• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 
26 package java.util;
27 
28 import java.util.concurrent.atomic.AtomicLong;
29 import java.util.function.DoubleConsumer;
30 import java.util.function.IntConsumer;
31 import java.util.function.LongConsumer;
32 import java.util.stream.DoubleStream;
33 import java.util.stream.IntStream;
34 import java.util.stream.LongStream;
35 import java.util.stream.StreamSupport;
36 
37 /**
38  * A generator of uniform pseudorandom values applicable for use in
39  * (among other contexts) isolated parallel computations that may
40  * generate subtasks. Class {@code SplittableRandom} supports methods for
41  * producing pseudorandom numbers of type {@code int}, {@code long},
42  * and {@code double} with similar usages as for class
43  * {@link java.util.Random} but differs in the following ways:
44  *
45  * <ul>
46  *
47  * <li>Series of generated values pass the DieHarder suite testing
48  * independence and uniformity properties of random number generators.
49  * (Most recently validated with <a
50  * href="http://www.phy.duke.edu/~rgb/General/dieharder.php"> version
51  * 3.31.1</a>.) These tests validate only the methods for certain
52  * types and ranges, but similar properties are expected to hold, at
53  * least approximately, for others as well. The <em>period</em>
54  * (length of any series of generated values before it repeats) is at
55  * least 2<sup>64</sup>.
56  *
57  * <li>Method {@link #split} constructs and returns a new
58  * SplittableRandom instance that shares no mutable state with the
59  * current instance. However, with very high probability, the
60  * values collectively generated by the two objects have the same
61  * statistical properties as if the same quantity of values were
62  * generated by a single thread using a single {@code
63  * SplittableRandom} object.
64  *
65  * <li>Instances of SplittableRandom are <em>not</em> thread-safe.
66  * They are designed to be split, not shared, across threads. For
67  * example, a {@link java.util.concurrent.ForkJoinTask
68  * fork/join-style} computation using random numbers might include a
69  * construction of the form {@code new
70  * Subtask(aSplittableRandom.split()).fork()}.
71  *
72  * <li>This class provides additional methods for generating random
73  * streams, that employ the above techniques when used in {@code
74  * stream.parallel()} mode.
75  *
76  * </ul>
77  *
78  * <p>Instances of {@code SplittableRandom} are not cryptographically
79  * secure.  Consider instead using {@link java.security.SecureRandom}
80  * in security-sensitive applications. Additionally,
81  * default-constructed instances do not use a cryptographically random
82  * seed unless the {@linkplain System#getProperty system property}
83  * {@code java.util.secureRandomSeed} is set to {@code true}.
84  *
85  * @author  Guy Steele
86  * @author  Doug Lea
87  * @since   1.8
88  */
89 public final class SplittableRandom {
90 
91     /*
92      * Implementation Overview.
93      *
94      * This algorithm was inspired by the "DotMix" algorithm by
95      * Leiserson, Schardl, and Sukha "Deterministic Parallel
96      * Random-Number Generation for Dynamic-Multithreading Platforms",
97      * PPoPP 2012, as well as those in "Parallel random numbers: as
98      * easy as 1, 2, 3" by Salmon, Morae, Dror, and Shaw, SC 2011.  It
99      * differs mainly in simplifying and cheapening operations.
100      *
101      * The primary update step (method nextSeed()) is to add a
102      * constant ("gamma") to the current (64 bit) seed, forming a
103      * simple sequence.  The seed and the gamma values for any two
104      * SplittableRandom instances are highly likely to be different.
105      *
106      * Methods nextLong, nextInt, and derivatives do not return the
107      * sequence (seed) values, but instead a hash-like bit-mix of
108      * their bits, producing more independently distributed sequences.
109      * For nextLong, the mix64 function is based on David Stafford's
110      * (http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html)
111      * "Mix13" variant of the "64-bit finalizer" function in Austin
112      * Appleby's MurmurHash3 algorithm (see
113      * http://code.google.com/p/smhasher/wiki/MurmurHash3). The mix32
114      * function is based on Stafford's Mix04 mix function, but returns
115      * the upper 32 bits cast as int.
116      *
117      * The split operation uses the current generator to form the seed
118      * and gamma for another SplittableRandom.  To conservatively
119      * avoid potential correlations between seed and value generation,
120      * gamma selection (method mixGamma) uses different
121      * (Murmurhash3's) mix constants.  To avoid potential weaknesses
122      * in bit-mixing transformations, we restrict gammas to odd values
123      * with at least 24 0-1 or 1-0 bit transitions.  Rather than
124      * rejecting candidates with too few or too many bits set, method
125      * mixGamma flips some bits (which has the effect of mapping at
126      * most 4 to any given gamma value).  This reduces the effective
127      * set of 64bit odd gamma values by about 2%, and serves as an
128      * automated screening for sequence constant selection that is
129      * left as an empirical decision in some other hashing and crypto
130      * algorithms.
131      *
132      * The resulting generator thus transforms a sequence in which
133      * (typically) many bits change on each step, with an inexpensive
134      * mixer with good (but less than cryptographically secure)
135      * avalanching.
136      *
137      * The default (no-argument) constructor, in essence, invokes
138      * split() for a common "defaultGen" SplittableRandom.  Unlike
139      * other cases, this split must be performed in a thread-safe
140      * manner, so we use an AtomicLong to represent the seed rather
141      * than use an explicit SplittableRandom. To bootstrap the
142      * defaultGen, we start off using a seed based on current time
143      * unless the java.util.secureRandomSeed property is set. This
144      * serves as a slimmed-down (and insecure) variant of SecureRandom
145      * that also avoids stalls that may occur when using /dev/random.
146      *
147      * It is a relatively simple matter to apply the basic design here
148      * to use 128 bit seeds. However, emulating 128bit arithmetic and
149      * carrying around twice the state add more overhead than appears
150      * warranted for current usages.
151      *
152      * File organization: First the non-public methods that constitute
153      * the main algorithm, then the main public methods, followed by
154      * some custom spliterator classes needed for stream methods.
155      */
156 
157     /**
158      * The golden ratio scaled to 64bits, used as the initial gamma
159      * value for (unsplit) SplittableRandoms.
160      */
161     private static final long GOLDEN_GAMMA = 0x9e3779b97f4a7c15L;
162 
163     /**
164      * The least non-zero value returned by nextDouble(). This value
165      * is scaled by a random value of 53 bits to produce a result.
166      */
167     private static final double DOUBLE_UNIT = 0x1.0p-53; // 1.0 / (1L << 53);
168 
169     /**
170      * The seed. Updated only via method nextSeed.
171      */
172     private long seed;
173 
174     /**
175      * The step value.
176      */
177     private final long gamma;
178 
179     /**
180      * Internal constructor used by all others except default constructor.
181      */
SplittableRandom(long seed, long gamma)182     private SplittableRandom(long seed, long gamma) {
183         this.seed = seed;
184         this.gamma = gamma;
185     }
186 
187     /**
188      * Computes Stafford variant 13 of 64bit mix function.
189      */
mix64(long z)190     private static long mix64(long z) {
191         z = (z ^ (z >>> 30)) * 0xbf58476d1ce4e5b9L;
192         z = (z ^ (z >>> 27)) * 0x94d049bb133111ebL;
193         return z ^ (z >>> 31);
194     }
195 
196     /**
197      * Returns the 32 high bits of Stafford variant 4 mix64 function as int.
198      */
mix32(long z)199     private static int mix32(long z) {
200         z = (z ^ (z >>> 33)) * 0x62a9d9ed799705f5L;
201         return (int)(((z ^ (z >>> 28)) * 0xcb24d0a5c88c35b3L) >>> 32);
202     }
203 
204     /**
205      * Returns the gamma value to use for a new split instance.
206      */
mixGamma(long z)207     private static long mixGamma(long z) {
208         z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL; // MurmurHash3 mix constants
209         z = (z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L;
210         z = (z ^ (z >>> 33)) | 1L;                  // force to be odd
211         int n = Long.bitCount(z ^ (z >>> 1));       // ensure enough transitions
212         return (n < 24) ? z ^ 0xaaaaaaaaaaaaaaaaL : z;
213     }
214 
215     /**
216      * Adds gamma to seed.
217      */
nextSeed()218     private long nextSeed() {
219         return seed += gamma;
220     }
221 
222     // IllegalArgumentException messages
223     static final String BAD_BOUND = "bound must be positive";
224     static final String BAD_RANGE = "bound must be greater than origin";
225     static final String BAD_SIZE  = "size must be non-negative";
226 
227     /**
228      * The seed generator for default constructors.
229      */
230     private static final AtomicLong defaultGen
231         = new AtomicLong(mix64(System.currentTimeMillis()) ^
232                          mix64(System.nanoTime()));
233 
234     // at end of <clinit> to survive static initialization circularity
235     static {
236         if (java.security.AccessController.doPrivileged(
237             new java.security.PrivilegedAction<Boolean>() {
238                 public Boolean run() {
239                     return Boolean.getBoolean("java.util.secureRandomSeed");
240                 }})) {
241             byte[] seedBytes = java.security.SecureRandom.getSeed(8);
242             long s = (long)seedBytes[0] & 0xffL;
243             for (int i = 1; i < 8; ++i)
244                 s = (s << 8) | ((long)seedBytes[i] & 0xffL);
245             defaultGen.set(s);
246         }
247     }
248 
249     /*
250      * Internal versions of nextX methods used by streams, as well as
251      * the public nextX(origin, bound) methods.  These exist mainly to
252      * avoid the need for multiple versions of stream spliterators
253      * across the different exported forms of streams.
254      */
255 
256     /**
257      * The form of nextLong used by LongStream Spliterators.  If
258      * origin is greater than bound, acts as unbounded form of
259      * nextLong, else as bounded form.
260      *
261      * @param origin the least value, unless greater than bound
262      * @param bound the upper bound (exclusive), must not equal origin
263      * @return a pseudorandom value
264      */
internalNextLong(long origin, long bound)265     final long internalNextLong(long origin, long bound) {
266         /*
267          * Four Cases:
268          *
269          * 1. If the arguments indicate unbounded form, act as
270          * nextLong().
271          *
272          * 2. If the range is an exact power of two, apply the
273          * associated bit mask.
274          *
275          * 3. If the range is positive, loop to avoid potential bias
276          * when the implicit nextLong() bound (2<sup>64</sup>) is not
277          * evenly divisible by the range. The loop rejects candidates
278          * computed from otherwise over-represented values.  The
279          * expected number of iterations under an ideal generator
280          * varies from 1 to 2, depending on the bound. The loop itself
281          * takes an unlovable form. Because the first candidate is
282          * already available, we need a break-in-the-middle
283          * construction, which is concisely but cryptically performed
284          * within the while-condition of a body-less for loop.
285          *
286          * 4. Otherwise, the range cannot be represented as a positive
287          * long.  The loop repeatedly generates unbounded longs until
288          * obtaining a candidate meeting constraints (with an expected
289          * number of iterations of less than two).
290          */
291 
292         long r = mix64(nextSeed());
293         if (origin < bound) {
294             long n = bound - origin, m = n - 1;
295             if ((n & m) == 0L)  // power of two
296                 r = (r & m) + origin;
297             else if (n > 0L) {  // reject over-represented candidates
298                 for (long u = r >>> 1;            // ensure nonnegative
299                      u + m - (r = u % n) < 0L;    // rejection check
300                      u = mix64(nextSeed()) >>> 1) // retry
301                     ;
302                 r += origin;
303             }
304             else {              // range not representable as long
305                 while (r < origin || r >= bound)
306                     r = mix64(nextSeed());
307             }
308         }
309         return r;
310     }
311 
312     /**
313      * The form of nextInt used by IntStream Spliterators.
314      * Exactly the same as long version, except for types.
315      *
316      * @param origin the least value, unless greater than bound
317      * @param bound the upper bound (exclusive), must not equal origin
318      * @return a pseudorandom value
319      */
internalNextInt(int origin, int bound)320     final int internalNextInt(int origin, int bound) {
321         int r = mix32(nextSeed());
322         if (origin < bound) {
323             int n = bound - origin, m = n - 1;
324             if ((n & m) == 0)
325                 r = (r & m) + origin;
326             else if (n > 0) {
327                 for (int u = r >>> 1;
328                      u + m - (r = u % n) < 0;
329                      u = mix32(nextSeed()) >>> 1)
330                     ;
331                 r += origin;
332             }
333             else {
334                 while (r < origin || r >= bound)
335                     r = mix32(nextSeed());
336             }
337         }
338         return r;
339     }
340 
341     /**
342      * The form of nextDouble used by DoubleStream Spliterators.
343      *
344      * @param origin the least value, unless greater than bound
345      * @param bound the upper bound (exclusive), must not equal origin
346      * @return a pseudorandom value
347      */
internalNextDouble(double origin, double bound)348     final double internalNextDouble(double origin, double bound) {
349         double r = (nextLong() >>> 11) * DOUBLE_UNIT;
350         if (origin < bound) {
351             r = r * (bound - origin) + origin;
352             if (r >= bound) // correct for rounding
353                 r = Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
354         }
355         return r;
356     }
357 
358     /* ---------------- public methods ---------------- */
359 
360     /**
361      * Creates a new SplittableRandom instance using the specified
362      * initial seed. SplittableRandom instances created with the same
363      * seed in the same program generate identical sequences of values.
364      *
365      * @param seed the initial seed
366      */
SplittableRandom(long seed)367     public SplittableRandom(long seed) {
368         this(seed, GOLDEN_GAMMA);
369     }
370 
371     /**
372      * Creates a new SplittableRandom instance that is likely to
373      * generate sequences of values that are statistically independent
374      * of those of any other instances in the current program; and
375      * may, and typically does, vary across program invocations.
376      */
SplittableRandom()377     public SplittableRandom() { // emulate defaultGen.split()
378         long s = defaultGen.getAndAdd(GOLDEN_GAMMA << 1);
379         this.seed = mix64(s);
380         this.gamma = mixGamma(s + GOLDEN_GAMMA);
381     }
382 
383     /**
384      * Constructs and returns a new SplittableRandom instance that
385      * shares no mutable state with this instance. However, with very
386      * high probability, the set of values collectively generated by
387      * the two objects has the same statistical properties as if the
388      * same quantity of values were generated by a single thread using
389      * a single SplittableRandom object.  Either or both of the two
390      * objects may be further split using the {@code split()} method,
391      * and the same expected statistical properties apply to the
392      * entire set of generators constructed by such recursive
393      * splitting.
394      *
395      * @return the new SplittableRandom instance
396      */
split()397     public SplittableRandom split() {
398         return new SplittableRandom(nextLong(), mixGamma(nextSeed()));
399     }
400 
401     /**
402      * Fills a user-supplied byte array with generated pseudorandom bytes.
403      *
404      * @param  bytes the byte array to fill with pseudorandom bytes
405      * @throws NullPointerException if bytes is null
406      * @since  10
407      */
nextBytes(byte[] bytes)408     public void nextBytes(byte[] bytes) {
409         int i = 0;
410         int len = bytes.length;
411         for (int words = len >> 3; words--> 0; ) {
412             long rnd = nextLong();
413             for (int n = 8; n--> 0; rnd >>>= Byte.SIZE)
414                 bytes[i++] = (byte)rnd;
415         }
416         if (i < len)
417             for (long rnd = nextLong(); i < len; rnd >>>= Byte.SIZE)
418                 bytes[i++] = (byte)rnd;
419     }
420 
421     /**
422      * Returns a pseudorandom {@code int} value.
423      *
424      * @return a pseudorandom {@code int} value
425      */
nextInt()426     public int nextInt() {
427         return mix32(nextSeed());
428     }
429 
430     /**
431      * Returns a pseudorandom {@code int} value between zero (inclusive)
432      * and the specified bound (exclusive).
433      *
434      * @param bound the upper bound (exclusive).  Must be positive.
435      * @return a pseudorandom {@code int} value between zero
436      *         (inclusive) and the bound (exclusive)
437      * @throws IllegalArgumentException if {@code bound} is not positive
438      */
nextInt(int bound)439     public int nextInt(int bound) {
440         if (bound <= 0)
441             throw new IllegalArgumentException(BAD_BOUND);
442         // Specialize internalNextInt for origin 0
443         int r = mix32(nextSeed());
444         int m = bound - 1;
445         if ((bound & m) == 0) // power of two
446             r &= m;
447         else { // reject over-represented candidates
448             for (int u = r >>> 1;
449                  u + m - (r = u % bound) < 0;
450                  u = mix32(nextSeed()) >>> 1)
451                 ;
452         }
453         return r;
454     }
455 
456     /**
457      * Returns a pseudorandom {@code int} value between the specified
458      * origin (inclusive) and the specified bound (exclusive).
459      *
460      * @param origin the least value returned
461      * @param bound the upper bound (exclusive)
462      * @return a pseudorandom {@code int} value between the origin
463      *         (inclusive) and the bound (exclusive)
464      * @throws IllegalArgumentException if {@code origin} is greater than
465      *         or equal to {@code bound}
466      */
nextInt(int origin, int bound)467     public int nextInt(int origin, int bound) {
468         if (origin >= bound)
469             throw new IllegalArgumentException(BAD_RANGE);
470         return internalNextInt(origin, bound);
471     }
472 
473     /**
474      * Returns a pseudorandom {@code long} value.
475      *
476      * @return a pseudorandom {@code long} value
477      */
nextLong()478     public long nextLong() {
479         return mix64(nextSeed());
480     }
481 
482     /**
483      * Returns a pseudorandom {@code long} value between zero (inclusive)
484      * and the specified bound (exclusive).
485      *
486      * @param bound the upper bound (exclusive).  Must be positive.
487      * @return a pseudorandom {@code long} value between zero
488      *         (inclusive) and the bound (exclusive)
489      * @throws IllegalArgumentException if {@code bound} is not positive
490      */
nextLong(long bound)491     public long nextLong(long bound) {
492         if (bound <= 0)
493             throw new IllegalArgumentException(BAD_BOUND);
494         // Specialize internalNextLong for origin 0
495         long r = mix64(nextSeed());
496         long m = bound - 1;
497         if ((bound & m) == 0L) // power of two
498             r &= m;
499         else { // reject over-represented candidates
500             for (long u = r >>> 1;
501                  u + m - (r = u % bound) < 0L;
502                  u = mix64(nextSeed()) >>> 1)
503                 ;
504         }
505         return r;
506     }
507 
508     /**
509      * Returns a pseudorandom {@code long} value between the specified
510      * origin (inclusive) and the specified bound (exclusive).
511      *
512      * @param origin the least value returned
513      * @param bound the upper bound (exclusive)
514      * @return a pseudorandom {@code long} value between the origin
515      *         (inclusive) and the bound (exclusive)
516      * @throws IllegalArgumentException if {@code origin} is greater than
517      *         or equal to {@code bound}
518      */
nextLong(long origin, long bound)519     public long nextLong(long origin, long bound) {
520         if (origin >= bound)
521             throw new IllegalArgumentException(BAD_RANGE);
522         return internalNextLong(origin, bound);
523     }
524 
525     /**
526      * Returns a pseudorandom {@code double} value between zero
527      * (inclusive) and one (exclusive).
528      *
529      * @return a pseudorandom {@code double} value between zero
530      *         (inclusive) and one (exclusive)
531      */
nextDouble()532     public double nextDouble() {
533         return (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT;
534     }
535 
536     /**
537      * Returns a pseudorandom {@code double} value between 0.0
538      * (inclusive) and the specified bound (exclusive).
539      *
540      * @param bound the upper bound (exclusive).  Must be positive.
541      * @return a pseudorandom {@code double} value between zero
542      *         (inclusive) and the bound (exclusive)
543      * @throws IllegalArgumentException if {@code bound} is not positive
544      */
nextDouble(double bound)545     public double nextDouble(double bound) {
546         if (!(bound > 0.0))
547             throw new IllegalArgumentException(BAD_BOUND);
548         double result = (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT * bound;
549         return (result < bound) ?  result : // correct for rounding
550             Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
551     }
552 
553     /**
554      * Returns a pseudorandom {@code double} value between the specified
555      * origin (inclusive) and bound (exclusive).
556      *
557      * @param origin the least value returned
558      * @param bound the upper bound (exclusive)
559      * @return a pseudorandom {@code double} value between the origin
560      *         (inclusive) and the bound (exclusive)
561      * @throws IllegalArgumentException if {@code origin} is greater than
562      *         or equal to {@code bound}
563      */
nextDouble(double origin, double bound)564     public double nextDouble(double origin, double bound) {
565         if (!(origin < bound))
566             throw new IllegalArgumentException(BAD_RANGE);
567         return internalNextDouble(origin, bound);
568     }
569 
570     /**
571      * Returns a pseudorandom {@code boolean} value.
572      *
573      * @return a pseudorandom {@code boolean} value
574      */
nextBoolean()575     public boolean nextBoolean() {
576         return mix32(nextSeed()) < 0;
577     }
578 
579     // stream methods, coded in a way intended to better isolate for
580     // maintenance purposes the small differences across forms.
581 
582     /**
583      * Returns a stream producing the given {@code streamSize} number
584      * of pseudorandom {@code int} values from this generator and/or
585      * one split from it.
586      *
587      * @param streamSize the number of values to generate
588      * @return a stream of pseudorandom {@code int} values
589      * @throws IllegalArgumentException if {@code streamSize} is
590      *         less than zero
591      */
ints(long streamSize)592     public IntStream ints(long streamSize) {
593         if (streamSize < 0L)
594             throw new IllegalArgumentException(BAD_SIZE);
595         return StreamSupport.intStream
596             (new RandomIntsSpliterator
597              (this, 0L, streamSize, Integer.MAX_VALUE, 0),
598              false);
599     }
600 
601     /**
602      * Returns an effectively unlimited stream of pseudorandom {@code int}
603      * values from this generator and/or one split from it.
604      *
605      * @implNote This method is implemented to be equivalent to {@code
606      * ints(Long.MAX_VALUE)}.
607      *
608      * @return a stream of pseudorandom {@code int} values
609      */
ints()610     public IntStream ints() {
611         return StreamSupport.intStream
612             (new RandomIntsSpliterator
613              (this, 0L, Long.MAX_VALUE, Integer.MAX_VALUE, 0),
614              false);
615     }
616 
617     /**
618      * Returns a stream producing the given {@code streamSize} number
619      * of pseudorandom {@code int} values from this generator and/or one split
620      * from it; each value conforms to the given origin (inclusive) and bound
621      * (exclusive).
622      *
623      * @param streamSize the number of values to generate
624      * @param randomNumberOrigin the origin (inclusive) of each random value
625      * @param randomNumberBound the bound (exclusive) of each random value
626      * @return a stream of pseudorandom {@code int} values,
627      *         each with the given origin (inclusive) and bound (exclusive)
628      * @throws IllegalArgumentException if {@code streamSize} is
629      *         less than zero, or {@code randomNumberOrigin}
630      *         is greater than or equal to {@code randomNumberBound}
631      */
ints(long streamSize, int randomNumberOrigin, int randomNumberBound)632     public IntStream ints(long streamSize, int randomNumberOrigin,
633                           int randomNumberBound) {
634         if (streamSize < 0L)
635             throw new IllegalArgumentException(BAD_SIZE);
636         if (randomNumberOrigin >= randomNumberBound)
637             throw new IllegalArgumentException(BAD_RANGE);
638         return StreamSupport.intStream
639             (new RandomIntsSpliterator
640              (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
641              false);
642     }
643 
644     /**
645      * Returns an effectively unlimited stream of pseudorandom {@code
646      * int} values from this generator and/or one split from it; each value
647      * conforms to the given origin (inclusive) and bound (exclusive).
648      *
649      * @implNote This method is implemented to be equivalent to {@code
650      * ints(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
651      *
652      * @param randomNumberOrigin the origin (inclusive) of each random value
653      * @param randomNumberBound the bound (exclusive) of each random value
654      * @return a stream of pseudorandom {@code int} values,
655      *         each with the given origin (inclusive) and bound (exclusive)
656      * @throws IllegalArgumentException if {@code randomNumberOrigin}
657      *         is greater than or equal to {@code randomNumberBound}
658      */
ints(int randomNumberOrigin, int randomNumberBound)659     public IntStream ints(int randomNumberOrigin, int randomNumberBound) {
660         if (randomNumberOrigin >= randomNumberBound)
661             throw new IllegalArgumentException(BAD_RANGE);
662         return StreamSupport.intStream
663             (new RandomIntsSpliterator
664              (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
665              false);
666     }
667 
668     /**
669      * Returns a stream producing the given {@code streamSize} number
670      * of pseudorandom {@code long} values from this generator and/or
671      * one split from it.
672      *
673      * @param streamSize the number of values to generate
674      * @return a stream of pseudorandom {@code long} values
675      * @throws IllegalArgumentException if {@code streamSize} is
676      *         less than zero
677      */
longs(long streamSize)678     public LongStream longs(long streamSize) {
679         if (streamSize < 0L)
680             throw new IllegalArgumentException(BAD_SIZE);
681         return StreamSupport.longStream
682             (new RandomLongsSpliterator
683              (this, 0L, streamSize, Long.MAX_VALUE, 0L),
684              false);
685     }
686 
687     /**
688      * Returns an effectively unlimited stream of pseudorandom {@code
689      * long} values from this generator and/or one split from it.
690      *
691      * @implNote This method is implemented to be equivalent to {@code
692      * longs(Long.MAX_VALUE)}.
693      *
694      * @return a stream of pseudorandom {@code long} values
695      */
longs()696     public LongStream longs() {
697         return StreamSupport.longStream
698             (new RandomLongsSpliterator
699              (this, 0L, Long.MAX_VALUE, Long.MAX_VALUE, 0L),
700              false);
701     }
702 
703     /**
704      * Returns a stream producing the given {@code streamSize} number of
705      * pseudorandom {@code long} values from this generator and/or one split
706      * from it; each value conforms to the given origin (inclusive) and bound
707      * (exclusive).
708      *
709      * @param streamSize the number of values to generate
710      * @param randomNumberOrigin the origin (inclusive) of each random value
711      * @param randomNumberBound the bound (exclusive) of each random value
712      * @return a stream of pseudorandom {@code long} values,
713      *         each with the given origin (inclusive) and bound (exclusive)
714      * @throws IllegalArgumentException if {@code streamSize} is
715      *         less than zero, or {@code randomNumberOrigin}
716      *         is greater than or equal to {@code randomNumberBound}
717      */
longs(long streamSize, long randomNumberOrigin, long randomNumberBound)718     public LongStream longs(long streamSize, long randomNumberOrigin,
719                             long randomNumberBound) {
720         if (streamSize < 0L)
721             throw new IllegalArgumentException(BAD_SIZE);
722         if (randomNumberOrigin >= randomNumberBound)
723             throw new IllegalArgumentException(BAD_RANGE);
724         return StreamSupport.longStream
725             (new RandomLongsSpliterator
726              (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
727              false);
728     }
729 
730     /**
731      * Returns an effectively unlimited stream of pseudorandom {@code
732      * long} values from this generator and/or one split from it; each value
733      * conforms to the given origin (inclusive) and bound (exclusive).
734      *
735      * @implNote This method is implemented to be equivalent to {@code
736      * longs(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
737      *
738      * @param randomNumberOrigin the origin (inclusive) of each random value
739      * @param randomNumberBound the bound (exclusive) of each random value
740      * @return a stream of pseudorandom {@code long} values,
741      *         each with the given origin (inclusive) and bound (exclusive)
742      * @throws IllegalArgumentException if {@code randomNumberOrigin}
743      *         is greater than or equal to {@code randomNumberBound}
744      */
longs(long randomNumberOrigin, long randomNumberBound)745     public LongStream longs(long randomNumberOrigin, long randomNumberBound) {
746         if (randomNumberOrigin >= randomNumberBound)
747             throw new IllegalArgumentException(BAD_RANGE);
748         return StreamSupport.longStream
749             (new RandomLongsSpliterator
750              (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
751              false);
752     }
753 
754     /**
755      * Returns a stream producing the given {@code streamSize} number of
756      * pseudorandom {@code double} values from this generator and/or one split
757      * from it; each value is between zero (inclusive) and one (exclusive).
758      *
759      * @param streamSize the number of values to generate
760      * @return a stream of {@code double} values
761      * @throws IllegalArgumentException if {@code streamSize} is
762      *         less than zero
763      */
doubles(long streamSize)764     public DoubleStream doubles(long streamSize) {
765         if (streamSize < 0L)
766             throw new IllegalArgumentException(BAD_SIZE);
767         return StreamSupport.doubleStream
768             (new RandomDoublesSpliterator
769              (this, 0L, streamSize, Double.MAX_VALUE, 0.0),
770              false);
771     }
772 
773     /**
774      * Returns an effectively unlimited stream of pseudorandom {@code
775      * double} values from this generator and/or one split from it; each value
776      * is between zero (inclusive) and one (exclusive).
777      *
778      * @implNote This method is implemented to be equivalent to {@code
779      * doubles(Long.MAX_VALUE)}.
780      *
781      * @return a stream of pseudorandom {@code double} values
782      */
doubles()783     public DoubleStream doubles() {
784         return StreamSupport.doubleStream
785             (new RandomDoublesSpliterator
786              (this, 0L, Long.MAX_VALUE, Double.MAX_VALUE, 0.0),
787              false);
788     }
789 
790     /**
791      * Returns a stream producing the given {@code streamSize} number of
792      * pseudorandom {@code double} values from this generator and/or one split
793      * from it; each value conforms to the given origin (inclusive) and bound
794      * (exclusive).
795      *
796      * @param streamSize the number of values to generate
797      * @param randomNumberOrigin the origin (inclusive) of each random value
798      * @param randomNumberBound the bound (exclusive) of each random value
799      * @return a stream of pseudorandom {@code double} values,
800      *         each with the given origin (inclusive) and bound (exclusive)
801      * @throws IllegalArgumentException if {@code streamSize} is
802      *         less than zero, or {@code randomNumberOrigin}
803      *         is greater than or equal to {@code randomNumberBound}
804      */
doubles(long streamSize, double randomNumberOrigin, double randomNumberBound)805     public DoubleStream doubles(long streamSize, double randomNumberOrigin,
806                                 double randomNumberBound) {
807         if (streamSize < 0L)
808             throw new IllegalArgumentException(BAD_SIZE);
809         if (!(randomNumberOrigin < randomNumberBound))
810             throw new IllegalArgumentException(BAD_RANGE);
811         return StreamSupport.doubleStream
812             (new RandomDoublesSpliterator
813              (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
814              false);
815     }
816 
817     /**
818      * Returns an effectively unlimited stream of pseudorandom {@code
819      * double} values from this generator and/or one split from it; each value
820      * conforms to the given origin (inclusive) and bound (exclusive).
821      *
822      * @implNote This method is implemented to be equivalent to {@code
823      * doubles(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
824      *
825      * @param randomNumberOrigin the origin (inclusive) of each random value
826      * @param randomNumberBound the bound (exclusive) of each random value
827      * @return a stream of pseudorandom {@code double} values,
828      *         each with the given origin (inclusive) and bound (exclusive)
829      * @throws IllegalArgumentException if {@code randomNumberOrigin}
830      *         is greater than or equal to {@code randomNumberBound}
831      */
doubles(double randomNumberOrigin, double randomNumberBound)832     public DoubleStream doubles(double randomNumberOrigin, double randomNumberBound) {
833         if (!(randomNumberOrigin < randomNumberBound))
834             throw new IllegalArgumentException(BAD_RANGE);
835         return StreamSupport.doubleStream
836             (new RandomDoublesSpliterator
837              (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
838              false);
839     }
840 
841     /**
842      * Spliterator for int streams.  We multiplex the four int
843      * versions into one class by treating a bound less than origin as
844      * unbounded, and also by treating "infinite" as equivalent to
845      * Long.MAX_VALUE. For splits, it uses the standard divide-by-two
846      * approach. The long and double versions of this class are
847      * identical except for types.
848      */
849     private static final class RandomIntsSpliterator
850             implements Spliterator.OfInt {
851         final SplittableRandom rng;
852         long index;
853         final long fence;
854         final int origin;
855         final int bound;
RandomIntsSpliterator(SplittableRandom rng, long index, long fence, int origin, int bound)856         RandomIntsSpliterator(SplittableRandom rng, long index, long fence,
857                               int origin, int bound) {
858             this.rng = rng; this.index = index; this.fence = fence;
859             this.origin = origin; this.bound = bound;
860         }
861 
trySplit()862         public RandomIntsSpliterator trySplit() {
863             long i = index, m = (i + fence) >>> 1;
864             return (m <= i) ? null :
865                 new RandomIntsSpliterator(rng.split(), i, index = m, origin, bound);
866         }
867 
estimateSize()868         public long estimateSize() {
869             return fence - index;
870         }
871 
characteristics()872         public int characteristics() {
873             return (Spliterator.SIZED | Spliterator.SUBSIZED |
874                     Spliterator.NONNULL | Spliterator.IMMUTABLE);
875         }
876 
tryAdvance(IntConsumer consumer)877         public boolean tryAdvance(IntConsumer consumer) {
878             if (consumer == null) throw new NullPointerException();
879             long i = index, f = fence;
880             if (i < f) {
881                 consumer.accept(rng.internalNextInt(origin, bound));
882                 index = i + 1;
883                 return true;
884             }
885             return false;
886         }
887 
forEachRemaining(IntConsumer consumer)888         public void forEachRemaining(IntConsumer consumer) {
889             if (consumer == null) throw new NullPointerException();
890             long i = index, f = fence;
891             if (i < f) {
892                 index = f;
893                 SplittableRandom r = rng;
894                 int o = origin, b = bound;
895                 do {
896                     consumer.accept(r.internalNextInt(o, b));
897                 } while (++i < f);
898             }
899         }
900     }
901 
902     /**
903      * Spliterator for long streams.
904      */
905     private static final class RandomLongsSpliterator
906             implements Spliterator.OfLong {
907         final SplittableRandom rng;
908         long index;
909         final long fence;
910         final long origin;
911         final long bound;
RandomLongsSpliterator(SplittableRandom rng, long index, long fence, long origin, long bound)912         RandomLongsSpliterator(SplittableRandom rng, long index, long fence,
913                                long origin, long bound) {
914             this.rng = rng; this.index = index; this.fence = fence;
915             this.origin = origin; this.bound = bound;
916         }
917 
trySplit()918         public RandomLongsSpliterator trySplit() {
919             long i = index, m = (i + fence) >>> 1;
920             return (m <= i) ? null :
921                 new RandomLongsSpliterator(rng.split(), i, index = m, origin, bound);
922         }
923 
estimateSize()924         public long estimateSize() {
925             return fence - index;
926         }
927 
characteristics()928         public int characteristics() {
929             return (Spliterator.SIZED | Spliterator.SUBSIZED |
930                     Spliterator.NONNULL | Spliterator.IMMUTABLE);
931         }
932 
tryAdvance(LongConsumer consumer)933         public boolean tryAdvance(LongConsumer consumer) {
934             if (consumer == null) throw new NullPointerException();
935             long i = index, f = fence;
936             if (i < f) {
937                 consumer.accept(rng.internalNextLong(origin, bound));
938                 index = i + 1;
939                 return true;
940             }
941             return false;
942         }
943 
forEachRemaining(LongConsumer consumer)944         public void forEachRemaining(LongConsumer consumer) {
945             if (consumer == null) throw new NullPointerException();
946             long i = index, f = fence;
947             if (i < f) {
948                 index = f;
949                 SplittableRandom r = rng;
950                 long o = origin, b = bound;
951                 do {
952                     consumer.accept(r.internalNextLong(o, b));
953                 } while (++i < f);
954             }
955         }
956 
957     }
958 
959     /**
960      * Spliterator for double streams.
961      */
962     private static final class RandomDoublesSpliterator
963             implements Spliterator.OfDouble {
964         final SplittableRandom rng;
965         long index;
966         final long fence;
967         final double origin;
968         final double bound;
RandomDoublesSpliterator(SplittableRandom rng, long index, long fence, double origin, double bound)969         RandomDoublesSpliterator(SplittableRandom rng, long index, long fence,
970                                  double origin, double bound) {
971             this.rng = rng; this.index = index; this.fence = fence;
972             this.origin = origin; this.bound = bound;
973         }
974 
trySplit()975         public RandomDoublesSpliterator trySplit() {
976             long i = index, m = (i + fence) >>> 1;
977             return (m <= i) ? null :
978                 new RandomDoublesSpliterator(rng.split(), i, index = m, origin, bound);
979         }
980 
estimateSize()981         public long estimateSize() {
982             return fence - index;
983         }
984 
characteristics()985         public int characteristics() {
986             return (Spliterator.SIZED | Spliterator.SUBSIZED |
987                     Spliterator.NONNULL | Spliterator.IMMUTABLE);
988         }
989 
tryAdvance(DoubleConsumer consumer)990         public boolean tryAdvance(DoubleConsumer consumer) {
991             if (consumer == null) throw new NullPointerException();
992             long i = index, f = fence;
993             if (i < f) {
994                 consumer.accept(rng.internalNextDouble(origin, bound));
995                 index = i + 1;
996                 return true;
997             }
998             return false;
999         }
1000 
forEachRemaining(DoubleConsumer consumer)1001         public void forEachRemaining(DoubleConsumer consumer) {
1002             if (consumer == null) throw new NullPointerException();
1003             long i = index, f = fence;
1004             if (i < f) {
1005                 index = f;
1006                 SplittableRandom r = rng;
1007                 double o = origin, b = bound;
1008                 do {
1009                     consumer.accept(r.internalNextDouble(o, b));
1010                 } while (++i < f);
1011             }
1012         }
1013     }
1014 
1015 }
1016