
4042      * <p>
4043      * <em>Checking clause structure:</em>
4044      * Given a set of clauses, there is a number of checks and adjustments performed to connect all the parts of the
4045      * loop. They are spelled out in detail in the steps below. In these steps, every occurrence of the word "must"
4046      * corresponds to a place where {@link IllegalArgumentException} will be thrown if the required constraint is not
4047      * met by the inputs to the loop combinator.
4048      * <p>
4049      * <em>Effectively identical sequences:</em>
4050      * <a id="effid"></a>
4051      * A parameter list {@code A} is defined to be <em>effectively identical</em> to another parameter list {@code B}
4052      * if {@code A} and {@code B} are identical, or if {@code A} is shorter and is identical with a proper prefix of {@code B}.
4053      * When speaking of an unordered set of parameter lists, we say they the set is "effectively identical"
4054      * as a whole if the set contains a longest list, and all members of the set are effectively identical to
4055      * that longest list.
4056      * For example, any set of type sequences of the form {@code (V*)} is effectively identical,
4057      * and the same is true if more sequences of the form {@code (V... A*)} are added.
4058      * <p>
4059      * <em>Step 0: Determine clause structure.</em><ol type="a">
4060      * <li>The clause array (of type {@code MethodHandle[][]}) must be non-{@code null} and contain at least one element.
4061      * <li>The clause array may not contain {@code null}s or sub-arrays longer than four elements.
4062      * <li>Clauses shorter than four elements are treated as if they were padded by {@code null} elements to length
4063      * four. Padding takes place by appending elements to the array.
4064      * <li>Clauses with all {@code null}s are disregarded.
4065      * <li>Each clause is treated as a four-tuple of functions, called "init", "step", "pred", and "fini".
4066      * </ol>
4067      * <p>
4068      * <em>Step 1A: Determine iteration variable types {@code (V...)}.</em><ol type="a">
4069      * <li>The iteration variable type for each clause is determined using the clause's init and step return types.
4070      * <li>If both functions are omitted, there is no iteration variable for the corresponding clause ({@code void} is
4071      * used as the type to indicate that). If one of them is omitted, the other's return type defines the clause's
4072      * iteration variable type. If both are given, the common return type (they must be identical) defines the clause's
4073      * iteration variable type.
4074      * <li>Form the list of return types (in clause order), omitting all occurrences of {@code void}.
4075      * <li>This list of types is called the "iteration variable types" ({@code (V...)}).
4076      * </ol>
4077      * <p>
4078      * <em>Step 1B: Determine loop parameters {@code (A...)}.</em><ul>
4079      * <li>Examine and collect init function parameter lists (which are of the form {@code (A*)}).
4080      * <li>Examine and collect the suffixes of the step, pred, and fini parameter lists, after removing the iteration variable types.
4081      * (They must have the form {@code (V... A*)}; collect the {@code (A*)} parts only.)
4082      * <li>Do not collect suffixes from step, pred, and fini parameter lists that do not begin with all the iteration variable types.
4083      * (These types will be checked in step 2, along with all the clause function types.)
4084      * <li>Omitted clause functions are ignored.  (Equivalently, they are deemed to have empty parameter lists.)
4085      * <li>All of the collected parameter lists must be effectively identical.
4086      * <li>The longest parameter list (which is necessarily unique) is called the "external parameter list" ({@code (A...)}).
4087      * <li>If there is no such parameter list, the external parameter list is taken to be the empty sequence.
4088      * <li>The combined list consisting of iteration variable types followed by the external parameter types is called
4089      * the "internal parameter list".
4090      * </ul>
4091      * <p>
4092      * <em>Step 1C: Determine loop return type.</em><ol type="a">
4093      * <li>Examine fini function return types, disregarding omitted fini functions.
4094      * <li>If there are no fini functions, the loop return type is {@code void}.
4095      * <li>Otherwise, the common return type {@code R} of the fini functions (their return types must be identical) defines the loop return
4096      * type.
4097      * </ol>
4098      * <p>
4099      * <em>Step 1D: Check other types.</em><ol type="a">
4100      * <li>There must be at least one non-omitted pred function.
4101      * <li>Every non-omitted pred function must have a {@code boolean} return type.
4102      * </ol>
4103      * <p>
4104      * <em>Step 2: Determine parameter lists.</em><ol type="a">
4105      * <li>The parameter list for the resulting loop handle will be the external parameter list {@code (A...)}.
4106      * <li>The parameter list for init functions will be adjusted to the external parameter list.
4107      * (Note that their parameter lists are already effectively identical to this list.)
4108      * <li>The parameter list for every non-omitted, non-init (step, pred, and fini) function must be
4109      * effectively identical to the internal parameter list {@code (V... A...)}.
4110      * </ol>
4111      * <p>
4112      * <em>Step 3: Fill in omitted functions.</em><ol type="a">
4113      * <li>If an init function is omitted, use a {@linkplain #empty default value} for the clause's iteration variable
4114      * type.
4115      * <li>If a step function is omitted, use an {@linkplain #identity identity function} of the clause's iteration
4116      * variable type; insert dropped argument parameters before the identity function parameter for the non-{@code void}
4117      * iteration variables of preceding clauses. (This will turn the loop variable into a local loop invariant.)
4118      * <li>If a pred function is omitted, use a constant {@code true} function. (This will keep the loop going, as far
4119      * as this clause is concerned.  Note that in such cases the corresponding fini function is unreachable.)
4120      * <li>If a fini function is omitted, use a {@linkplain #empty default value} for the
4121      * loop return type.
4122      * </ol>
4123      * <p>
4124      * <em>Step 4: Fill in missing parameter types.</em><ol type="a">
4125      * <li>At this point, every init function parameter list is effectively identical to the external parameter list {@code (A...)},
4126      * but some lists may be shorter. For every init function with a short parameter list, pad out the end of the list.
4127      * <li>At this point, every non-init function parameter list is effectively identical to the internal parameter
4128      * list {@code (V... A...)}, but some lists may be shorter. For every non-init function with a short parameter list,
4129      * pad out the end of the list.
4130      * <li>Argument lists are padded out by {@linkplain #dropArgumentsToMatch(MethodHandle, int, List, int) dropping unused trailing arguments}.
4131      * </ol>
4132      * <p>
4133      * <em>Final observations.</em><ol type="a">
4134      * <li>After these steps, all clauses have been adjusted by supplying omitted functions and arguments.
4135      * <li>All init functions have a common parameter type list {@code (A...)}, which the final loop handle will also have.
4136      * <li>All fini functions have a common return type {@code R}, which the final loop handle will also have.
4137      * <li>All non-init functions have a common parameter type list {@code (V... A...)}, of
4138      * (non-{@code void}) iteration variables {@code V} followed by loop parameters.
4139      * <li>Each pair of init and step functions agrees in their return type {@code V}.
4140      * <li>Each non-init function will be able to observe the current values {@code (v...)} of all iteration variables.
4141      * <li>Every function will be able to observe the incoming values {@code (a...)} of all loop parameters.
4142      * </ol>
4143      * <p>
4144      * <em>Example.</em> As a consequence of step 1A above, the {@code loop} combinator has the following property:
4145      * <ul>
4146      * <li>Given {@code N} clauses {@code Cn = {null, Sn, Pn}} with {@code n = 1..N}.
4147      * <li>Suppose predicate handles {@code Pn} are either {@code null} or have no parameters.
4148      * (Only one {@code Pn} has to be non-{@code null}.)
4149      * <li>Suppose step handles {@code Sn} have signatures {@code (B1..BX)Rn}, for some constant {@code X>=N}.
4150      * <li>Suppose {@code Q} is the count of non-void types {@code Rn}, and {@code (V1...VQ)} is the sequence of those types.
4151      * <li>It must be that {@code Vn == Bn} for {@code n = 1..min(X,Q)}.
4152      * <li>The parameter types {@code Vn} will be interpreted as loop-local state elements {@code (V...)}.
4153      * <li>Any remaining types {@code BQ+1..BX} (if {@code Q<X}) will determine
4154      * the resulting loop handle's parameter types {@code (A...)}.
4155      * </ul>
4156      * In this example, the loop handle parameters {@code (A...)} were derived from the step functions,
4157      * which is natural if most of the loop computation happens in the steps.  For some loops,
4158      * the burden of computation might be heaviest in the pred functions, and so the pred functions
4159      * might need to accept the loop parameter values.  For loops with complex exit logic, the fini
4160      * functions might need to accept loop parameters, and likewise for loops with complex entry logic,
4161      * where the init functions will need the extra parameters.  For such reasons, the rules for
4162      * determining these parameters are as symmetric as possible, across all clause parts.
4163      * In general, the loop parameters function as common invariant values across the whole
4164      * loop, while the iteration variables function as common variant values, or (if there is
4165      * no step function) as internal loop invariant temporaries.
4166      * <p>
4167      * <em>Loop execution.</em><ol type="a">
4168      * <li>When the loop is called, the loop input values are saved in locals, to be passed to
4169      * every clause function. These locals are loop invariant.
4170      * <li>Each init function is executed in clause order (passing the external arguments {@code (a...)})
4171      * and the non-{@code void} values are saved (as the iteration variables {@code (v...)}) into locals.
4172      * These locals will be loop varying (unless their steps behave as identity functions, as noted above).
4173      * <li>All function executions (except init functions) will be passed the internal parameter list, consisting of
4174      * the non-{@code void} iteration values {@code (v...)} (in clause order) and then the loop inputs {@code (a...)}
4175      * (in argument order).
4176      * <li>The step and pred functions are then executed, in clause order (step before pred), until a pred function
4177      * returns {@code false}.
4178      * <li>The non-{@code void} result from a step function call is used to update the corresponding value in the
4179      * sequence {@code (v...)} of loop variables.
4180      * The updated value is immediately visible to all subsequent function calls.
4181      * <li>If a pred function returns {@code false}, the corresponding fini function is called, and the resulting value
4182      * (of type {@code R}) is returned from the loop as a whole.
4183      * <li>If all the pred functions always return true, no fini function is ever invoked, and the loop cannot exit
4184      * except by throwing an exception.
4185      * </ol>
4186      * <p>
4187      * <em>Usage tips.</em>
4188      * <ul>
4189      * <li>Although each step function will receive the current values of <em>all</em> the loop variables,
4190      * sometimes a step function only needs to observe the current value of its own variable.
4191      * In that case, the step function may need to explicitly {@linkplain #dropArguments drop all preceding loop variables}.
4192      * This will require mentioning their types, in an expression like {@code dropArguments(step, 0, V0.class, ...)}.
4193      * <li>Loop variables are not required to vary; they can be loop invariant.  A clause can create
4194      * a loop invariant by a suitable init function with no step, pred, or fini function.  This may be
4195      * useful to "wire" an incoming loop argument into the step or pred function of an adjacent loop variable.
4196      * <li>If some of the clause functions are virtual methods on an instance, the instance
4197      * itself can be conveniently placed in an initial invariant loop "variable", using an initial clause
4198      * like {@code new MethodHandle[]{identity(ObjType.class)}}.  In that case, the instance reference
4199      * will be the first iteration variable value, and it will be easy to use virtual
4200      * methods as clause parts, since all of them will take a leading instance reference matching that value.
4201      * </ul>
4202      * <p>
4203      * Here is pseudocode for the resulting loop handle. As above, {@code V} and {@code v} represent the types
4204      * and values of loop variables; {@code A} and {@code a} represent arguments passed to the whole loop;
4205      * and {@code R} is the common result type of all finalizers as well as of the resulting loop.
4206      * <blockquote><pre>{@code
4207      * V... init...(A...);
4208      * boolean pred...(V..., A...);
4209      * V... step...(V..., A...);
4210      * R fini...(V..., A...);
4211      * R loop(A... a) {
4212      *   V... v... = init...(a...);
4213      *   for (;;) {
4214      *     for ((v, p, s, f) in (v..., pred..., step..., fini...)) {
4215      *       v = s(v..., a...);
4216      *       if (!p(v..., a...)) {
4217      *         return f(v..., a...);
4218      *       }
4219      *     }
4220      *   }
4221      * }
4222      * }</pre></blockquote>
4223      * Note that the parameter type lists {@code (V...)} and {@code (A...)} have been expanded
4224      * to their full length, even though individual clause functions may neglect to take them all.
4225      * As noted above, missing parameters are filled in as if by {@link #dropArgumentsToMatch(MethodHandle, int, List, int)}.
4226      *
4227      * @apiNote Example:
4228      * <blockquote><pre>{@code
4229      * // iterative implementation of the factorial function as a loop handle
4230      * static int one(int k) { return 1; }
4231      * static int inc(int i, int acc, int k) { return i + 1; }
4232      * static int mult(int i, int acc, int k) { return i * acc; }
4233      * static boolean pred(int i, int acc, int k) { return i < k; }
4234      * static int fin(int i, int acc, int k) { return acc; }
4235      * // assume MH_one, MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods
4236      * // null initializer for counter, should initialize to 0
4237      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
4238      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
4239      * MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause);
4240      * assertEquals(120, loop.invoke(5));
4241      * }</pre></blockquote>
4242      * The same example, dropping arguments and using combinators:
4243      * <blockquote><pre>{@code
4244      * // simplified implementation of the factorial function as a loop handle
4245      * static int inc(int i) { return i + 1; } // drop acc, k
4246      * static int mult(int i, int acc) { return i * acc; } //drop k
4247      * static boolean cmp(int i, int k) { return i < k; }
4248      * // assume MH_inc, MH_mult, and MH_cmp are handles to the above methods
4249      * // null initializer for counter, should initialize to 0
4250      * MethodHandle MH_one = MethodHandles.constant(int.class, 1);
4251      * MethodHandle MH_pred = MethodHandles.dropArguments(MH_cmp, 1, int.class); // drop acc
4252      * MethodHandle MH_fin = MethodHandles.dropArguments(MethodHandles.identity(int.class), 0, int.class); // drop i
4253      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
4254      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
4255      * MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause);
4256      * assertEquals(720, loop.invoke(6));
4257      * }</pre></blockquote>
4258      * A similar example, using a helper object to hold a loop parameter:
4259      * <blockquote><pre>{@code
4260      * // instance-based implementation of the factorial function as a loop handle
4261      * static class FacLoop {
4262      *   final int k;
4263      *   FacLoop(int k) { this.k = k; }
4264      *   int inc(int i) { return i + 1; }
4265      *   int mult(int i, int acc) { return i * acc; }
4266      *   boolean pred(int i) { return i < k; }
4267      *   int fin(int i, int acc) { return acc; }
4268      * }
4269      * // assume MH_FacLoop is a handle to the constructor
4270      * // assume MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods
4271      * // null initializer for counter, should initialize to 0
4272      * MethodHandle MH_one = MethodHandles.constant(int.class, 1);
4273      * MethodHandle[] instanceClause = new MethodHandle[]{MH_FacLoop};
4274      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
4275      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
4276      * MethodHandle loop = MethodHandles.loop(instanceClause, counterClause, accumulatorClause);
4277      * assertEquals(5040, loop.invoke(7));
4278      * }</pre></blockquote>
4279      *
4280      * @param clauses an array of arrays (4-tuples) of {@link MethodHandle}s adhering to the rules described above.
4281      *
4282      * @return a method handle embodying the looping behavior as defined by the arguments.
4283      *
4284      * @throws IllegalArgumentException in case any of the constraints described above is violated.
4285      *
4286      * @see MethodHandles#whileLoop(MethodHandle, MethodHandle, MethodHandle)
4287      * @see MethodHandles#doWhileLoop(MethodHandle, MethodHandle, MethodHandle)
4288      * @see MethodHandles#countedLoop(MethodHandle, MethodHandle, MethodHandle)
4289      * @see MethodHandles#iteratedLoop(MethodHandle, MethodHandle, MethodHandle)
4290      * @since 9
4291      */
loop(MethodHandle[].... clauses)4292     public static MethodHandle loop(MethodHandle[]... clauses) {
4293         // Step 0: determine clause structure.
4294         loopChecks0(clauses);
4295 
4296         List<MethodHandle> init = new ArrayList<>();
4297         List<MethodHandle> step = new ArrayList<>();
4298         List<MethodHandle> pred = new ArrayList<>();
4299         List<MethodHandle> fini = new ArrayList<>();
4300 
4301         Stream.of(clauses).filter(c -> Stream.of(c).anyMatch(Objects::nonNull)).forEach(clause -> {
4302             init.add(clause[0]); // all clauses have at least length 1
4303             step.add(clause.length <= 1 ? null : clause[1]);
4304             pred.add(clause.length <= 2 ? null : clause[2]);
4305             fini.add(clause.length <= 3 ? null : clause[3]);
4306         });
4307 
4308         assert Stream.of(init, step, pred, fini).map(List::size).distinct().count() == 1;
4309         final int nclauses = init.size();
4310 
4311         // Step 1A: determine iteration variables (V...).
4312         final List<Class<?>> iterationVariableTypes = new ArrayList<>();
4313         for (int i = 0; i < nclauses; ++i) {
4314             MethodHandle in = init.get(i);
4315             MethodHandle st = step.get(i);
4316             if (in == null && st == null) {
4317                 iterationVariableTypes.add(void.class);
4318             } else if (in != null && st != null) {
4319                 loopChecks1a(i, in, st);
4320                 iterationVariableTypes.add(in.type().returnType());
4321             } else {
4322                 iterationVariableTypes.add(in == null ? st.type().returnType() : in.type().returnType());
4323             }
4324         }
4325         final List<Class<?>> commonPrefix = iterationVariableTypes.stream().filter(t -> t != void.class).
4326                 collect(Collectors.toList());
4327 
4328         // Step 1B: determine loop parameters (A...).
4329         final List<Class<?>> commonSuffix = buildCommonSuffix(init, step, pred, fini, commonPrefix.size());
4330         loopChecks1b(init, commonSuffix);
4331 
4332         // Step 1C: determine loop return type.
4333         // Step 1D: check other types.
4334         // local variable required here; see JDK-8223553
4335         Stream<Class<?>> cstream = fini.stream().filter(Objects::nonNull).map(MethodHandle::type)
4336                 .map(MethodType::returnType);
4337         final Class<?> loopReturnType = cstream.findFirst().orElse(void.class);
4338         loopChecks1cd(pred, fini, loopReturnType);
4339 
4340         // Step 2: determine parameter lists.
4341         final List<Class<?>> commonParameterSequence = new ArrayList<>(commonPrefix);
4342         commonParameterSequence.addAll(commonSuffix);
4343         loopChecks2(step, pred, fini, commonParameterSequence);
4344 
4345         // Step 3: fill in omitted functions.
4346         for (int i = 0; i < nclauses; ++i) {
4347             Class<?> t = iterationVariableTypes.get(i);
4348             if (init.get(i) == null) {
4349                 init.set(i, empty(methodType(t, commonSuffix)));
4350             }
4351             if (step.get(i) == null) {
4352                 step.set(i, dropArgumentsToMatch(identityOrVoid(t), 0, commonParameterSequence, i));
4353             }
4354             if (pred.get(i) == null) {
4355                 pred.set(i, dropArguments0(constant(boolean.class, true), 0, commonParameterSequence));
4356             }
4357             if (fini.get(i) == null) {
4358                 fini.set(i, empty(methodType(t, commonParameterSequence)));
4359             }
4360         }
4361 
4362         // Step 4: fill in missing parameter types.
4363         // Also convert all handles to fixed-arity handles.
4364         List<MethodHandle> finit = fixArities(fillParameterTypes(init, commonSuffix));
4365         List<MethodHandle> fstep = fixArities(fillParameterTypes(step, commonParameterSequence));
4366         List<MethodHandle> fpred = fixArities(fillParameterTypes(pred, commonParameterSequence));
4367         List<MethodHandle> ffini = fixArities(fillParameterTypes(fini, commonParameterSequence));
4368 
4369         assert finit.stream().map(MethodHandle::type).map(MethodType::parameterList).
4370                 allMatch(pl -> pl.equals(commonSuffix));
4371         assert Stream.of(fstep, fpred, ffini).flatMap(List::stream).map(MethodHandle::type).map(MethodType::parameterList).
4372                 allMatch(pl -> pl.equals(commonParameterSequence));
4373 
4374         // Android-changed: transformer implementation.
4375         // return MethodHandleImpl.makeLoop(loopReturnType, commonSuffix, finit, fstep, fpred, ffini);
4376         return new Transformers.Loop(loopReturnType,
4377                                      commonSuffix,
4378                                      finit.toArray(MethodHandle[]::new),
4379                                      fstep.toArray(MethodHandle[]::new),
4380                                      fpred.toArray(MethodHandle[]::new),
4381                                      ffini.toArray(MethodHandle[]::new));
4382     }
4383 
loopChecks0(MethodHandle[][] clauses)4384     private static void loopChecks0(MethodHandle[][] clauses) {
4385         if (clauses == null || clauses.length == 0) {
4386             throw newIllegalArgumentException("null or no clauses passed");
4387         }
4388         if (Stream.of(clauses).anyMatch(Objects::isNull)) {
4389             throw newIllegalArgumentException("null clauses are not allowed");
4390         }
4391         if (Stream.of(clauses).anyMatch(c -> c.length > 4)) {
4392             throw newIllegalArgumentException("All loop clauses must be represented as MethodHandle arrays with at most 4 elements.");
4393         }
4394     }
4395 
loopChecks1a(int i, MethodHandle in, MethodHandle st)4396     private static void loopChecks1a(int i, MethodHandle in, MethodHandle st) {
4397         if (in.type().returnType() != st.type().returnType()) {
4398             throw misMatchedTypes("clause " + i + ": init and step return types", in.type().returnType(),
4399                     st.type().returnType());
4400         }
4401     }
4402 
longestParameterList(Stream<MethodHandle> mhs, int skipSize)4403     private static List<Class<?>> longestParameterList(Stream<MethodHandle> mhs, int skipSize) {
4404         final List<Class<?>> empty = List.of();
4405         final List<Class<?>> longest = mhs.filter(Objects::nonNull).
4406                 // take only those that can contribute to a common suffix because they are longer than the prefix
4407                         map(MethodHandle::type).
4408                         filter(t -> t.parameterCount() > skipSize).
4409                         map(MethodType::parameterList).
4410                         reduce((p, q) -> p.size() >= q.size() ? p : q).orElse(empty);
4411         return longest.size() == 0 ? empty : longest.subList(skipSize, longest.size());
4412     }
4413 
longestParameterList(List<List<Class<?>>> lists)4414     private static List<Class<?>> longestParameterList(List<List<Class<?>>> lists) {
4415         final List<Class<?>> empty = List.of();
4416         return lists.stream().reduce((p, q) -> p.size() >= q.size() ? p : q).orElse(empty);
4417     }
4418 
buildCommonSuffix(List<MethodHandle> init, List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, int cpSize)4419     private static List<Class<?>> buildCommonSuffix(List<MethodHandle> init, List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, int cpSize) {
4420         final List<Class<?>> longest1 = longestParameterList(Stream.of(step, pred, fini).flatMap(List::stream), cpSize);
4421         final List<Class<?>> longest2 = longestParameterList(init.stream(), 0);
4422         return longestParameterList(Arrays.asList(longest1, longest2));
4423     }
4424 
loopChecks1b(List<MethodHandle> init, List<Class<?>> commonSuffix)4425     private static void loopChecks1b(List<MethodHandle> init, List<Class<?>> commonSuffix) {
4426         if (init.stream().filter(Objects::nonNull).map(MethodHandle::type).
4427                 anyMatch(t -> !t.effectivelyIdenticalParameters(0, commonSuffix))) {
4428             throw newIllegalArgumentException("found non-effectively identical init parameter type lists: " + init +
4429                     " (common suffix: " + commonSuffix + ")");
4430         }
4431     }
4432 
loopChecks1cd(List<MethodHandle> pred, List<MethodHandle> fini, Class<?> loopReturnType)4433     private static void loopChecks1cd(List<MethodHandle> pred, List<MethodHandle> fini, Class<?> loopReturnType) {
4434         if (fini.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType).
4435                 anyMatch(t -> t != loopReturnType)) {
4436             throw newIllegalArgumentException("found non-identical finalizer return types: " + fini + " (return type: " +
4437                     loopReturnType + ")");
4438         }
4439 
4440         if (!pred.stream().filter(Objects::nonNull).findFirst().isPresent()) {
4441             throw newIllegalArgumentException("no predicate found", pred);
4442         }
4443         if (pred.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType).
4444                 anyMatch(t -> t != boolean.class)) {
4445             throw newIllegalArgumentException("predicates must have boolean return type", pred);
4446         }
4447     }
4448 
loopChecks2(List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, List<Class<?>> commonParameterSequence)4449     private static void loopChecks2(List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, List<Class<?>> commonParameterSequence) {
4450         if (Stream.of(step, pred, fini).flatMap(List::stream).filter(Objects::nonNull).map(MethodHandle::type).
4451                 anyMatch(t -> !t.effectivelyIdenticalParameters(0, commonParameterSequence))) {
4452             throw newIllegalArgumentException("found non-effectively identical parameter type lists:\nstep: " + step +
4453                     "\npred: " + pred + "\nfini: " + fini + " (common parameter sequence: " + commonParameterSequence + ")");
4454         }
4455     }
4456 
fillParameterTypes(List<MethodHandle> hs, final List<Class<?>> targetParams)4457     private static List<MethodHandle> fillParameterTypes(List<MethodHandle> hs, final List<Class<?>> targetParams) {
4458         return hs.stream().map(h -> {
4459             int pc = h.type().parameterCount();
4460             int tpsize = targetParams.size();
4461             return pc < tpsize ? dropArguments0(h, pc, targetParams.subList(pc, tpsize)) : h;
4462         }).collect(Collectors.toList());
4463     }
4464 
fixArities(List<MethodHandle> hs)4465     private static List<MethodHandle> fixArities(List<MethodHandle> hs) {
4466         return hs.stream().map(MethodHandle::asFixedArity).collect(Collectors.toList());
4467     }
4468 
4469     /**
4470      * Constructs a {@code while} loop from an initializer, a body, and a predicate.
4471      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
4472      * <p>
4473      * The {@code pred} handle describes the loop condition; and {@code body}, its body. The loop resulting from this
4474      * method will, in each iteration, first evaluate the predicate and then execute its body (if the predicate
4475      * evaluates to {@code true}).
4476      * The loop will terminate once the predicate evaluates to {@code false} (the body will not be executed in this case).
4477      * <p>
4478      * The {@code init} handle describes the initial value of an additional optional loop-local variable.
4479      * In each iteration, this loop-local variable, if present, will be passed to the {@code body}
4480      * and updated with the value returned from its invocation. The result of loop execution will be
4481      * the final value of the additional loop-local variable (if present).
4482      * <p>
4483      * The following rules hold for these argument handles:<ul>
4484      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
4485      * {@code (V A...)V}, where {@code V} is non-{@code void}, or else {@code (A...)void}.
4486      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
4487      * and we will write {@code (V A...)V} with the understanding that a {@code void} type {@code V}
4488      * is quietly dropped from the parameter list, leaving {@code (A...)V}.)
4489      * <li>The parameter list {@code (V A...)} of the body is called the <em>internal parameter list</em>.
4490      * It will constrain the parameter lists of the other loop parts.
4491      * <li>If the iteration variable type {@code V} is dropped from the internal parameter list, the resulting shorter
4492      * list {@code (A...)} is called the <em>external parameter list</em>.
4493      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
4494      * additional state variable of the loop.
4495      * The body must both accept and return a value of this type {@code V}.
4496      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
4497      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
4498      * <a href="MethodHandles.html#effid">effectively identical</a>
4499      * to the external parameter list {@code (A...)}.
4500      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
4501      * {@linkplain #empty default value}.
4502      * <li>The {@code pred} handle must not be {@code null}.  It must have {@code boolean} as its return type.
4503      * Its parameter list (either empty or of the form {@code (V A*)}) must be
4504      * effectively identical to the internal parameter list.
4505      * </ul>
4506      * <p>
4507      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
4508      * <li>The loop handle's result type is the result type {@code V} of the body.
4509      * <li>The loop handle's parameter types are the types {@code (A...)},
4510      * from the external parameter list.
4511      * </ul>
4512      * <p>
4513      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
4514      * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument
4515      * passed to the loop.
4516      * <blockquote><pre>{@code
4517      * V init(A...);
4518      * boolean pred(V, A...);
4519      * V body(V, A...);
4520      * V whileLoop(A... a...) {
4521      *   V v = init(a...);
4522      *   while (pred(v, a...)) {
4523      *     v = body(v, a...);
4524      *   }
4525      *   return v;
4526      * }
4527      * }</pre></blockquote>
4528      *
4529      * @apiNote Example:
4530      * <blockquote><pre>{@code
4531      * // implement the zip function for lists as a loop handle
4532      * static List<String> initZip(Iterator<String> a, Iterator<String> b) { return new ArrayList<>(); }
4533      * static boolean zipPred(List<String> zip, Iterator<String> a, Iterator<String> b) { return a.hasNext() && b.hasNext(); }
4534      * static List<String> zipStep(List<String> zip, Iterator<String> a, Iterator<String> b) {
4535      *   zip.add(a.next());
4536      *   zip.add(b.next());
4537      *   return zip;
4538      * }
4539      * // assume MH_initZip, MH_zipPred, and MH_zipStep are handles to the above methods
4540      * MethodHandle loop = MethodHandles.whileLoop(MH_initZip, MH_zipPred, MH_zipStep);
4541      * List<String> a = Arrays.asList("a", "b", "c", "d");
4542      * List<String> b = Arrays.asList("e", "f", "g", "h");
4543      * List<String> zipped = Arrays.asList("a", "e", "b", "f", "c", "g", "d", "h");
4544      * assertEquals(zipped, (List<String>) loop.invoke(a.iterator(), b.iterator()));
4545      * }</pre></blockquote>
4546      *
4547      *
4548      * @apiNote The implementation of this method can be expressed as follows:
4549      * <blockquote><pre>{@code
4550      * MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) {
4551      *     MethodHandle fini = (body.type().returnType() == void.class
4552      *                         ? null : identity(body.type().returnType()));
4553      *     MethodHandle[]
4554      *         checkExit = { null, null, pred, fini },
4555      *         varBody   = { init, body };
4556      *     return loop(checkExit, varBody);
4557      * }
4558      * }</pre></blockquote>
4559      *
4560      * @param init optional initializer, providing the initial value of the loop variable.
4561      *             May be {@code null}, implying a default initial value.  See above for other constraints.
4562      * @param pred condition for the loop, which may not be {@code null}. Its result type must be {@code boolean}. See
4563      *             above for other constraints.
4564      * @param body body of the loop, which may not be {@code null}. It controls the loop parameters and result type.
4565      *             See above for other constraints.
4566      *
4567      * @return a method handle implementing the {@code while} loop as described by the arguments.
4568      * @throws IllegalArgumentException if the rules for the arguments are violated.
4569      * @throws NullPointerException if {@code pred} or {@code body} are {@code null}.
4570      *
4571      * @see #loop(MethodHandle[][])
4572      * @see #doWhileLoop(MethodHandle, MethodHandle, MethodHandle)
4573      * @since 9
4574      */
whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body)4575     public static MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) {
4576         whileLoopChecks(init, pred, body);
4577         MethodHandle fini = identityOrVoid(body.type().returnType());
4578         MethodHandle[] checkExit = { null, null, pred, fini };
4579         MethodHandle[] varBody = { init, body };
4580         return loop(checkExit, varBody);
4581     }
4582 
4583     /**
4584      * Constructs a {@code do-while} loop from an initializer, a body, and a predicate.
4585      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
4586      * <p>
4587      * The {@code pred} handle describes the loop condition; and {@code body}, its body. The loop resulting from this
4588      * method will, in each iteration, first execute its body and then evaluate the predicate.
4589      * The loop will terminate once the predicate evaluates to {@code false} after an execution of the body.
4590      * <p>
4591      * The {@code init} handle describes the initial value of an additional optional loop-local variable.
4592      * In each iteration, this loop-local variable, if present, will be passed to the {@code body}
4593      * and updated with the value returned from its invocation. The result of loop execution will be
4594      * the final value of the additional loop-local variable (if present).
4595      * <p>
4596      * The following rules hold for these argument handles:<ul>
4597      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
4598      * {@code (V A...)V}, where {@code V} is non-{@code void}, or else {@code (A...)void}.
4599      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
4600      * and we will write {@code (V A...)V} with the understanding that a {@code void} type {@code V}
4601      * is quietly dropped from the parameter list, leaving {@code (A...)V}.)
4602      * <li>The parameter list {@code (V A...)} of the body is called the <em>internal parameter list</em>.
4603      * It will constrain the parameter lists of the other loop parts.
4604      * <li>If the iteration variable type {@code V} is dropped from the internal parameter list, the resulting shorter
4605      * list {@code (A...)} is called the <em>external parameter list</em>.
4606      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
4607      * additional state variable of the loop.
4608      * The body must both accept and return a value of this type {@code V}.
4609      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
4610      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
4611      * <a href="MethodHandles.html#effid">effectively identical</a>
4612      * to the external parameter list {@code (A...)}.
4613      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
4614      * {@linkplain #empty default value}.
4615      * <li>The {@code pred} handle must not be {@code null}.  It must have {@code boolean} as its return type.
4616      * Its parameter list (either empty or of the form {@code (V A*)}) must be
4617      * effectively identical to the internal parameter list.
4618      * </ul>
4619      * <p>
4620      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
4621      * <li>The loop handle's result type is the result type {@code V} of the body.
4622      * <li>The loop handle's parameter types are the types {@code (A...)},
4623      * from the external parameter list.
4624      * </ul>
4625      * <p>
4626      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
4627      * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument
4628      * passed to the loop.
4629      * <blockquote><pre>{@code
4630      * V init(A...);
4631      * boolean pred(V, A...);
4632      * V body(V, A...);
4633      * V doWhileLoop(A... a...) {
4634      *   V v = init(a...);
4635      *   do {
4636      *     v = body(v, a...);
4637      *   } while (pred(v, a...));
4638      *   return v;
4639      * }
4640      * }</pre></blockquote>
4641      *
4642      * @apiNote Example:
4643      * <blockquote><pre>{@code
4644      * // int i = 0; while (i < limit) { ++i; } return i; => limit
4645      * static int zero(int limit) { return 0; }
4646      * static int step(int i, int limit) { return i + 1; }
4647      * static boolean pred(int i, int limit) { return i < limit; }
4648      * // assume MH_zero, MH_step, and MH_pred are handles to the above methods
4649      * MethodHandle loop = MethodHandles.doWhileLoop(MH_zero, MH_step, MH_pred);
4650      * assertEquals(23, loop.invoke(23));
4651      * }</pre></blockquote>
4652      *
4653      *
4654      * @apiNote The implementation of this method can be expressed as follows:
4655      * <blockquote><pre>{@code
4656      * MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) {
4657      *     MethodHandle fini = (body.type().returnType() == void.class
4658      *                         ? null : identity(body.type().returnType()));
4659      *     MethodHandle[] clause = { init, body, pred, fini };
4660      *     return loop(clause);
4661      * }
4662      * }</pre></blockquote>
4663      *
4664      * @param init optional initializer, providing the initial value of the loop variable.
4665      *             May be {@code null}, implying a default initial value.  See above for other constraints.
4666      * @param body body of the loop, which may not be {@code null}. It controls the loop parameters and result type.
4667      *             See above for other constraints.
4668      * @param pred condition for the loop, which may not be {@code null}. Its result type must be {@code boolean}. See
4669      *             above for other constraints.
4670      *
4671      * @return a method handle implementing the {@code while} loop as described by the arguments.
4672      * @throws IllegalArgumentException if the rules for the arguments are violated.
4673      * @throws NullPointerException if {@code pred} or {@code body} are {@code null}.
4674      *
4675      * @see #loop(MethodHandle[][])
4676      * @see #whileLoop(MethodHandle, MethodHandle, MethodHandle)
4677      * @since 9
4678      */
doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred)4679     public static MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) {
4680         whileLoopChecks(init, pred, body);
4681         MethodHandle fini = identityOrVoid(body.type().returnType());
4682         MethodHandle[] clause = {init, body, pred, fini };
4683         return loop(clause);
4684     }
4685 
whileLoopChecks(MethodHandle init, MethodHandle pred, MethodHandle body)4686     private static void whileLoopChecks(MethodHandle init, MethodHandle pred, MethodHandle body) {
4687         Objects.requireNonNull(pred);
4688         Objects.requireNonNull(body);
4689         MethodType bodyType = body.type();
4690         Class<?> returnType = bodyType.returnType();
4691         List<Class<?>> innerList = bodyType.parameterList();
4692         List<Class<?>> outerList = innerList;
4693         if (returnType == void.class) {
4694             // OK
4695         } else if (innerList.size() == 0 || innerList.get(0) != returnType) {
4696             // leading V argument missing => error
4697             MethodType expected = bodyType.insertParameterTypes(0, returnType);
4698             throw misMatchedTypes("body function", bodyType, expected);
4699         } else {
4700             outerList = innerList.subList(1, innerList.size());
4701         }
4702         MethodType predType = pred.type();
4703         if (predType.returnType() != boolean.class ||
4704                 !predType.effectivelyIdenticalParameters(0, innerList)) {
4705             throw misMatchedTypes("loop predicate", predType, methodType(boolean.class, innerList));
4706         }
4707         if (init != null) {
4708             MethodType initType = init.type();
4709             if (initType.returnType() != returnType ||
4710                     !initType.effectivelyIdenticalParameters(0, outerList)) {
4711                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, outerList));
4712             }
4713         }
4714     }
4715 
4716     /**
4717      * Constructs a loop that runs a given number of iterations.
4718      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
4719      * <p>
4720      * The number of iterations is determined by the {@code iterations} handle evaluation result.
4721      * The loop counter {@code i} is an extra loop iteration variable of type {@code int}.
4722      * It will be initialized to 0 and incremented by 1 in each iteration.
4723      * <p>
4724      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
4725      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
4726      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
4727      * <p>
4728      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
4729      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
4730      * iteration variable.
4731      * The result of the loop handle execution will be the final {@code V} value of that variable
4732      * (or {@code void} if there is no {@code V} variable).
4733      * <p>
4734      * The following rules hold for the argument handles:<ul>
4735      * <li>The {@code iterations} handle must not be {@code null}, and must return
4736      * the type {@code int}, referred to here as {@code I} in parameter type lists.
4737      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
4738      * {@code (V I A...)V}, where {@code V} is non-{@code void}, or else {@code (I A...)void}.
4739      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
4740      * and we will write {@code (V I A...)V} with the understanding that a {@code void} type {@code V}
4741      * is quietly dropped from the parameter list, leaving {@code (I A...)V}.)
4742      * <li>The parameter list {@code (V I A...)} of the body contributes to a list
4743      * of types called the <em>internal parameter list</em>.
4744      * It will constrain the parameter lists of the other loop parts.
4745      * <li>As a special case, if the body contributes only {@code V} and {@code I} types,
4746      * with no additional {@code A} types, then the internal parameter list is extended by
4747      * the argument types {@code A...} of the {@code iterations} handle.
4748      * <li>If the iteration variable types {@code (V I)} are dropped from the internal parameter list, the resulting shorter
4749      * list {@code (A...)} is called the <em>external parameter list</em>.
4750      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
4751      * additional state variable of the loop.
4752      * The body must both accept a leading parameter and return a value of this type {@code V}.
4753      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
4754      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
4755      * <a href="MethodHandles.html#effid">effectively identical</a>
4756      * to the external parameter list {@code (A...)}.
4757      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
4758      * {@linkplain #empty default value}.
4759      * <li>The parameter list of {@code iterations} (of some form {@code (A*)}) must be
4760      * effectively identical to the external parameter list {@code (A...)}.
4761      * </ul>
4762      * <p>
4763      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
4764      * <li>The loop handle's result type is the result type {@code V} of the body.
4765      * <li>The loop handle's parameter types are the types {@code (A...)},
4766      * from the external parameter list.
4767      * </ul>
4768      * <p>
4769      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
4770      * the second loop variable as well as the result type of the loop; and {@code A...}/{@code a...} represent
4771      * arguments passed to the loop.
4772      * <blockquote><pre>{@code
4773      * int iterations(A...);
4774      * V init(A...);
4775      * V body(V, int, A...);
4776      * V countedLoop(A... a...) {
4777      *   int end = iterations(a...);
4778      *   V v = init(a...);
4779      *   for (int i = 0; i < end; ++i) {
4780      *     v = body(v, i, a...);
4781      *   }
4782      *   return v;
4783      * }
4784      * }</pre></blockquote>
4785      *
4786      * @apiNote Example with a fully conformant body method:
4787      * <blockquote><pre>{@code
4788      * // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s;
4789      * // => a variation on a well known theme
4790      * static String step(String v, int counter, String init) { return "na " + v; }
4791      * // assume MH_step is a handle to the method above
4792      * MethodHandle fit13 = MethodHandles.constant(int.class, 13);
4793      * MethodHandle start = MethodHandles.identity(String.class);
4794      * MethodHandle loop = MethodHandles.countedLoop(fit13, start, MH_step);
4795      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("Lambdaman!"));
4796      * }</pre></blockquote>
4797      *
4798      * @apiNote Example with the simplest possible body method type,
4799      * and passing the number of iterations to the loop invocation:
4800      * <blockquote><pre>{@code
4801      * // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s;
4802      * // => a variation on a well known theme
4803      * static String step(String v, int counter ) { return "na " + v; }
4804      * // assume MH_step is a handle to the method above
4805      * MethodHandle count = MethodHandles.dropArguments(MethodHandles.identity(int.class), 1, String.class);
4806      * MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class);
4807      * MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step);  // (v, i) -> "na " + v
4808      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "Lambdaman!"));
4809      * }</pre></blockquote>
4810      *
4811      * @apiNote Example that treats the number of iterations, string to append to, and string to append
4812      * as loop parameters:
4813      * <blockquote><pre>{@code
4814      * // String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s;
4815      * // => a variation on a well known theme
4816      * static String step(String v, int counter, int iterations_, String pre, String start_) { return pre + " " + v; }
4817      * // assume MH_step is a handle to the method above
4818      * MethodHandle count = MethodHandles.identity(int.class);
4819      * MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class, String.class);
4820      * MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step);  // (v, i, _, pre, _) -> pre + " " + v
4821      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "na", "Lambdaman!"));
4822      * }</pre></blockquote>
4823      *
4824      * @apiNote Example that illustrates the usage of {@link #dropArgumentsToMatch(MethodHandle, int, List, int)}
4825      * to enforce a loop type:
4826      * <blockquote><pre>{@code
4827      * // String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s;
4828      * // => a variation on a well known theme
4829      * static String step(String v, int counter, String pre) { return pre + " " + v; }
4830      * // assume MH_step is a handle to the method above
4831      * MethodType loopType = methodType(String.class, String.class, int.class, String.class);
4832      * MethodHandle count = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(int.class),    0, loopType.parameterList(), 1);
4833      * MethodHandle start = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(String.class), 0, loopType.parameterList(), 2);
4834      * MethodHandle body  = MethodHandles.dropArgumentsToMatch(MH_step,                              2, loopType.parameterList(), 0);
4835      * MethodHandle loop = MethodHandles.countedLoop(count, start, body);  // (v, i, pre, _, _) -> pre + " " + v
4836      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("na", 13, "Lambdaman!"));
4837      * }</pre></blockquote>
4838      *
4839      * @apiNote The implementation of this method can be expressed as follows:
4840      * <blockquote><pre>{@code
4841      * MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) {
4842      *     return countedLoop(empty(iterations.type()), iterations, init, body);
4843      * }
4844      * }</pre></blockquote>
4845      *
4846      * @param iterations a non-{@code null} handle to return the number of iterations this loop should run. The handle's
4847      *                   result type must be {@code int}. See above for other constraints.
4848      * @param init optional initializer, providing the initial value of the loop variable.
4849      *             May be {@code null}, implying a default initial value.  See above for other constraints.
4850      * @param body body of the loop, which may not be {@code null}.
4851      *             It controls the loop parameters and result type in the standard case (see above for details).
4852      *             It must accept its own return type (if non-void) plus an {@code int} parameter (for the counter),
4853      *             and may accept any number of additional types.
4854      *             See above for other constraints.
4855      *
4856      * @return a method handle representing the loop.
4857      * @throws NullPointerException if either of the {@code iterations} or {@code body} handles is {@code null}.
4858      * @throws IllegalArgumentException if any argument violates the rules formulated above.
4859      *
4860      * @see #countedLoop(MethodHandle, MethodHandle, MethodHandle, MethodHandle)
4861      * @since 9
4862      */
countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body)4863     public static MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) {
4864         return countedLoop(empty(iterations.type()), iterations, init, body);
4865     }
4866 
4867     /**
4868      * Constructs a loop that counts over a range of numbers.
4869      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
4870      * <p>
4871      * The loop counter {@code i} is a loop iteration variable of type {@code int}.
4872      * The {@code start} and {@code end} handles determine the start (inclusive) and end (exclusive)
4873      * values of the loop counter.
4874      * The loop counter will be initialized to the {@code int} value returned from the evaluation of the
4875      * {@code start} handle and run to the value returned from {@code end} (exclusively) with a step width of 1.
4876      * <p>
4877      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
4878      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
4879      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
4880      * <p>
4881      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
4882      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
4883      * iteration variable.
4884      * The result of the loop handle execution will be the final {@code V} value of that variable
4885      * (or {@code void} if there is no {@code V} variable).
4886      * <p>
4887      * The following rules hold for the argument handles:<ul>
4888      * <li>The {@code start} and {@code end} handles must not be {@code null}, and must both return
4889      * the common type {@code int}, referred to here as {@code I} in parameter type lists.
4890      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
4891      * {@code (V I A...)V}, where {@code V} is non-{@code void}, or else {@code (I A...)void}.
4892      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
4893      * and we will write {@code (V I A...)V} with the understanding that a {@code void} type {@code V}
4894      * is quietly dropped from the parameter list, leaving {@code (I A...)V}.)
4895      * <li>The parameter list {@code (V I A...)} of the body contributes to a list
4896      * of types called the <em>internal parameter list</em>.
4897      * It will constrain the parameter lists of the other loop parts.
4898      * <li>As a special case, if the body contributes only {@code V} and {@code I} types,
4899      * with no additional {@code A} types, then the internal parameter list is extended by
4900      * the argument types {@code A...} of the {@code end} handle.
4901      * <li>If the iteration variable types {@code (V I)} are dropped from the internal parameter list, the resulting shorter
4902      * list {@code (A...)} is called the <em>external parameter list</em>.
4903      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
4904      * additional state variable of the loop.
4905      * The body must both accept a leading parameter and return a value of this type {@code V}.
4906      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
4907      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
4908      * <a href="MethodHandles.html#effid">effectively identical</a>
4909      * to the external parameter list {@code (A...)}.
4910      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
4911      * {@linkplain #empty default value}.
4912      * <li>The parameter list of {@code start} (of some form {@code (A*)}) must be
4913      * effectively identical to the external parameter list {@code (A...)}.
4914      * <li>Likewise, the parameter list of {@code end} must be effectively identical
4915      * to the external parameter list.
4916      * </ul>
4917      * <p>
4918      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
4919      * <li>The loop handle's result type is the result type {@code V} of the body.
4920      * <li>The loop handle's parameter types are the types {@code (A...)},
4921      * from the external parameter list.
4922      * </ul>
4923      * <p>
4924      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
4925      * the second loop variable as well as the result type of the loop; and {@code A...}/{@code a...} represent
4926      * arguments passed to the loop.
4927      * <blockquote><pre>{@code
4928      * int start(A...);
4929      * int end(A...);
4930      * V init(A...);
4931      * V body(V, int, A...);
4932      * V countedLoop(A... a...) {
4933      *   int e = end(a...);
4934      *   int s = start(a...);
4935      *   V v = init(a...);
4936      *   for (int i = s; i < e; ++i) {
4937      *     v = body(v, i, a...);
4938      *   }
4939      *   return v;
4940      * }
4941      * }</pre></blockquote>
4942      *
4943      * @apiNote The implementation of this method can be expressed as follows:
4944      * <blockquote><pre>{@code
4945      * MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
4946      *     MethodHandle returnVar = dropArguments(identity(init.type().returnType()), 0, int.class, int.class);
4947      *     // assume MH_increment and MH_predicate are handles to implementation-internal methods with
4948      *     // the following semantics:
4949      *     // MH_increment: (int limit, int counter) -> counter + 1
4950      *     // MH_predicate: (int limit, int counter) -> counter < limit
4951      *     Class<?> counterType = start.type().returnType();  // int
4952      *     Class<?> returnType = body.type().returnType();
4953      *     MethodHandle incr = MH_increment, pred = MH_predicate, retv = null;
4954      *     if (returnType != void.class) {  // ignore the V variable
4955      *         incr = dropArguments(incr, 1, returnType);  // (limit, v, i) => (limit, i)
4956      *         pred = dropArguments(pred, 1, returnType);  // ditto
4957      *         retv = dropArguments(identity(returnType), 0, counterType); // ignore limit
4958      *     }
4959      *     body = dropArguments(body, 0, counterType);  // ignore the limit variable
4960      *     MethodHandle[]
4961      *         loopLimit  = { end, null, pred, retv }, // limit = end(); i < limit || return v
4962      *         bodyClause = { init, body },            // v = init(); v = body(v, i)
4963      *         indexVar   = { start, incr };           // i = start(); i = i + 1
4964      *     return loop(loopLimit, bodyClause, indexVar);
4965      * }
4966      * }</pre></blockquote>
4967      *
4968      * @param start a non-{@code null} handle to return the start value of the loop counter, which must be {@code int}.
4969      *              See above for other constraints.
4970      * @param end a non-{@code null} handle to return the end value of the loop counter (the loop will run to
4971      *            {@code end-1}). The result type must be {@code int}. See above for other constraints.
4972      * @param init optional initializer, providing the initial value of the loop variable.
4973      *             May be {@code null}, implying a default initial value.  See above for other constraints.
4974      * @param body body of the loop, which may not be {@code null}.
4975      *             It controls the loop parameters and result type in the standard case (see above for details).
4976      *             It must accept its own return type (if non-void) plus an {@code int} parameter (for the counter),
4977      *             and may accept any number of additional types.
4978      *             See above for other constraints.
4979      *
4980      * @return a method handle representing the loop.
4981      * @throws NullPointerException if any of the {@code start}, {@code end}, or {@code body} handles is {@code null}.
4982      * @throws IllegalArgumentException if any argument violates the rules formulated above.
4983      *
4984      * @see #countedLoop(MethodHandle, MethodHandle, MethodHandle)
4985      * @since 9
4986      */
countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body)4987     public static MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
4988         countedLoopChecks(start, end, init, body);
4989         Class<?> counterType = start.type().returnType();  // int, but who's counting?
4990         Class<?> limitType   = end.type().returnType();    // yes, int again
4991         Class<?> returnType  = body.type().returnType();
4992         // Android-changed: getConstantHandle is in MethodHandles.
4993         // MethodHandle incr = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopStep);
4994         // MethodHandle pred = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopPred);
4995         MethodHandle incr = getConstantHandle(MH_countedLoopStep);
4996         MethodHandle pred = getConstantHandle(MH_countedLoopPred);
4997         MethodHandle retv = null;
4998         if (returnType != void.class) {
4999             incr = dropArguments(incr, 1, returnType);  // (limit, v, i) => (limit, i)
5000             pred = dropArguments(pred, 1, returnType);  // ditto
5001             retv = dropArguments(identity(returnType), 0, counterType);
5002         }
5003         body = dropArguments(body, 0, counterType);  // ignore the limit variable
5004         MethodHandle[]
5005             loopLimit  = { end, null, pred, retv }, // limit = end(); i < limit || return v
5006             bodyClause = { init, body },            // v = init(); v = body(v, i)
5007             indexVar   = { start, incr };           // i = start(); i = i + 1
5008         return loop(loopLimit, bodyClause, indexVar);
5009     }
5010 
countedLoopChecks(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body)5011     private static void countedLoopChecks(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
5012         Objects.requireNonNull(start);
5013         Objects.requireNonNull(end);
5014         Objects.requireNonNull(body);
5015         Class<?> counterType = start.type().returnType();
5016         if (counterType != int.class) {
5017             MethodType expected = start.type().changeReturnType(int.class);
5018             throw misMatchedTypes("start function", start.type(), expected);
5019         } else if (end.type().returnType() != counterType) {
5020             MethodType expected = end.type().changeReturnType(counterType);
5021             throw misMatchedTypes("end function", end.type(), expected);
5022         }
5023         MethodType bodyType = body.type();
5024         Class<?> returnType = bodyType.returnType();
5025         List<Class<?>> innerList = bodyType.parameterList();
5026         // strip leading V value if present
5027         int vsize = (returnType == void.class ? 0 : 1);
5028         if (vsize != 0 && (innerList.size() == 0 || innerList.get(0) != returnType)) {
5029             // argument list has no "V" => error
5030             MethodType expected = bodyType.insertParameterTypes(0, returnType);
5031             throw misMatchedTypes("body function", bodyType, expected);
5032         } else if (innerList.size() <= vsize || innerList.get(vsize) != counterType) {
5033             // missing I type => error
5034             MethodType expected = bodyType.insertParameterTypes(vsize, counterType);
5035             throw misMatchedTypes("body function", bodyType, expected);
5036         }
5037         List<Class<?>> outerList = innerList.subList(vsize + 1, innerList.size());
5038         if (outerList.isEmpty()) {
5039             // special case; take lists from end handle
5040             outerList = end.type().parameterList();
5041             innerList = bodyType.insertParameterTypes(vsize + 1, outerList).parameterList();
5042         }
5043         MethodType expected = methodType(counterType, outerList);
5044         if (!start.type().effectivelyIdenticalParameters(0, outerList)) {
5045             throw misMatchedTypes("start parameter types", start.type(), expected);
5046         }
5047         if (end.type() != start.type() &&
5048             !end.type().effectivelyIdenticalParameters(0, outerList)) {
5049             throw misMatchedTypes("end parameter types", end.type(), expected);
5050         }
5051         if (init != null) {
5052             MethodType initType = init.type();
5053             if (initType.returnType() != returnType ||
5054                 !initType.effectivelyIdenticalParameters(0, outerList)) {
5055                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, outerList));
5056             }
5057         }
5058     }
5059 
5060     /**
5061      * Constructs a loop that ranges over the values produced by an {@code Iterator<T>}.
5062      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
5063      * <p>
5064      * The iterator itself will be determined by the evaluation of the {@code iterator} handle.
5065      * Each value it produces will be stored in a loop iteration variable of type {@code T}.
5066      * <p>
5067      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
5068      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
5069      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
5070      * <p>
5071      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
5072      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
5073      * iteration variable.
5074      * The result of the loop handle execution will be the final {@code V} value of that variable
5075      * (or {@code void} if there is no {@code V} variable).
5076      * <p>
5077      * The following rules hold for the argument handles:<ul>
5078      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
5079      * {@code (V T A...)V}, where {@code V} is non-{@code void}, or else {@code (T A...)void}.
5080      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
5081      * and we will write {@code (V T A...)V} with the understanding that a {@code void} type {@code V}
5082      * is quietly dropped from the parameter list, leaving {@code (T A...)V}.)
5083      * <li>The parameter list {@code (V T A...)} of the body contributes to a list
5084      * of types called the <em>internal parameter list</em>.
5085      * It will constrain the parameter lists of the other loop parts.
5086      * <li>As a special case, if the body contributes only {@code V} and {@code T} types,
5087      * with no additional {@code A} types, then the internal parameter list is extended by
5088      * the argument types {@code A...} of the {@code iterator} handle; if it is {@code null} the
5089      * single type {@code Iterable} is added and constitutes the {@code A...} list.
5090      * <li>If the iteration variable types {@code (V T)} are dropped from the internal parameter list, the resulting shorter
5091      * list {@code (A...)} is called the <em>external parameter list</em>.
5092      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
5093      * additional state variable of the loop.
5094      * The body must both accept a leading parameter and return a value of this type {@code V}.
5095      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
5096      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
5097      * <a href="MethodHandles.html#effid">effectively identical</a>
5098      * to the external parameter list {@code (A...)}.
5099      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
5100      * {@linkplain #empty default value}.
5101      * <li>If the {@code iterator} handle is non-{@code null}, it must have the return
5102      * type {@code java.util.Iterator} or a subtype thereof.
5103      * The iterator it produces when the loop is executed will be assumed
5104      * to yield values which can be converted to type {@code T}.
5105      * <li>The parameter list of an {@code iterator} that is non-{@code null} (of some form {@code (A*)}) must be
5106      * effectively identical to the external parameter list {@code (A...)}.
5107      * <li>If {@code iterator} is {@code null} it defaults to a method handle which behaves
5108      * like {@link java.lang.Iterable#iterator()}.  In that case, the internal parameter list
5109      * {@code (V T A...)} must have at least one {@code A} type, and the default iterator
5110      * handle parameter is adjusted to accept the leading {@code A} type, as if by
5111      * the {@link MethodHandle#asType asType} conversion method.
5112      * The leading {@code A} type must be {@code Iterable} or a subtype thereof.
5113      * This conversion step, done at loop construction time, must not throw a {@code WrongMethodTypeException}.
5114      * </ul>
5115      * <p>
5116      * The type {@code T} may be either a primitive or reference.
5117      * Since type {@code Iterator<T>} is erased in the method handle representation to the raw type {@code Iterator},
5118      * the {@code iteratedLoop} combinator adjusts the leading argument type for {@code body} to {@code Object}
5119      * as if by the {@link MethodHandle#asType asType} conversion method.
5120      * Therefore, if an iterator of the wrong type appears as the loop is executed, runtime exceptions may occur
5121      * as the result of dynamic conversions performed by {@link MethodHandle#asType(MethodType)}.
5122      * <p>
5123      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
5124      * <li>The loop handle's result type is the result type {@code V} of the body.
5125      * <li>The loop handle's parameter types are the types {@code (A...)},
5126      * from the external parameter list.
5127      * </ul>
5128      * <p>
5129      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
5130      * the loop variable as well as the result type of the loop; {@code T}/{@code t}, that of the elements of the
5131      * structure the loop iterates over, and {@code A...}/{@code a...} represent arguments passed to the loop.
5132      * <blockquote><pre>{@code
5133      * Iterator<T> iterator(A...);  // defaults to Iterable::iterator
5134      * V init(A...);
5135      * V body(V,T,A...);
5136      * V iteratedLoop(A... a...) {
5137      *   Iterator<T> it = iterator(a...);
5138      *   V v = init(a...);
5139      *   while (it.hasNext()) {
5140      *     T t = it.next();
5141      *     v = body(v, t, a...);
5142      *   }
5143      *   return v;
5144      * }
5145      * }</pre></blockquote>
5146      *
5147      * @apiNote Example:
5148      * <blockquote><pre>{@code
5149      * // get an iterator from a list
5150      * static List<String> reverseStep(List<String> r, String e) {
5151      *   r.add(0, e);
5152      *   return r;
5153      * }
5154      * static List<String> newArrayList() { return new ArrayList<>(); }
5155      * // assume MH_reverseStep and MH_newArrayList are handles to the above methods
5156      * MethodHandle loop = MethodHandles.iteratedLoop(null, MH_newArrayList, MH_reverseStep);
5157      * List<String> list = Arrays.asList("a", "b", "c", "d", "e");
5158      * List<String> reversedList = Arrays.asList("e", "d", "c", "b", "a");
5159      * assertEquals(reversedList, (List<String>) loop.invoke(list));
5160      * }</pre></blockquote>
5161      *
5162      * @apiNote The implementation of this method can be expressed approximately as follows:
5163      * <blockquote><pre>{@code
5164      * MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) {
5165      *     // assume MH_next, MH_hasNext, MH_startIter are handles to methods of Iterator/Iterable
5166      *     Class<?> returnType = body.type().returnType();
5167      *     Class<?> ttype = body.type().parameterType(returnType == void.class ? 0 : 1);
5168      *     MethodHandle nextVal = MH_next.asType(MH_next.type().changeReturnType(ttype));
5169      *     MethodHandle retv = null, step = body, startIter = iterator;
5170      *     if (returnType != void.class) {
5171      *         // the simple thing first:  in (I V A...), drop the I to get V
5172      *         retv = dropArguments(identity(returnType), 0, Iterator.class);
5173      *         // body type signature (V T A...), internal loop types (I V A...)
5174      *         step = swapArguments(body, 0, 1);  // swap V <-> T
5175      *     }
5176      *     if (startIter == null)  startIter = MH_getIter;
5177      *     MethodHandle[]
5178      *         iterVar    = { startIter, null, MH_hasNext, retv }, // it = iterator; while (it.hasNext())
5179      *         bodyClause = { init, filterArguments(step, 0, nextVal) };  // v = body(v, t, a)
5180      *     return loop(iterVar, bodyClause);
5181      * }
5182      * }</pre></blockquote>
5183      *
5184      * @param iterator an optional handle to return the iterator to start the loop.
5185      *                 If non-{@code null}, the handle must return {@link java.util.Iterator} or a subtype.
5186      *                 See above for other constraints.
5187      * @param init optional initializer, providing the initial value of the loop variable.
5188      *             May be {@code null}, implying a default initial value.  See above for other constraints.
5189      * @param body body of the loop, which may not be {@code null}.
5190      *             It controls the loop parameters and result type in the standard case (see above for details).
5191      *             It must accept its own return type (if non-void) plus a {@code T} parameter (for the iterated values),
5192      *             and may accept any number of additional types.
5193      *             See above for other constraints.
5194      *
5195      * @return a method handle embodying the iteration loop functionality.
5196      * @throws NullPointerException if the {@code body} handle is {@code null}.
5197      * @throws IllegalArgumentException if any argument violates the above requirements.
5198      *
5199      * @since 9
5200      */
iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body)5201     public static MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) {
5202         Class<?> iterableType = iteratedLoopChecks(iterator, init, body);
5203         Class<?> returnType = body.type().returnType();
5204         // Android-changed: getConstantHandle is in MethodHandles.
5205         // MethodHandle hasNext = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iteratePred);
5206         // MethodHandle nextRaw = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iterateNext);
5207         MethodHandle hasNext = getConstantHandle(MH_iteratePred);
5208         MethodHandle nextRaw = getConstantHandle(MH_iterateNext);
5209         MethodHandle startIter;
5210         MethodHandle nextVal;
5211         {
5212             MethodType iteratorType;
5213             if (iterator == null) {
5214                 // derive argument type from body, if available, else use Iterable
5215                 // Android-changed: getConstantHandle is in MethodHandles.
5216                 // startIter = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_initIterator);
5217                 startIter = getConstantHandle(MH_initIterator);
5218                 iteratorType = startIter.type().changeParameterType(0, iterableType);
5219             } else {
5220                 // force return type to the internal iterator class
5221                 iteratorType = iterator.type().changeReturnType(Iterator.class);
5222                 startIter = iterator;
5223             }
5224             Class<?> ttype = body.type().parameterType(returnType == void.class ? 0 : 1);
5225             MethodType nextValType = nextRaw.type().changeReturnType(ttype);
5226 
5227             // perform the asType transforms under an exception transformer, as per spec.:
5228             try {
5229                 startIter = startIter.asType(iteratorType);
5230                 nextVal = nextRaw.asType(nextValType);
5231             } catch (WrongMethodTypeException ex) {
5232                 throw new IllegalArgumentException(ex);
5233             }
5234         }
5235 
5236         MethodHandle retv = null, step = body;
5237         if (returnType != void.class) {
5238             // the simple thing first:  in (I V A...), drop the I to get V
5239             retv = dropArguments(identity(returnType), 0, Iterator.class);
5240             // body type signature (V T A...), internal loop types (I V A...)
5241             step = swapArguments(body, 0, 1);  // swap V <-> T
5242         }
5243 
5244         MethodHandle[]
5245             iterVar    = { startIter, null, hasNext, retv },
5246             bodyClause = { init, filterArgument(step, 0, nextVal) };
5247         return loop(iterVar, bodyClause);
5248     }
5249 
iteratedLoopChecks(MethodHandle iterator, MethodHandle init, MethodHandle body)5250     private static Class<?> iteratedLoopChecks(MethodHandle iterator, MethodHandle init, MethodHandle body) {
5251         Objects.requireNonNull(body);
5252         MethodType bodyType = body.type();
5253         Class<?> returnType = bodyType.returnType();
5254         List<Class<?>> internalParamList = bodyType.parameterList();
5255         // strip leading V value if present
5256         int vsize = (returnType == void.class ? 0 : 1);
5257         if (vsize != 0 && (internalParamList.size() == 0 || internalParamList.get(0) != returnType)) {
5258             // argument list has no "V" => error
5259             MethodType expected = bodyType.insertParameterTypes(0, returnType);
5260             throw misMatchedTypes("body function", bodyType, expected);
5261         } else if (internalParamList.size() <= vsize) {
5262             // missing T type => error
5263             MethodType expected = bodyType.insertParameterTypes(vsize, Object.class);
5264             throw misMatchedTypes("body function", bodyType, expected);
5265         }
5266         List<Class<?>> externalParamList = internalParamList.subList(vsize + 1, internalParamList.size());
5267         Class<?> iterableType = null;
5268         if (iterator != null) {
5269             // special case; if the body handle only declares V and T then
5270             // the external parameter list is obtained from iterator handle
5271             if (externalParamList.isEmpty()) {
5272                 externalParamList = iterator.type().parameterList();
5273             }
5274             MethodType itype = iterator.type();
5275             if (!Iterator.class.isAssignableFrom(itype.returnType())) {
5276                 throw newIllegalArgumentException("iteratedLoop first argument must have Iterator return type");
5277             }
5278             if (!itype.effectivelyIdenticalParameters(0, externalParamList)) {
5279                 MethodType expected = methodType(itype.returnType(), externalParamList);
5280                 throw misMatchedTypes("iterator parameters", itype, expected);
5281             }
5282         } else {
5283             if (externalParamList.isEmpty()) {
5284                 // special case; if the iterator handle is null and the body handle
5285                 // only declares V and T then the external parameter list consists
5286                 // of Iterable
5287                 externalParamList = Arrays.asList(Iterable.class);
5288                 iterableType = Iterable.class;
5289             } else {
5290                 // special case; if the iterator handle is null and the external
5291                 // parameter list is not empty then the first parameter must be
5292                 // assignable to Iterable
5293                 iterableType = externalParamList.get(0);
5294                 if (!Iterable.class.isAssignableFrom(iterableType)) {
5295                     throw newIllegalArgumentException(
5296                             "inferred first loop argument must inherit from Iterable: " + iterableType);
5297                 }
5298             }
5299         }
5300         if (init != null) {
5301             MethodType initType = init.type();
5302             if (initType.returnType() != returnType ||
5303                     !initType.effectivelyIdenticalParameters(0, externalParamList)) {
5304                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, externalParamList));
5305             }
5306         }
5307         return iterableType;  // help the caller a bit
5308     }
5309 
swapArguments(MethodHandle mh, int i, int j)5310     /*non-public*/ static MethodHandle swapArguments(MethodHandle mh, int i, int j) {
5311         // there should be a better way to uncross my wires
5312         int arity = mh.type().parameterCount();
5313         int[] order = new int[arity];
5314         for (int k = 0; k < arity; k++)  order[k] = k;
5315         order[i] = j; order[j] = i;
5316         Class<?>[] types = mh.type().parameterArray();
5317         Class<?> ti = types[i]; types[i] = types[j]; types[j] = ti;
5318         MethodType swapType = methodType(mh.type().returnType(), types);
5319         return permuteArguments(mh, swapType, order);
5320     }
5321 
5322     /**
5323      * Makes a method handle that adapts a {@code target} method handle by wrapping it in a {@code try-finally} block.
5324      * Another method handle, {@code cleanup}, represents the functionality of the {@code finally} block. Any exception
5325      * thrown during the execution of the {@code target} handle will be passed to the {@code cleanup} handle. The
5326      * exception will be rethrown, unless {@code cleanup} handle throws an exception first.  The
5327      * value returned from the {@code cleanup} handle's execution will be the result of the execution of the
5328      * {@code try-finally} handle.
5329      * <p>
5330      * The {@code cleanup} handle will be passed one or two additional leading arguments.
5331      * The first is the exception thrown during the
5332      * execution of the {@code target} handle, or {@code null} if no exception was thrown.
5333      * The second is the result of the execution of the {@code target} handle, or, if it throws an exception,
5334      * a {@code null}, zero, or {@code false} value of the required type is supplied as a placeholder.
5335      * The second argument is not present if the {@code target} handle has a {@code void} return type.
5336      * (Note that, except for argument type conversions, combinators represent {@code void} values in parameter lists
5337      * by omitting the corresponding paradoxical arguments, not by inserting {@code null} or zero values.)
5338      * <p>
5339      * The {@code target} and {@code cleanup} handles must have the same corresponding argument and return types, except
5340      * that the {@code cleanup} handle may omit trailing arguments. Also, the {@code cleanup} handle must have one or
5341      * two extra leading parameters:<ul>
5342      * <li>a {@code Throwable}, which will carry the exception thrown by the {@code target} handle (if any); and
5343      * <li>a parameter of the same type as the return type of both {@code target} and {@code cleanup}, which will carry
5344      * the result from the execution of the {@code target} handle.
5345      * This parameter is not present if the {@code target} returns {@code void}.
5346      * </ul>
5347      * <p>
5348      * The pseudocode for the resulting adapter looks as follows. In the code, {@code V} represents the result type of
5349      * the {@code try/finally} construct; {@code A}/{@code a}, the types and values of arguments to the resulting
5350      * handle consumed by the cleanup; and {@code B}/{@code b}, those of arguments to the resulting handle discarded by
5351      * the cleanup.
5352      * <blockquote><pre>{@code
5353      * V target(A..., B...);
5354      * V cleanup(Throwable, V, A...);
5355      * V adapter(A... a, B... b) {
5356      *   V result = (zero value for V);
5357      *   Throwable throwable = null;
5358      *   try {
5359      *     result = target(a..., b...);
5360      *   } catch (Throwable t) {
5361      *     throwable = t;
5362      *     throw t;
5363      *   } finally {
5364      *     result = cleanup(throwable, result, a...);
5365      *   }
5366      *   return result;
5367      * }
5368      * }</pre></blockquote>
5369      * <p>
5370      * Note that the saved arguments ({@code a...} in the pseudocode) cannot
5371      * be modified by execution of the target, and so are passed unchanged
5372      * from the caller to the cleanup, if it is invoked.
5373      * <p>
5374      * The target and cleanup must return the same type, even if the cleanup
5375      * always throws.
5376      * To create such a throwing cleanup, compose the cleanup logic
5377      * with {@link #throwException throwException},
5378      * in order to create a method handle of the correct return type.
5379      * <p>
5380      * Note that {@code tryFinally} never converts exceptions into normal returns.
5381      * In rare cases where exceptions must be converted in that way, first wrap
5382      * the target with {@link #catchException(MethodHandle, Class, MethodHandle)}
5383      * to capture an outgoing exception, and then wrap with {@code tryFinally}.
5384      * <p>
5385      * It is recommended that the first parameter type of {@code cleanup} be
5386      * declared {@code Throwable} rather than a narrower subtype.  This ensures
5387      * {@code cleanup} will always be invoked with whatever exception that
5388      * {@code target} throws.  Declaring a narrower type may result in a
5389      * {@code ClassCastException} being thrown by the {@code try-finally}
5390      * handle if the type of the exception thrown by {@code target} is not
5391      * assignable to the first parameter type of {@code cleanup}.  Note that
5392      * various exception types of {@code VirtualMachineError},
5393      * {@code LinkageError}, and {@code RuntimeException} can in principle be
5394      * thrown by almost any kind of Java code, and a finally clause that
5395      * catches (say) only {@code IOException} would mask any of the others
5396      * behind a {@code ClassCastException}.
5397      *
5398      * @param target the handle whose execution is to be wrapped in a {@code try} block.
5399      * @param cleanup the handle that is invoked in the finally block.
5400      *
5401      * @return a method handle embodying the {@code try-finally} block composed of the two arguments.
5402      * @throws NullPointerException if any argument is null
5403      * @throws IllegalArgumentException if {@code cleanup} does not accept
5404      *          the required leading arguments, or if the method handle types do
5405      *          not match in their return types and their
5406      *          corresponding trailing parameters
5407      *
5408      * @see MethodHandles#catchException(MethodHandle, Class, MethodHandle)
5409      * @since 9
5410      */
tryFinally(MethodHandle target, MethodHandle cleanup)5411     public static MethodHandle tryFinally(MethodHandle target, MethodHandle cleanup) {
5412         List<Class<?>> targetParamTypes = target.type().parameterList();
5413         Class<?> rtype = target.type().returnType();
5414 
5415         tryFinallyChecks(target, cleanup);
5416 
5417         // Match parameter lists: if the cleanup has a shorter parameter list than the target, add ignored arguments.
5418         // The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the
5419         // target parameter list.
5420         cleanup = dropArgumentsToMatch(cleanup, (rtype == void.class ? 1 : 2), targetParamTypes, 0);
5421 
5422         // Ensure that the intrinsic type checks the instance thrown by the
5423         // target against the first parameter of cleanup
5424         cleanup = cleanup.asType(cleanup.type().changeParameterType(0, Throwable.class));
5425 
5426         // Use asFixedArity() to avoid unnecessary boxing of last argument for VarargsCollector case.
5427         // Android-changed: use Transformer implementation.
5428         // return MethodHandleImpl.makeTryFinally(target.asFixedArity(), cleanup.asFixedArity(), rtype, targetParamTypes);
5429         return new Transformers.TryFinally(target.asFixedArity(), cleanup.asFixedArity());
5430     }
5431 
tryFinallyChecks(MethodHandle target, MethodHandle cleanup)5432     private static void tryFinallyChecks(MethodHandle target, MethodHandle cleanup) {
5433         Class<?> rtype = target.type().returnType();
5434         if (rtype != cleanup.type().returnType()) {
5435             throw misMatchedTypes("target and return types", cleanup.type().returnType(), rtype);
5436         }
5437         MethodType cleanupType = cleanup.type();
5438         if (!Throwable.class.isAssignableFrom(cleanupType.parameterType(0))) {
5439             throw misMatchedTypes("cleanup first argument and Throwable", cleanup.type(), Throwable.class);
5440         }
5441         if (rtype != void.class && cleanupType.parameterType(1) != rtype) {
5442             throw misMatchedTypes("cleanup second argument and target return type", cleanup.type(), rtype);
5443         }
5444         // The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the
5445         // target parameter list.
5446         int cleanupArgIndex = rtype == void.class ? 1 : 2;
5447         if (!cleanupType.effectivelyIdenticalParameters(cleanupArgIndex, target.type().parameterList())) {
5448             throw misMatchedTypes("cleanup parameters after (Throwable,result) and target parameter list prefix",
5449                     cleanup.type(), target.type());
5450         }
5451     }
5452 
5453     // BEGIN Android-added: Code from OpenJDK's MethodHandleImpl.
5454 
5455     /**
5456      * This method is bound as the predicate in {@linkplain MethodHandles#countedLoop(MethodHandle, MethodHandle,
5457      * MethodHandle) counting loops}.
5458      *
5459      * @param limit the upper bound of the parameter, statically bound at loop creation time.
5460      * @param counter the counter parameter, passed in during loop execution.
5461      *
5462      * @return whether the counter has reached the limit.
5463      * @hide
5464      */
countedLoopPredicate(int limit, int counter)5465     public static boolean countedLoopPredicate(int limit, int counter) {
5466         return counter < limit;
5467     }
5468 
5469     /**
5470      * This method is bound as the step function in {@linkplain MethodHandles#countedLoop(MethodHandle, MethodHandle,
5471      * MethodHandle) counting loops} to increment the counter.
5472      *
5473      * @param limit the upper bound of the loop counter (ignored).
5474      * @param counter the loop counter.
5475      *
5476      * @return the loop counter incremented by 1.
5477      * @hide
5478      */
countedLoopStep(int limit, int counter)5479     public static int countedLoopStep(int limit, int counter) {
5480         return counter + 1;
5481     }
5482 
5483     /**
5484      * This is bound to initialize the loop-local iterator in {@linkplain MethodHandles#iteratedLoop iterating loops}.
5485      *
5486      * @param it the {@link Iterable} over which the loop iterates.
5487      *
5488      * @return an {@link Iterator} over the argument's elements.
5489      * @hide
5490      */
initIterator(Iterable<?> it)5491     public static Iterator<?> initIterator(Iterable<?> it) {
5492         return it.iterator();
5493     }
5494 
5495     /**
5496      * This method is bound as the predicate in {@linkplain MethodHandles#iteratedLoop iterating loops}.
5497      *
5498      * @param it the iterator to be checked.
5499      *
5500      * @return {@code true} iff there are more elements to iterate over.
5501      * @hide
5502      */
iteratePredicate(Iterator<?> it)5503     public static boolean iteratePredicate(Iterator<?> it) {
5504         return it.hasNext();
5505     }
5506 
5507     /**
5508      * This method is bound as the step for retrieving the current value from the iterator in {@linkplain
5509      * MethodHandles#iteratedLoop iterating loops}.
5510      *
5511      * @param it the iterator.
5512      *
5513      * @return the next element from the iterator.
5514      * @hide
5515      */
iterateNext(Iterator<?> it)5516     public static Object iterateNext(Iterator<?> it) {
5517         return it.next();
5518     }
5519 
5520     // Indexes into constant method handles:
5521     static final int
5522         MH_cast                  =  0,
5523         MH_selectAlternative     =  1,
5524         MH_copyAsPrimitiveArray  =  2,
5525         MH_fillNewTypedArray     =  3,
5526         MH_fillNewArray          =  4,
5527         MH_arrayIdentity         =  5,
5528         MH_countedLoopPred       =  6,
5529         MH_countedLoopStep       =  7,
5530         MH_initIterator          =  8,
5531         MH_iteratePred           =  9,
5532         MH_iterateNext           = 10,
5533         MH_Array_newInstance     = 11,
5534         MH_LIMIT                 = 12;
5535 
getConstantHandle(int idx)5536     static MethodHandle getConstantHandle(int idx) {
5537         MethodHandle handle = HANDLES[idx];
5538         if (handle != null) {
5539             return handle;
5540         }
5541         return setCachedHandle(idx, makeConstantHandle(idx));
5542     }
5543 
setCachedHandle(int idx, final MethodHandle method)5544     private static synchronized MethodHandle setCachedHandle(int idx, final MethodHandle method) {
5545         // Simulate a CAS, to avoid racy duplication of results.
5546         MethodHandle prev = HANDLES[idx];
5547         if (prev != null) {
5548             return prev;
5549         }
5550         HANDLES[idx] = method;
5551         return method;
5552     }
5553 
5554     // Local constant method handles:
5555     private static final @Stable MethodHandle[] HANDLES = new MethodHandle[MH_LIMIT];
5556 
makeConstantHandle(int idx)5557     private static MethodHandle makeConstantHandle(int idx) {
5558         try {
5559             // Android-added: local IMPL_LOOKUP.
5560             final Lookup IMPL_LOOKUP = MethodHandles.Lookup.IMPL_LOOKUP;
5561             switch (idx) {
5562                 // Android-removed: not-used.
5563                 /*
5564                 case MH_cast:
5565                     return IMPL_LOOKUP.findVirtual(Class.class, "cast",
5566                             MethodType.methodType(Object.class, Object.class));
5567                 case MH_copyAsPrimitiveArray:
5568                     return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "copyAsPrimitiveArray",
5569                             MethodType.methodType(Object.class, Wrapper.class, Object[].class));
5570                 case MH_arrayIdentity:
5571                     return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "identity",
5572                             MethodType.methodType(Object[].class, Object[].class));
5573                 case MH_fillNewArray:
5574                     return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "fillNewArray",
5575                             MethodType.methodType(Object[].class, Integer.class, Object[].class));
5576                 case MH_fillNewTypedArray:
5577                     return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "fillNewTypedArray",
5578                             MethodType.methodType(Object[].class, Object[].class, Integer.class, Object[].class));
5579                 case MH_selectAlternative:
5580                     return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "selectAlternative",
5581                             MethodType.methodType(MethodHandle.class, boolean.class, MethodHandle.class, MethodHandle.class));
5582                 */
5583                 case MH_countedLoopPred:
5584                     // Android-changed: methods moved to this file.
5585                     // return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "countedLoopPredicate",
5586                     //         MethodType.methodType(boolean.class, int.class, int.class));
5587                     return IMPL_LOOKUP.findStatic(MethodHandles.class, "countedLoopPredicate",
5588                             MethodType.methodType(boolean.class, int.class, int.class));
5589                 case MH_countedLoopStep:
5590                     // Android-changed: methods moved to this file.
5591                     // return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "countedLoopStep",
5592                     //         MethodType.methodType(int.class, int.class, int.class));
5593                     return IMPL_LOOKUP.findStatic(MethodHandles.class, "countedLoopStep",
5594                             MethodType.methodType(int.class, int.class, int.class));
5595                 case MH_initIterator:
5596                     // Android-changed: methods moved to this file.
5597                     // return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "initIterator",
5598                     //         MethodType.methodType(Iterator.class, Iterable.class));
5599                     return IMPL_LOOKUP.findStatic(MethodHandles.class, "initIterator",
5600                             MethodType.methodType(Iterator.class, Iterable.class));
5601                 case MH_iteratePred:
5602                     // Android-changed: methods moved to this file.
5603                     // return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "iteratePredicate",
5604                     //         MethodType.methodType(boolean.class, Iterator.class));
5605                     return IMPL_LOOKUP.findStatic(MethodHandles.class, "iteratePredicate",
5606                             MethodType.methodType(boolean.class, Iterator.class));
5607                 case MH_iterateNext:
5608                     // Android-changed: methods moved to this file.
5609                     // return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "iterateNext",
5610                     //         MethodType.methodType(Object.class, Iterator.class));
5611                     return IMPL_LOOKUP.findStatic(MethodHandles.class, "iterateNext",
5612                             MethodType.methodType(Object.class, Iterator.class));
5613                 // Android-removed: not-used.
5614                 /*
5615                 case MH_Array_newInstance:
5616                     return IMPL_LOOKUP.findStatic(Array.class, "newInstance",
5617                             MethodType.methodType(Object.class, Class.class, int.class));
5618                 */
5619             }
5620         } catch (ReflectiveOperationException ex) {
5621             throw newInternalError(ex);
5622         }
5623 
5624         throw newInternalError("Unknown function index: " + idx);
5625     }
5626     // END Android-added: Code from OpenJDK's MethodHandleImpl.
5627 }
5628