• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
3  *
4  * This code is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License version 2 only, as
6  * published by the Free Software Foundation.  Oracle designates this
7  * particular file as subject to the "Classpath" exception as provided
8  * by Oracle in the LICENSE file that accompanied this code.
9  *
10  * This code is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  * version 2 for more details (a copy is included in the LICENSE file that
14  * accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License version
17  * 2 along with this work; if not, write to the Free Software Foundation,
18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19  *
20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21  * or visit www.oracle.com if you need additional information or have any
22  * questions.
23  */
24 
25 /*
26  * This file is available under and governed by the GNU General Public
27  * License version 2 only, as published by the Free Software Foundation.
28  * However, the following notice accompanied the original version of this
29  * file:
30  *
31  * Written by Doug Lea with assistance from members of JCP JSR-166
32  * Expert Group and released to the public domain, as explained at
33  * http://creativecommons.org/publicdomain/zero/1.0/
34  */
35 
36 package java.util.concurrent;
37 
38 import java.io.ObjectStreamField;
39 import java.io.Serializable;
40 import java.lang.reflect.ParameterizedType;
41 import java.lang.reflect.Type;
42 import java.util.AbstractMap;
43 import java.util.Arrays;
44 import java.util.Collection;
45 import java.util.Enumeration;
46 import java.util.HashMap;
47 import java.util.Hashtable;
48 import java.util.Iterator;
49 import java.util.Map;
50 import java.util.NoSuchElementException;
51 import java.util.Set;
52 import java.util.Spliterator;
53 import java.util.concurrent.atomic.AtomicReference;
54 import java.util.concurrent.locks.LockSupport;
55 import java.util.concurrent.locks.ReentrantLock;
56 import java.util.function.BiConsumer;
57 import java.util.function.BiFunction;
58 import java.util.function.Consumer;
59 import java.util.function.DoubleBinaryOperator;
60 import java.util.function.Function;
61 import java.util.function.IntBinaryOperator;
62 import java.util.function.LongBinaryOperator;
63 import java.util.function.Predicate;
64 import java.util.function.ToDoubleBiFunction;
65 import java.util.function.ToDoubleFunction;
66 import java.util.function.ToIntBiFunction;
67 import java.util.function.ToIntFunction;
68 import java.util.function.ToLongBiFunction;
69 import java.util.function.ToLongFunction;
70 import java.util.stream.Stream;
71 import jdk.internal.misc.Unsafe;
72 
73 /**
74  * A hash table supporting full concurrency of retrievals and
75  * high expected concurrency for updates. This class obeys the
76  * same functional specification as {@link java.util.Hashtable}, and
77  * includes versions of methods corresponding to each method of
78  * {@code Hashtable}. However, even though all operations are
79  * thread-safe, retrieval operations do <em>not</em> entail locking,
80  * and there is <em>not</em> any support for locking the entire table
81  * in a way that prevents all access.  This class is fully
82  * interoperable with {@code Hashtable} in programs that rely on its
83  * thread safety but not on its synchronization details.
84  *
85  * <p>Retrieval operations (including {@code get}) generally do not
86  * block, so may overlap with update operations (including {@code put}
87  * and {@code remove}). Retrievals reflect the results of the most
88  * recently <em>completed</em> update operations holding upon their
89  * onset. (More formally, an update operation for a given key bears a
90  * <em>happens-before</em> relation with any (non-null) retrieval for
91  * that key reporting the updated value.)  For aggregate operations
92  * such as {@code putAll} and {@code clear}, concurrent retrievals may
93  * reflect insertion or removal of only some entries.  Similarly,
94  * Iterators, Spliterators and Enumerations return elements reflecting the
95  * state of the hash table at some point at or since the creation of the
96  * iterator/enumeration.  They do <em>not</em> throw {@link
97  * java.util.ConcurrentModificationException ConcurrentModificationException}.
98  * However, iterators are designed to be used by only one thread at a time.
99  * Bear in mind that the results of aggregate status methods including
100  * {@code size}, {@code isEmpty}, and {@code containsValue} are typically
101  * useful only when a map is not undergoing concurrent updates in other threads.
102  * Otherwise the results of these methods reflect transient states
103  * that may be adequate for monitoring or estimation purposes, but not
104  * for program control.
105  *
106  * <p>The table is dynamically expanded when there are too many
107  * collisions (i.e., keys that have distinct hash codes but fall into
108  * the same slot modulo the table size), with the expected average
109  * effect of maintaining roughly two bins per mapping (corresponding
110  * to a 0.75 load factor threshold for resizing). There may be much
111  * variance around this average as mappings are added and removed, but
112  * overall, this maintains a commonly accepted time/space tradeoff for
113  * hash tables.  However, resizing this or any other kind of hash
114  * table may be a relatively slow operation. When possible, it is a
115  * good idea to provide a size estimate as an optional {@code
116  * initialCapacity} constructor argument. An additional optional
117  * {@code loadFactor} constructor argument provides a further means of
118  * customizing initial table capacity by specifying the table density
119  * to be used in calculating the amount of space to allocate for the
120  * given number of elements.  Also, for compatibility with previous
121  * versions of this class, constructors may optionally specify an
122  * expected {@code concurrencyLevel} as an additional hint for
123  * internal sizing.  Note that using many keys with exactly the same
124  * {@code hashCode()} is a sure way to slow down performance of any
125  * hash table. To ameliorate impact, when keys are {@link Comparable},
126  * this class may use comparison order among keys to help break ties.
127  *
128  * <p>A {@link Set} projection of a ConcurrentHashMap may be created
129  * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
130  * (using {@link #keySet(Object)} when only keys are of interest, and the
131  * mapped values are (perhaps transiently) not used or all take the
132  * same mapping value.
133  *
134  * <p>A ConcurrentHashMap can be used as a scalable frequency map (a
135  * form of histogram or multiset) by using {@link
136  * java.util.concurrent.atomic.LongAdder} values and initializing via
137  * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
138  * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
139  * {@code freqs.computeIfAbsent(key, k -> new LongAdder()).increment();}
140  *
141  * <p>This class and its views and iterators implement all of the
142  * <em>optional</em> methods of the {@link Map} and {@link Iterator}
143  * interfaces.
144  *
145  * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
146  * does <em>not</em> allow {@code null} to be used as a key or value.
147  *
148  * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
149  * operations that, unlike most {@link Stream} methods, are designed
150  * to be safely, and often sensibly, applied even with maps that are
151  * being concurrently updated by other threads; for example, when
152  * computing a snapshot summary of the values in a shared registry.
153  * There are three kinds of operation, each with four forms, accepting
154  * functions with keys, values, entries, and (key, value) pairs as
155  * arguments and/or return values. Because the elements of a
156  * ConcurrentHashMap are not ordered in any particular way, and may be
157  * processed in different orders in different parallel executions, the
158  * correctness of supplied functions should not depend on any
159  * ordering, or on any other objects or values that may transiently
160  * change while computation is in progress; and except for forEach
161  * actions, should ideally be side-effect-free. Bulk operations on
162  * {@link Map.Entry} objects do not support method {@code setValue}.
163  *
164  * <ul>
165  * <li>forEach: Performs a given action on each element.
166  * A variant form applies a given transformation on each element
167  * before performing the action.
168  *
169  * <li>search: Returns the first available non-null result of
170  * applying a given function on each element; skipping further
171  * search when a result is found.
172  *
173  * <li>reduce: Accumulates each element.  The supplied reduction
174  * function cannot rely on ordering (more formally, it should be
175  * both associative and commutative).  There are five variants:
176  *
177  * <ul>
178  *
179  * <li>Plain reductions. (There is not a form of this method for
180  * (key, value) function arguments since there is no corresponding
181  * return type.)
182  *
183  * <li>Mapped reductions that accumulate the results of a given
184  * function applied to each element.
185  *
186  * <li>Reductions to scalar doubles, longs, and ints, using a
187  * given basis value.
188  *
189  * </ul>
190  * </ul>
191  *
192  * <p>These bulk operations accept a {@code parallelismThreshold}
193  * argument. Methods proceed sequentially if the current map size is
194  * estimated to be less than the given threshold. Using a value of
195  * {@code Long.MAX_VALUE} suppresses all parallelism.  Using a value
196  * of {@code 1} results in maximal parallelism by partitioning into
197  * enough subtasks to fully utilize the {@link
198  * ForkJoinPool#commonPool()} that is used for all parallel
199  * computations. Normally, you would initially choose one of these
200  * extreme values, and then measure performance of using in-between
201  * values that trade off overhead versus throughput.
202  *
203  * <p>The concurrency properties of bulk operations follow
204  * from those of ConcurrentHashMap: Any non-null result returned
205  * from {@code get(key)} and related access methods bears a
206  * happens-before relation with the associated insertion or
207  * update.  The result of any bulk operation reflects the
208  * composition of these per-element relations (but is not
209  * necessarily atomic with respect to the map as a whole unless it
210  * is somehow known to be quiescent).  Conversely, because keys
211  * and values in the map are never null, null serves as a reliable
212  * atomic indicator of the current lack of any result.  To
213  * maintain this property, null serves as an implicit basis for
214  * all non-scalar reduction operations. For the double, long, and
215  * int versions, the basis should be one that, when combined with
216  * any other value, returns that other value (more formally, it
217  * should be the identity element for the reduction). Most common
218  * reductions have these properties; for example, computing a sum
219  * with basis 0 or a minimum with basis MAX_VALUE.
220  *
221  * <p>Search and transformation functions provided as arguments
222  * should similarly return null to indicate the lack of any result
223  * (in which case it is not used). In the case of mapped
224  * reductions, this also enables transformations to serve as
225  * filters, returning null (or, in the case of primitive
226  * specializations, the identity basis) if the element should not
227  * be combined. You can create compound transformations and
228  * filterings by composing them yourself under this "null means
229  * there is nothing there now" rule before using them in search or
230  * reduce operations.
231  *
232  * <p>Methods accepting and/or returning Entry arguments maintain
233  * key-value associations. They may be useful for example when
234  * finding the key for the greatest value. Note that "plain" Entry
235  * arguments can be supplied using {@code new
236  * AbstractMap.SimpleEntry(k,v)}.
237  *
238  * <p>Bulk operations may complete abruptly, throwing an
239  * exception encountered in the application of a supplied
240  * function. Bear in mind when handling such exceptions that other
241  * concurrently executing functions could also have thrown
242  * exceptions, or would have done so if the first exception had
243  * not occurred.
244  *
245  * <p>Speedups for parallel compared to sequential forms are common
246  * but not guaranteed.  Parallel operations involving brief functions
247  * on small maps may execute more slowly than sequential forms if the
248  * underlying work to parallelize the computation is more expensive
249  * than the computation itself.  Similarly, parallelization may not
250  * lead to much actual parallelism if all processors are busy
251  * performing unrelated tasks.
252  *
253  * <p>All arguments to all task methods must be non-null.
254  *
255  * <p>This class is a member of the
256  * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
257  * Java Collections Framework</a>.
258  *
259  * @since 1.5
260  * @author Doug Lea
261  * @param <K> the type of keys maintained by this map
262  * @param <V> the type of mapped values
263  */
264 public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
265     implements ConcurrentMap<K,V>, Serializable {
266     private static final long serialVersionUID = 7249069246763182397L;
267 
268     /*
269      * Overview:
270      *
271      * The primary design goal of this hash table is to maintain
272      * concurrent readability (typically method get(), but also
273      * iterators and related methods) while minimizing update
274      * contention. Secondary goals are to keep space consumption about
275      * the same or better than java.util.HashMap, and to support high
276      * initial insertion rates on an empty table by many threads.
277      *
278      * This map usually acts as a binned (bucketed) hash table.  Each
279      * key-value mapping is held in a Node.  Most nodes are instances
280      * of the basic Node class with hash, key, value, and next
281      * fields. However, various subclasses exist: TreeNodes are
282      * arranged in balanced trees, not lists.  TreeBins hold the roots
283      * of sets of TreeNodes. ForwardingNodes are placed at the heads
284      * of bins during resizing. ReservationNodes are used as
285      * placeholders while establishing values in computeIfAbsent and
286      * related methods.  The types TreeBin, ForwardingNode, and
287      * ReservationNode do not hold normal user keys, values, or
288      * hashes, and are readily distinguishable during search etc
289      * because they have negative hash fields and null key and value
290      * fields. (These special nodes are either uncommon or transient,
291      * so the impact of carrying around some unused fields is
292      * insignificant.)
293      *
294      * The table is lazily initialized to a power-of-two size upon the
295      * first insertion.  Each bin in the table normally contains a
296      * list of Nodes (most often, the list has only zero or one Node).
297      * Table accesses require volatile/atomic reads, writes, and
298      * CASes.  Because there is no other way to arrange this without
299      * adding further indirections, we use intrinsics
300      * (jdk.internal.misc.Unsafe) operations.
301      *
302      * We use the top (sign) bit of Node hash fields for control
303      * purposes -- it is available anyway because of addressing
304      * constraints.  Nodes with negative hash fields are specially
305      * handled or ignored in map methods.
306      *
307      * Insertion (via put or its variants) of the first node in an
308      * empty bin is performed by just CASing it to the bin.  This is
309      * by far the most common case for put operations under most
310      * key/hash distributions.  Other update operations (insert,
311      * delete, and replace) require locks.  We do not want to waste
312      * the space required to associate a distinct lock object with
313      * each bin, so instead use the first node of a bin list itself as
314      * a lock. Locking support for these locks relies on builtin
315      * "synchronized" monitors.
316      *
317      * Using the first node of a list as a lock does not by itself
318      * suffice though: When a node is locked, any update must first
319      * validate that it is still the first node after locking it, and
320      * retry if not. Because new nodes are always appended to lists,
321      * once a node is first in a bin, it remains first until deleted
322      * or the bin becomes invalidated (upon resizing).
323      *
324      * The main disadvantage of per-bin locks is that other update
325      * operations on other nodes in a bin list protected by the same
326      * lock can stall, for example when user equals() or mapping
327      * functions take a long time.  However, statistically, under
328      * random hash codes, this is not a common problem.  Ideally, the
329      * frequency of nodes in bins follows a Poisson distribution
330      * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
331      * parameter of about 0.5 on average, given the resizing threshold
332      * of 0.75, although with a large variance because of resizing
333      * granularity. Ignoring variance, the expected occurrences of
334      * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
335      * first values are:
336      *
337      * 0:    0.60653066
338      * 1:    0.30326533
339      * 2:    0.07581633
340      * 3:    0.01263606
341      * 4:    0.00157952
342      * 5:    0.00015795
343      * 6:    0.00001316
344      * 7:    0.00000094
345      * 8:    0.00000006
346      * more: less than 1 in ten million
347      *
348      * Lock contention probability for two threads accessing distinct
349      * elements is roughly 1 / (8 * #elements) under random hashes.
350      *
351      * Actual hash code distributions encountered in practice
352      * sometimes deviate significantly from uniform randomness.  This
353      * includes the case when N > (1<<30), so some keys MUST collide.
354      * Similarly for dumb or hostile usages in which multiple keys are
355      * designed to have identical hash codes or ones that differs only
356      * in masked-out high bits. So we use a secondary strategy that
357      * applies when the number of nodes in a bin exceeds a
358      * threshold. These TreeBins use a balanced tree to hold nodes (a
359      * specialized form of red-black trees), bounding search time to
360      * O(log N).  Each search step in a TreeBin is at least twice as
361      * slow as in a regular list, but given that N cannot exceed
362      * (1<<64) (before running out of addresses) this bounds search
363      * steps, lock hold times, etc, to reasonable constants (roughly
364      * 100 nodes inspected per operation worst case) so long as keys
365      * are Comparable (which is very common -- String, Long, etc).
366      * TreeBin nodes (TreeNodes) also maintain the same "next"
367      * traversal pointers as regular nodes, so can be traversed in
368      * iterators in the same way.
369      *
370      * The table is resized when occupancy exceeds a percentage
371      * threshold (nominally, 0.75, but see below).  Any thread
372      * noticing an overfull bin may assist in resizing after the
373      * initiating thread allocates and sets up the replacement array.
374      * However, rather than stalling, these other threads may proceed
375      * with insertions etc.  The use of TreeBins shields us from the
376      * worst case effects of overfilling while resizes are in
377      * progress.  Resizing proceeds by transferring bins, one by one,
378      * from the table to the next table. However, threads claim small
379      * blocks of indices to transfer (via field transferIndex) before
380      * doing so, reducing contention.  A generation stamp in field
381      * sizeCtl ensures that resizings do not overlap. Because we are
382      * using power-of-two expansion, the elements from each bin must
383      * either stay at same index, or move with a power of two
384      * offset. We eliminate unnecessary node creation by catching
385      * cases where old nodes can be reused because their next fields
386      * won't change.  On average, only about one-sixth of them need
387      * cloning when a table doubles. The nodes they replace will be
388      * garbage collectable as soon as they are no longer referenced by
389      * any reader thread that may be in the midst of concurrently
390      * traversing table.  Upon transfer, the old table bin contains
391      * only a special forwarding node (with hash field "MOVED") that
392      * contains the next table as its key. On encountering a
393      * forwarding node, access and update operations restart, using
394      * the new table.
395      *
396      * Each bin transfer requires its bin lock, which can stall
397      * waiting for locks while resizing. However, because other
398      * threads can join in and help resize rather than contend for
399      * locks, average aggregate waits become shorter as resizing
400      * progresses.  The transfer operation must also ensure that all
401      * accessible bins in both the old and new table are usable by any
402      * traversal.  This is arranged in part by proceeding from the
403      * last bin (table.length - 1) up towards the first.  Upon seeing
404      * a forwarding node, traversals (see class Traverser) arrange to
405      * move to the new table without revisiting nodes.  To ensure that
406      * no intervening nodes are skipped even when moved out of order,
407      * a stack (see class TableStack) is created on first encounter of
408      * a forwarding node during a traversal, to maintain its place if
409      * later processing the current table. The need for these
410      * save/restore mechanics is relatively rare, but when one
411      * forwarding node is encountered, typically many more will be.
412      * So Traversers use a simple caching scheme to avoid creating so
413      * many new TableStack nodes. (Thanks to Peter Levart for
414      * suggesting use of a stack here.)
415      *
416      * The traversal scheme also applies to partial traversals of
417      * ranges of bins (via an alternate Traverser constructor)
418      * to support partitioned aggregate operations.  Also, read-only
419      * operations give up if ever forwarded to a null table, which
420      * provides support for shutdown-style clearing, which is also not
421      * currently implemented.
422      *
423      * Lazy table initialization minimizes footprint until first use,
424      * and also avoids resizings when the first operation is from a
425      * putAll, constructor with map argument, or deserialization.
426      * These cases attempt to override the initial capacity settings,
427      * but harmlessly fail to take effect in cases of races.
428      *
429      * The element count is maintained using a specialization of
430      * LongAdder. We need to incorporate a specialization rather than
431      * just use a LongAdder in order to access implicit
432      * contention-sensing that leads to creation of multiple
433      * CounterCells.  The counter mechanics avoid contention on
434      * updates but can encounter cache thrashing if read too
435      * frequently during concurrent access. To avoid reading so often,
436      * resizing under contention is attempted only upon adding to a
437      * bin already holding two or more nodes. Under uniform hash
438      * distributions, the probability of this occurring at threshold
439      * is around 13%, meaning that only about 1 in 8 puts check
440      * threshold (and after resizing, many fewer do so).
441      *
442      * TreeBins use a special form of comparison for search and
443      * related operations (which is the main reason we cannot use
444      * existing collections such as TreeMaps). TreeBins contain
445      * Comparable elements, but may contain others, as well as
446      * elements that are Comparable but not necessarily Comparable for
447      * the same T, so we cannot invoke compareTo among them. To handle
448      * this, the tree is ordered primarily by hash value, then by
449      * Comparable.compareTo order if applicable.  On lookup at a node,
450      * if elements are not comparable or compare as 0 then both left
451      * and right children may need to be searched in the case of tied
452      * hash values. (This corresponds to the full list search that
453      * would be necessary if all elements were non-Comparable and had
454      * tied hashes.) On insertion, to keep a total ordering (or as
455      * close as is required here) across rebalancings, we compare
456      * classes and identityHashCodes as tie-breakers. The red-black
457      * balancing code is updated from pre-jdk-collections
458      * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
459      * based in turn on Cormen, Leiserson, and Rivest "Introduction to
460      * Algorithms" (CLR).
461      *
462      * TreeBins also require an additional locking mechanism.  While
463      * list traversal is always possible by readers even during
464      * updates, tree traversal is not, mainly because of tree-rotations
465      * that may change the root node and/or its linkages.  TreeBins
466      * include a simple read-write lock mechanism parasitic on the
467      * main bin-synchronization strategy: Structural adjustments
468      * associated with an insertion or removal are already bin-locked
469      * (and so cannot conflict with other writers) but must wait for
470      * ongoing readers to finish. Since there can be only one such
471      * waiter, we use a simple scheme using a single "waiter" field to
472      * block writers.  However, readers need never block.  If the root
473      * lock is held, they proceed along the slow traversal path (via
474      * next-pointers) until the lock becomes available or the list is
475      * exhausted, whichever comes first. These cases are not fast, but
476      * maximize aggregate expected throughput.
477      *
478      * Maintaining API and serialization compatibility with previous
479      * versions of this class introduces several oddities. Mainly: We
480      * leave untouched but unused constructor arguments referring to
481      * concurrencyLevel. We accept a loadFactor constructor argument,
482      * but apply it only to initial table capacity (which is the only
483      * time that we can guarantee to honor it.) We also declare an
484      * unused "Segment" class that is instantiated in minimal form
485      * only when serializing.
486      *
487      * Also, solely for compatibility with previous versions of this
488      * class, it extends AbstractMap, even though all of its methods
489      * are overridden, so it is just useless baggage.
490      *
491      * This file is organized to make things a little easier to follow
492      * while reading than they might otherwise: First the main static
493      * declarations and utilities, then fields, then main public
494      * methods (with a few factorings of multiple public methods into
495      * internal ones), then sizing methods, trees, traversers, and
496      * bulk operations.
497      */
498 
499     /* ---------------- Constants -------------- */
500 
501     /**
502      * The largest possible table capacity.  This value must be
503      * exactly 1<<30 to stay within Java array allocation and indexing
504      * bounds for power of two table sizes, and is further required
505      * because the top two bits of 32bit hash fields are used for
506      * control purposes.
507      */
508     private static final int MAXIMUM_CAPACITY = 1 << 30;
509 
510     /**
511      * The default initial table capacity.  Must be a power of 2
512      * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
513      */
514     private static final int DEFAULT_CAPACITY = 16;
515 
516     /**
517      * The largest possible (non-power of two) array size.
518      * Needed by toArray and related methods.
519      */
520     static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
521 
522     /**
523      * The default concurrency level for this table. Unused but
524      * defined for compatibility with previous versions of this class.
525      */
526     private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
527 
528     /**
529      * The load factor for this table. Overrides of this value in
530      * constructors affect only the initial table capacity.  The
531      * actual floating point value isn't normally used -- it is
532      * simpler to use expressions such as {@code n - (n >>> 2)} for
533      * the associated resizing threshold.
534      */
535     private static final float LOAD_FACTOR = 0.75f;
536 
537     /**
538      * The bin count threshold for using a tree rather than list for a
539      * bin.  Bins are converted to trees when adding an element to a
540      * bin with at least this many nodes. The value must be greater
541      * than 2, and should be at least 8 to mesh with assumptions in
542      * tree removal about conversion back to plain bins upon
543      * shrinkage.
544      */
545     static final int TREEIFY_THRESHOLD = 8;
546 
547     /**
548      * The bin count threshold for untreeifying a (split) bin during a
549      * resize operation. Should be less than TREEIFY_THRESHOLD, and at
550      * most 6 to mesh with shrinkage detection under removal.
551      */
552     static final int UNTREEIFY_THRESHOLD = 6;
553 
554     /**
555      * The smallest table capacity for which bins may be treeified.
556      * (Otherwise the table is resized if too many nodes in a bin.)
557      * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
558      * conflicts between resizing and treeification thresholds.
559      */
560     static final int MIN_TREEIFY_CAPACITY = 64;
561 
562     /**
563      * Minimum number of rebinnings per transfer step. Ranges are
564      * subdivided to allow multiple resizer threads.  This value
565      * serves as a lower bound to avoid resizers encountering
566      * excessive memory contention.  The value should be at least
567      * DEFAULT_CAPACITY.
568      */
569     private static final int MIN_TRANSFER_STRIDE = 16;
570 
571     /**
572      * The number of bits used for generation stamp in sizeCtl.
573      * Must be at least 6 for 32bit arrays.
574      */
575     private static final int RESIZE_STAMP_BITS = 16;
576 
577     /**
578      * The maximum number of threads that can help resize.
579      * Must fit in 32 - RESIZE_STAMP_BITS bits.
580      */
581     private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
582 
583     /**
584      * The bit shift for recording size stamp in sizeCtl.
585      */
586     private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
587 
588     /*
589      * Encodings for Node hash fields. See above for explanation.
590      */
591     static final int MOVED     = -1; // hash for forwarding nodes
592     static final int TREEBIN   = -2; // hash for roots of trees
593     static final int RESERVED  = -3; // hash for transient reservations
594     static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
595 
596     /** Number of CPUS, to place bounds on some sizings */
597     static final int NCPU = Runtime.getRuntime().availableProcessors();
598 
599     /**
600      * Serialized pseudo-fields, provided only for jdk7 compatibility.
601      * @serialField segments Segment[]
602      *   The segments, each of which is a specialized hash table.
603      * @serialField segmentMask int
604      *   Mask value for indexing into segments. The upper bits of a
605      *   key's hash code are used to choose the segment.
606      * @serialField segmentShift int
607      *   Shift value for indexing within segments.
608      */
609     private static final ObjectStreamField[] serialPersistentFields = {
610         new ObjectStreamField("segments", Segment[].class),
611         new ObjectStreamField("segmentMask", Integer.TYPE),
612         new ObjectStreamField("segmentShift", Integer.TYPE),
613     };
614 
615     /* ---------------- Nodes -------------- */
616 
617     /**
618      * Key-value entry.  This class is never exported out as a
619      * user-mutable Map.Entry (i.e., one supporting setValue; see
620      * MapEntry below), but can be used for read-only traversals used
621      * in bulk tasks.  Subclasses of Node with a negative hash field
622      * are special, and contain null keys and values (but are never
623      * exported).  Otherwise, keys and vals are never null.
624      */
625     static class Node<K,V> implements Map.Entry<K,V> {
626         final int hash;
627         final K key;
628         volatile V val;
629         volatile Node<K,V> next;
630 
Node(int hash, K key, V val)631         Node(int hash, K key, V val) {
632             this.hash = hash;
633             this.key = key;
634             this.val = val;
635         }
636 
Node(int hash, K key, V val, Node<K,V> next)637         Node(int hash, K key, V val, Node<K,V> next) {
638             this(hash, key, val);
639             this.next = next;
640         }
641 
getKey()642         public final K getKey()     { return key; }
getValue()643         public final V getValue()   { return val; }
hashCode()644         public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
toString()645         public final String toString() {
646             return Helpers.mapEntryToString(key, val);
647         }
setValue(V value)648         public final V setValue(V value) {
649             throw new UnsupportedOperationException();
650         }
651 
equals(Object o)652         public final boolean equals(Object o) {
653             Object k, v, u; Map.Entry<?,?> e;
654             return ((o instanceof Map.Entry) &&
655                     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
656                     (v = e.getValue()) != null &&
657                     (k == key || k.equals(key)) &&
658                     (v == (u = val) || v.equals(u)));
659         }
660 
661         /**
662          * Virtualized support for map.get(); overridden in subclasses.
663          */
find(int h, Object k)664         Node<K,V> find(int h, Object k) {
665             Node<K,V> e = this;
666             if (k != null) {
667                 do {
668                     K ek;
669                     if (e.hash == h &&
670                         ((ek = e.key) == k || (ek != null && k.equals(ek))))
671                         return e;
672                 } while ((e = e.next) != null);
673             }
674             return null;
675         }
676     }
677 
678     /* ---------------- Static utilities -------------- */
679 
680     /**
681      * Spreads (XORs) higher bits of hash to lower and also forces top
682      * bit to 0. Because the table uses power-of-two masking, sets of
683      * hashes that vary only in bits above the current mask will
684      * always collide. (Among known examples are sets of Float keys
685      * holding consecutive whole numbers in small tables.)  So we
686      * apply a transform that spreads the impact of higher bits
687      * downward. There is a tradeoff between speed, utility, and
688      * quality of bit-spreading. Because many common sets of hashes
689      * are already reasonably distributed (so don't benefit from
690      * spreading), and because we use trees to handle large sets of
691      * collisions in bins, we just XOR some shifted bits in the
692      * cheapest possible way to reduce systematic lossage, as well as
693      * to incorporate impact of the highest bits that would otherwise
694      * never be used in index calculations because of table bounds.
695      */
spread(int h)696     static final int spread(int h) {
697         return (h ^ (h >>> 16)) & HASH_BITS;
698     }
699 
700     /**
701      * Returns a power of two table size for the given desired capacity.
702      * See Hackers Delight, sec 3.2
703      */
tableSizeFor(int c)704     private static final int tableSizeFor(int c) {
705         int n = -1 >>> Integer.numberOfLeadingZeros(c - 1);
706         return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
707     }
708 
709     /**
710      * Returns x's Class if it is of the form "class C implements
711      * Comparable<C>", else null.
712      */
comparableClassFor(Object x)713     static Class<?> comparableClassFor(Object x) {
714         if (x instanceof Comparable) {
715             Class<?> c; Type[] ts, as; ParameterizedType p;
716             if ((c = x.getClass()) == String.class) // bypass checks
717                 return c;
718             if ((ts = c.getGenericInterfaces()) != null) {
719                 for (Type t : ts) {
720                     if ((t instanceof ParameterizedType) &&
721                         ((p = (ParameterizedType)t).getRawType() ==
722                          Comparable.class) &&
723                         (as = p.getActualTypeArguments()) != null &&
724                         as.length == 1 && as[0] == c) // type arg is c
725                         return c;
726                 }
727             }
728         }
729         return null;
730     }
731 
732     /**
733      * Returns k.compareTo(x) if x matches kc (k's screened comparable
734      * class), else 0.
735      */
736     @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
compareComparables(Class<?> kc, Object k, Object x)737     static int compareComparables(Class<?> kc, Object k, Object x) {
738         return (x == null || x.getClass() != kc ? 0 :
739                 ((Comparable)k).compareTo(x));
740     }
741 
742     /* ---------------- Table element access -------------- */
743 
744     /*
745      * Atomic access methods are used for table elements as well as
746      * elements of in-progress next table while resizing.  All uses of
747      * the tab arguments must be null checked by callers.  All callers
748      * also paranoically precheck that tab's length is not zero (or an
749      * equivalent check), thus ensuring that any index argument taking
750      * the form of a hash value anded with (length - 1) is a valid
751      * index.  Note that, to be correct wrt arbitrary concurrency
752      * errors by users, these checks must operate on local variables,
753      * which accounts for some odd-looking inline assignments below.
754      * Note that calls to setTabAt always occur within locked regions,
755      * and so require only release ordering.
756      */
757 
758     @SuppressWarnings("unchecked")
tabAt(Node<K,V>[] tab, int i)759     static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
760         return (Node<K,V>)U.getObjectAcquire(tab, ((long)i << ASHIFT) + ABASE);
761     }
762 
casTabAt(Node<K,V>[] tab, int i, Node<K,V> c, Node<K,V> v)763     static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
764                                         Node<K,V> c, Node<K,V> v) {
765         return U.compareAndSetObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
766     }
767 
setTabAt(Node<K,V>[] tab, int i, Node<K,V> v)768     static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
769         U.putObjectRelease(tab, ((long)i << ASHIFT) + ABASE, v);
770     }
771 
772     /* ---------------- Fields -------------- */
773 
774     /**
775      * The array of bins. Lazily initialized upon first insertion.
776      * Size is always a power of two. Accessed directly by iterators.
777      */
778     transient volatile Node<K,V>[] table;
779 
780     /**
781      * The next table to use; non-null only while resizing.
782      */
783     private transient volatile Node<K,V>[] nextTable;
784 
785     /**
786      * Base counter value, used mainly when there is no contention,
787      * but also as a fallback during table initialization
788      * races. Updated via CAS.
789      */
790     private transient volatile long baseCount;
791 
792     /**
793      * Table initialization and resizing control.  When negative, the
794      * table is being initialized or resized: -1 for initialization,
795      * else -(1 + the number of active resizing threads).  Otherwise,
796      * when table is null, holds the initial table size to use upon
797      * creation, or 0 for default. After initialization, holds the
798      * next element count value upon which to resize the table.
799      */
800     private transient volatile int sizeCtl;
801 
802     /**
803      * The next table index (plus one) to split while resizing.
804      */
805     private transient volatile int transferIndex;
806 
807     /**
808      * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
809      */
810     private transient volatile int cellsBusy;
811 
812     /**
813      * Table of counter cells. When non-null, size is a power of 2.
814      */
815     private transient volatile CounterCell[] counterCells;
816 
817     // views
818     private transient KeySetView<K,V> keySet;
819     private transient ValuesView<K,V> values;
820     private transient EntrySetView<K,V> entrySet;
821 
822 
823     /* ---------------- Public operations -------------- */
824 
825     /**
826      * Creates a new, empty map with the default initial table size (16).
827      */
ConcurrentHashMap()828     public ConcurrentHashMap() {
829     }
830 
831     /**
832      * Creates a new, empty map with an initial table size
833      * accommodating the specified number of elements without the need
834      * to dynamically resize.
835      *
836      * @param initialCapacity The implementation performs internal
837      * sizing to accommodate this many elements.
838      * @throws IllegalArgumentException if the initial capacity of
839      * elements is negative
840      */
ConcurrentHashMap(int initialCapacity)841     public ConcurrentHashMap(int initialCapacity) {
842         this(initialCapacity, LOAD_FACTOR, 1);
843     }
844 
845     /**
846      * Creates a new map with the same mappings as the given map.
847      *
848      * @param m the map
849      */
ConcurrentHashMap(Map<? extends K, ? extends V> m)850     public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
851         this.sizeCtl = DEFAULT_CAPACITY;
852         putAll(m);
853     }
854 
855     /**
856      * Creates a new, empty map with an initial table size based on
857      * the given number of elements ({@code initialCapacity}) and
858      * initial table density ({@code loadFactor}).
859      *
860      * @param initialCapacity the initial capacity. The implementation
861      * performs internal sizing to accommodate this many elements,
862      * given the specified load factor.
863      * @param loadFactor the load factor (table density) for
864      * establishing the initial table size
865      * @throws IllegalArgumentException if the initial capacity of
866      * elements is negative or the load factor is nonpositive
867      *
868      * @since 1.6
869      */
ConcurrentHashMap(int initialCapacity, float loadFactor)870     public ConcurrentHashMap(int initialCapacity, float loadFactor) {
871         this(initialCapacity, loadFactor, 1);
872     }
873 
874     /**
875      * Creates a new, empty map with an initial table size based on
876      * the given number of elements ({@code initialCapacity}), initial
877      * table density ({@code loadFactor}), and number of concurrently
878      * updating threads ({@code concurrencyLevel}).
879      *
880      * @param initialCapacity the initial capacity. The implementation
881      * performs internal sizing to accommodate this many elements,
882      * given the specified load factor.
883      * @param loadFactor the load factor (table density) for
884      * establishing the initial table size
885      * @param concurrencyLevel the estimated number of concurrently
886      * updating threads. The implementation may use this value as
887      * a sizing hint.
888      * @throws IllegalArgumentException if the initial capacity is
889      * negative or the load factor or concurrencyLevel are
890      * nonpositive
891      */
ConcurrentHashMap(int initialCapacity, float loadFactor, int concurrencyLevel)892     public ConcurrentHashMap(int initialCapacity,
893                              float loadFactor, int concurrencyLevel) {
894         if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
895             throw new IllegalArgumentException();
896         if (initialCapacity < concurrencyLevel)   // Use at least as many bins
897             initialCapacity = concurrencyLevel;   // as estimated threads
898         long size = (long)(1.0 + (long)initialCapacity / loadFactor);
899         int cap = (size >= (long)MAXIMUM_CAPACITY) ?
900             MAXIMUM_CAPACITY : tableSizeFor((int)size);
901         this.sizeCtl = cap;
902     }
903 
904     // Original (since JDK1.2) Map methods
905 
906     /**
907      * {@inheritDoc}
908      */
size()909     public int size() {
910         long n = sumCount();
911         return ((n < 0L) ? 0 :
912                 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
913                 (int)n);
914     }
915 
916     /**
917      * {@inheritDoc}
918      */
isEmpty()919     public boolean isEmpty() {
920         return sumCount() <= 0L; // ignore transient negative values
921     }
922 
923     /**
924      * Returns the value to which the specified key is mapped,
925      * or {@code null} if this map contains no mapping for the key.
926      *
927      * <p>More formally, if this map contains a mapping from a key
928      * {@code k} to a value {@code v} such that {@code key.equals(k)},
929      * then this method returns {@code v}; otherwise it returns
930      * {@code null}.  (There can be at most one such mapping.)
931      *
932      * @throws NullPointerException if the specified key is null
933      */
get(Object key)934     public V get(Object key) {
935         Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
936         int h = spread(key.hashCode());
937         if ((tab = table) != null && (n = tab.length) > 0 &&
938             (e = tabAt(tab, (n - 1) & h)) != null) {
939             if ((eh = e.hash) == h) {
940                 if ((ek = e.key) == key || (ek != null && key.equals(ek)))
941                     return e.val;
942             }
943             else if (eh < 0)
944                 return (p = e.find(h, key)) != null ? p.val : null;
945             while ((e = e.next) != null) {
946                 if (e.hash == h &&
947                     ((ek = e.key) == key || (ek != null && key.equals(ek))))
948                     return e.val;
949             }
950         }
951         return null;
952     }
953 
954     /**
955      * Tests if the specified object is a key in this table.
956      *
957      * @param  key possible key
958      * @return {@code true} if and only if the specified object
959      *         is a key in this table, as determined by the
960      *         {@code equals} method; {@code false} otherwise
961      * @throws NullPointerException if the specified key is null
962      */
containsKey(Object key)963     public boolean containsKey(Object key) {
964         return get(key) != null;
965     }
966 
967     /**
968      * Returns {@code true} if this map maps one or more keys to the
969      * specified value. Note: This method may require a full traversal
970      * of the map, and is much slower than method {@code containsKey}.
971      *
972      * @param value value whose presence in this map is to be tested
973      * @return {@code true} if this map maps one or more keys to the
974      *         specified value
975      * @throws NullPointerException if the specified value is null
976      */
containsValue(Object value)977     public boolean containsValue(Object value) {
978         if (value == null)
979             throw new NullPointerException();
980         Node<K,V>[] t;
981         if ((t = table) != null) {
982             Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
983             for (Node<K,V> p; (p = it.advance()) != null; ) {
984                 V v;
985                 if ((v = p.val) == value || (v != null && value.equals(v)))
986                     return true;
987             }
988         }
989         return false;
990     }
991 
992     /**
993      * Maps the specified key to the specified value in this table.
994      * Neither the key nor the value can be null.
995      *
996      * <p>The value can be retrieved by calling the {@code get} method
997      * with a key that is equal to the original key.
998      *
999      * @param key key with which the specified value is to be associated
1000      * @param value value to be associated with the specified key
1001      * @return the previous value associated with {@code key}, or
1002      *         {@code null} if there was no mapping for {@code key}
1003      * @throws NullPointerException if the specified key or value is null
1004      */
put(K key, V value)1005     public V put(K key, V value) {
1006         return putVal(key, value, false);
1007     }
1008 
1009     /** Implementation for put and putIfAbsent */
putVal(K key, V value, boolean onlyIfAbsent)1010     final V putVal(K key, V value, boolean onlyIfAbsent) {
1011         if (key == null || value == null) throw new NullPointerException();
1012         int hash = spread(key.hashCode());
1013         int binCount = 0;
1014         for (Node<K,V>[] tab = table;;) {
1015             Node<K,V> f; int n, i, fh; K fk; V fv;
1016             if (tab == null || (n = tab.length) == 0)
1017                 tab = initTable();
1018             else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
1019                 if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value)))
1020                     break;                   // no lock when adding to empty bin
1021             }
1022             else if ((fh = f.hash) == MOVED)
1023                 tab = helpTransfer(tab, f);
1024             else if (onlyIfAbsent // check first node without acquiring lock
1025                      && fh == hash
1026                      && ((fk = f.key) == key || (fk != null && key.equals(fk)))
1027                      && (fv = f.val) != null)
1028                 return fv;
1029             else {
1030                 V oldVal = null;
1031                 synchronized (f) {
1032                     if (tabAt(tab, i) == f) {
1033                         if (fh >= 0) {
1034                             binCount = 1;
1035                             for (Node<K,V> e = f;; ++binCount) {
1036                                 K ek;
1037                                 if (e.hash == hash &&
1038                                     ((ek = e.key) == key ||
1039                                      (ek != null && key.equals(ek)))) {
1040                                     oldVal = e.val;
1041                                     if (!onlyIfAbsent)
1042                                         e.val = value;
1043                                     break;
1044                                 }
1045                                 Node<K,V> pred = e;
1046                                 if ((e = e.next) == null) {
1047                                     pred.next = new Node<K,V>(hash, key, value);
1048                                     break;
1049                                 }
1050                             }
1051                         }
1052                         else if (f instanceof TreeBin) {
1053                             Node<K,V> p;
1054                             binCount = 2;
1055                             if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1056                                                            value)) != null) {
1057                                 oldVal = p.val;
1058                                 if (!onlyIfAbsent)
1059                                     p.val = value;
1060                             }
1061                         }
1062                         else if (f instanceof ReservationNode)
1063                             throw new IllegalStateException("Recursive update");
1064                     }
1065                 }
1066                 if (binCount != 0) {
1067                     if (binCount >= TREEIFY_THRESHOLD)
1068                         treeifyBin(tab, i);
1069                     if (oldVal != null)
1070                         return oldVal;
1071                     break;
1072                 }
1073             }
1074         }
1075         addCount(1L, binCount);
1076         return null;
1077     }
1078 
1079     /**
1080      * Copies all of the mappings from the specified map to this one.
1081      * These mappings replace any mappings that this map had for any of the
1082      * keys currently in the specified map.
1083      *
1084      * @param m mappings to be stored in this map
1085      */
putAll(Map<? extends K, ? extends V> m)1086     public void putAll(Map<? extends K, ? extends V> m) {
1087         tryPresize(m.size());
1088         for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1089             putVal(e.getKey(), e.getValue(), false);
1090     }
1091 
1092     /**
1093      * Removes the key (and its corresponding value) from this map.
1094      * This method does nothing if the key is not in the map.
1095      *
1096      * @param  key the key that needs to be removed
1097      * @return the previous value associated with {@code key}, or
1098      *         {@code null} if there was no mapping for {@code key}
1099      * @throws NullPointerException if the specified key is null
1100      */
remove(Object key)1101     public V remove(Object key) {
1102         return replaceNode(key, null, null);
1103     }
1104 
1105     /**
1106      * Implementation for the four public remove/replace methods:
1107      * Replaces node value with v, conditional upon match of cv if
1108      * non-null.  If resulting value is null, delete.
1109      */
replaceNode(Object key, V value, Object cv)1110     final V replaceNode(Object key, V value, Object cv) {
1111         int hash = spread(key.hashCode());
1112         for (Node<K,V>[] tab = table;;) {
1113             Node<K,V> f; int n, i, fh;
1114             if (tab == null || (n = tab.length) == 0 ||
1115                 (f = tabAt(tab, i = (n - 1) & hash)) == null)
1116                 break;
1117             else if ((fh = f.hash) == MOVED)
1118                 tab = helpTransfer(tab, f);
1119             else {
1120                 V oldVal = null;
1121                 boolean validated = false;
1122                 synchronized (f) {
1123                     if (tabAt(tab, i) == f) {
1124                         if (fh >= 0) {
1125                             validated = true;
1126                             for (Node<K,V> e = f, pred = null;;) {
1127                                 K ek;
1128                                 if (e.hash == hash &&
1129                                     ((ek = e.key) == key ||
1130                                      (ek != null && key.equals(ek)))) {
1131                                     V ev = e.val;
1132                                     if (cv == null || cv == ev ||
1133                                         (ev != null && cv.equals(ev))) {
1134                                         oldVal = ev;
1135                                         if (value != null)
1136                                             e.val = value;
1137                                         else if (pred != null)
1138                                             pred.next = e.next;
1139                                         else
1140                                             setTabAt(tab, i, e.next);
1141                                     }
1142                                     break;
1143                                 }
1144                                 pred = e;
1145                                 if ((e = e.next) == null)
1146                                     break;
1147                             }
1148                         }
1149                         else if (f instanceof TreeBin) {
1150                             validated = true;
1151                             TreeBin<K,V> t = (TreeBin<K,V>)f;
1152                             TreeNode<K,V> r, p;
1153                             if ((r = t.root) != null &&
1154                                 (p = r.findTreeNode(hash, key, null)) != null) {
1155                                 V pv = p.val;
1156                                 if (cv == null || cv == pv ||
1157                                     (pv != null && cv.equals(pv))) {
1158                                     oldVal = pv;
1159                                     if (value != null)
1160                                         p.val = value;
1161                                     else if (t.removeTreeNode(p))
1162                                         setTabAt(tab, i, untreeify(t.first));
1163                                 }
1164                             }
1165                         }
1166                         else if (f instanceof ReservationNode)
1167                             throw new IllegalStateException("Recursive update");
1168                     }
1169                 }
1170                 if (validated) {
1171                     if (oldVal != null) {
1172                         if (value == null)
1173                             addCount(-1L, -1);
1174                         return oldVal;
1175                     }
1176                     break;
1177                 }
1178             }
1179         }
1180         return null;
1181     }
1182 
1183     /**
1184      * Removes all of the mappings from this map.
1185      */
clear()1186     public void clear() {
1187         long delta = 0L; // negative number of deletions
1188         int i = 0;
1189         Node<K,V>[] tab = table;
1190         while (tab != null && i < tab.length) {
1191             int fh;
1192             Node<K,V> f = tabAt(tab, i);
1193             if (f == null)
1194                 ++i;
1195             else if ((fh = f.hash) == MOVED) {
1196                 tab = helpTransfer(tab, f);
1197                 i = 0; // restart
1198             }
1199             else {
1200                 synchronized (f) {
1201                     if (tabAt(tab, i) == f) {
1202                         Node<K,V> p = (fh >= 0 ? f :
1203                                        (f instanceof TreeBin) ?
1204                                        ((TreeBin<K,V>)f).first : null);
1205                         while (p != null) {
1206                             --delta;
1207                             p = p.next;
1208                         }
1209                         setTabAt(tab, i++, null);
1210                     }
1211                 }
1212             }
1213         }
1214         if (delta != 0L)
1215             addCount(delta, -1);
1216     }
1217 
1218     /**
1219      * Returns a {@link Set} view of the keys contained in this map.
1220      * The set is backed by the map, so changes to the map are
1221      * reflected in the set, and vice-versa. The set supports element
1222      * removal, which removes the corresponding mapping from this map,
1223      * via the {@code Iterator.remove}, {@code Set.remove},
1224      * {@code removeAll}, {@code retainAll}, and {@code clear}
1225      * operations.  It does not support the {@code add} or
1226      * {@code addAll} operations.
1227      *
1228      * <p> The set returned by this method is guaranteed to an instance of
1229      * {@link KeySetView}.
1230      *
1231      * <p>The view's iterators and spliterators are
1232      * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1233      *
1234      * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1235      * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1236      *
1237      * @return the set view
1238      */
1239     // Android-changed: Return type for backwards compat. Was KeySetView<K,V>. http://b/28099367
1240     @dalvik.annotation.codegen.CovariantReturnType(returnType = KeySetView.class, presentAfter = 28)
keySet()1241     public Set<K> keySet() {
1242         KeySetView<K,V> ks;
1243         if ((ks = keySet) != null) return ks;
1244         return keySet = new KeySetView<K,V>(this, null);
1245     }
1246 
1247     /**
1248      * Returns a {@link Collection} view of the values contained in this map.
1249      * The collection is backed by the map, so changes to the map are
1250      * reflected in the collection, and vice-versa.  The collection
1251      * supports element removal, which removes the corresponding
1252      * mapping from this map, via the {@code Iterator.remove},
1253      * {@code Collection.remove}, {@code removeAll},
1254      * {@code retainAll}, and {@code clear} operations.  It does not
1255      * support the {@code add} or {@code addAll} operations.
1256      *
1257      * <p>The view's iterators and spliterators are
1258      * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1259      *
1260      * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT}
1261      * and {@link Spliterator#NONNULL}.
1262      *
1263      * @return the collection view
1264      */
values()1265     public Collection<V> values() {
1266         ValuesView<K,V> vs;
1267         if ((vs = values) != null) return vs;
1268         return values = new ValuesView<K,V>(this);
1269     }
1270 
1271     /**
1272      * Returns a {@link Set} view of the mappings contained in this map.
1273      * The set is backed by the map, so changes to the map are
1274      * reflected in the set, and vice-versa.  The set supports element
1275      * removal, which removes the corresponding mapping from the map,
1276      * via the {@code Iterator.remove}, {@code Set.remove},
1277      * {@code removeAll}, {@code retainAll}, and {@code clear}
1278      * operations.
1279      *
1280      * <p>The view's iterators and spliterators are
1281      * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1282      *
1283      * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1284      * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1285      *
1286      * @return the set view
1287      */
entrySet()1288     public Set<Map.Entry<K,V>> entrySet() {
1289         EntrySetView<K,V> es;
1290         if ((es = entrySet) != null) return es;
1291         return entrySet = new EntrySetView<K,V>(this);
1292     }
1293 
1294     /**
1295      * Returns the hash code value for this {@link Map}, i.e.,
1296      * the sum of, for each key-value pair in the map,
1297      * {@code key.hashCode() ^ value.hashCode()}.
1298      *
1299      * @return the hash code value for this map
1300      */
hashCode()1301     public int hashCode() {
1302         int h = 0;
1303         Node<K,V>[] t;
1304         if ((t = table) != null) {
1305             Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1306             for (Node<K,V> p; (p = it.advance()) != null; )
1307                 h += p.key.hashCode() ^ p.val.hashCode();
1308         }
1309         return h;
1310     }
1311 
1312     /**
1313      * Returns a string representation of this map.  The string
1314      * representation consists of a list of key-value mappings (in no
1315      * particular order) enclosed in braces ("{@code {}}").  Adjacent
1316      * mappings are separated by the characters {@code ", "} (comma
1317      * and space).  Each key-value mapping is rendered as the key
1318      * followed by an equals sign ("{@code =}") followed by the
1319      * associated value.
1320      *
1321      * @return a string representation of this map
1322      */
toString()1323     public String toString() {
1324         Node<K,V>[] t;
1325         int f = (t = table) == null ? 0 : t.length;
1326         Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1327         StringBuilder sb = new StringBuilder();
1328         sb.append('{');
1329         Node<K,V> p;
1330         if ((p = it.advance()) != null) {
1331             for (;;) {
1332                 K k = p.key;
1333                 V v = p.val;
1334                 sb.append(k == this ? "(this Map)" : k);
1335                 sb.append('=');
1336                 sb.append(v == this ? "(this Map)" : v);
1337                 if ((p = it.advance()) == null)
1338                     break;
1339                 sb.append(',').append(' ');
1340             }
1341         }
1342         return sb.append('}').toString();
1343     }
1344 
1345     /**
1346      * Compares the specified object with this map for equality.
1347      * Returns {@code true} if the given object is a map with the same
1348      * mappings as this map.  This operation may return misleading
1349      * results if either map is concurrently modified during execution
1350      * of this method.
1351      *
1352      * @param o object to be compared for equality with this map
1353      * @return {@code true} if the specified object is equal to this map
1354      */
equals(Object o)1355     public boolean equals(Object o) {
1356         if (o != this) {
1357             if (!(o instanceof Map))
1358                 return false;
1359             Map<?,?> m = (Map<?,?>) o;
1360             Node<K,V>[] t;
1361             int f = (t = table) == null ? 0 : t.length;
1362             Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1363             for (Node<K,V> p; (p = it.advance()) != null; ) {
1364                 V val = p.val;
1365                 Object v = m.get(p.key);
1366                 if (v == null || (v != val && !v.equals(val)))
1367                     return false;
1368             }
1369             for (Map.Entry<?,?> e : m.entrySet()) {
1370                 Object mk, mv, v;
1371                 if ((mk = e.getKey()) == null ||
1372                     (mv = e.getValue()) == null ||
1373                     (v = get(mk)) == null ||
1374                     (mv != v && !mv.equals(v)))
1375                     return false;
1376             }
1377         }
1378         return true;
1379     }
1380 
1381     /**
1382      * Stripped-down version of helper class used in previous version,
1383      * declared for the sake of serialization compatibility.
1384      */
1385     static class Segment<K,V> extends ReentrantLock implements Serializable {
1386         private static final long serialVersionUID = 2249069246763182397L;
1387         final float loadFactor;
Segment(float lf)1388         Segment(float lf) { this.loadFactor = lf; }
1389     }
1390 
1391     /**
1392      * Saves this map to a stream (that is, serializes it).
1393      *
1394      * @param s the stream
1395      * @throws java.io.IOException if an I/O error occurs
1396      * @serialData
1397      * the serialized fields, followed by the key (Object) and value
1398      * (Object) for each key-value mapping, followed by a null pair.
1399      * The key-value mappings are emitted in no particular order.
1400      */
writeObject(java.io.ObjectOutputStream s)1401     private void writeObject(java.io.ObjectOutputStream s)
1402         throws java.io.IOException {
1403         // For serialization compatibility
1404         // Emulate segment calculation from previous version of this class
1405         int sshift = 0;
1406         int ssize = 1;
1407         while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1408             ++sshift;
1409             ssize <<= 1;
1410         }
1411         int segmentShift = 32 - sshift;
1412         int segmentMask = ssize - 1;
1413         @SuppressWarnings("unchecked")
1414         Segment<K,V>[] segments = (Segment<K,V>[])
1415             new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1416         for (int i = 0; i < segments.length; ++i)
1417             segments[i] = new Segment<K,V>(LOAD_FACTOR);
1418         java.io.ObjectOutputStream.PutField streamFields = s.putFields();
1419         streamFields.put("segments", segments);
1420         streamFields.put("segmentShift", segmentShift);
1421         streamFields.put("segmentMask", segmentMask);
1422         s.writeFields();
1423 
1424         Node<K,V>[] t;
1425         if ((t = table) != null) {
1426             Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1427             for (Node<K,V> p; (p = it.advance()) != null; ) {
1428                 s.writeObject(p.key);
1429                 s.writeObject(p.val);
1430             }
1431         }
1432         s.writeObject(null);
1433         s.writeObject(null);
1434     }
1435 
1436     /**
1437      * Reconstitutes this map from a stream (that is, deserializes it).
1438      * @param s the stream
1439      * @throws ClassNotFoundException if the class of a serialized object
1440      *         could not be found
1441      * @throws java.io.IOException if an I/O error occurs
1442      */
readObject(java.io.ObjectInputStream s)1443     private void readObject(java.io.ObjectInputStream s)
1444         throws java.io.IOException, ClassNotFoundException {
1445         /*
1446          * To improve performance in typical cases, we create nodes
1447          * while reading, then place in table once size is known.
1448          * However, we must also validate uniqueness and deal with
1449          * overpopulated bins while doing so, which requires
1450          * specialized versions of putVal mechanics.
1451          */
1452         sizeCtl = -1; // force exclusion for table construction
1453         s.defaultReadObject();
1454         long size = 0L;
1455         Node<K,V> p = null;
1456         for (;;) {
1457             @SuppressWarnings("unchecked")
1458             K k = (K) s.readObject();
1459             @SuppressWarnings("unchecked")
1460             V v = (V) s.readObject();
1461             if (k != null && v != null) {
1462                 p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1463                 ++size;
1464             }
1465             else
1466                 break;
1467         }
1468         if (size == 0L)
1469             sizeCtl = 0;
1470         else {
1471             long ts = (long)(1.0 + size / LOAD_FACTOR);
1472             int n = (ts >= (long)MAXIMUM_CAPACITY) ?
1473                 MAXIMUM_CAPACITY : tableSizeFor((int)ts);
1474             @SuppressWarnings("unchecked")
1475             Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1476             int mask = n - 1;
1477             long added = 0L;
1478             while (p != null) {
1479                 boolean insertAtFront;
1480                 Node<K,V> next = p.next, first;
1481                 int h = p.hash, j = h & mask;
1482                 if ((first = tabAt(tab, j)) == null)
1483                     insertAtFront = true;
1484                 else {
1485                     K k = p.key;
1486                     if (first.hash < 0) {
1487                         TreeBin<K,V> t = (TreeBin<K,V>)first;
1488                         if (t.putTreeVal(h, k, p.val) == null)
1489                             ++added;
1490                         insertAtFront = false;
1491                     }
1492                     else {
1493                         int binCount = 0;
1494                         insertAtFront = true;
1495                         Node<K,V> q; K qk;
1496                         for (q = first; q != null; q = q.next) {
1497                             if (q.hash == h &&
1498                                 ((qk = q.key) == k ||
1499                                  (qk != null && k.equals(qk)))) {
1500                                 insertAtFront = false;
1501                                 break;
1502                             }
1503                             ++binCount;
1504                         }
1505                         if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1506                             insertAtFront = false;
1507                             ++added;
1508                             p.next = first;
1509                             TreeNode<K,V> hd = null, tl = null;
1510                             for (q = p; q != null; q = q.next) {
1511                                 TreeNode<K,V> t = new TreeNode<K,V>
1512                                     (q.hash, q.key, q.val, null, null);
1513                                 if ((t.prev = tl) == null)
1514                                     hd = t;
1515                                 else
1516                                     tl.next = t;
1517                                 tl = t;
1518                             }
1519                             setTabAt(tab, j, new TreeBin<K,V>(hd));
1520                         }
1521                     }
1522                 }
1523                 if (insertAtFront) {
1524                     ++added;
1525                     p.next = first;
1526                     setTabAt(tab, j, p);
1527                 }
1528                 p = next;
1529             }
1530             table = tab;
1531             sizeCtl = n - (n >>> 2);
1532             baseCount = added;
1533         }
1534     }
1535 
1536     // ConcurrentMap methods
1537 
1538     /**
1539      * {@inheritDoc}
1540      *
1541      * @return the previous value associated with the specified key,
1542      *         or {@code null} if there was no mapping for the key
1543      * @throws NullPointerException if the specified key or value is null
1544      */
putIfAbsent(K key, V value)1545     public V putIfAbsent(K key, V value) {
1546         return putVal(key, value, true);
1547     }
1548 
1549     /**
1550      * {@inheritDoc}
1551      *
1552      * @throws NullPointerException if the specified key is null
1553      */
remove(Object key, Object value)1554     public boolean remove(Object key, Object value) {
1555         if (key == null)
1556             throw new NullPointerException();
1557         return value != null && replaceNode(key, null, value) != null;
1558     }
1559 
1560     /**
1561      * {@inheritDoc}
1562      *
1563      * @throws NullPointerException if any of the arguments are null
1564      */
replace(K key, V oldValue, V newValue)1565     public boolean replace(K key, V oldValue, V newValue) {
1566         if (key == null || oldValue == null || newValue == null)
1567             throw new NullPointerException();
1568         return replaceNode(key, newValue, oldValue) != null;
1569     }
1570 
1571     /**
1572      * {@inheritDoc}
1573      *
1574      * @return the previous value associated with the specified key,
1575      *         or {@code null} if there was no mapping for the key
1576      * @throws NullPointerException if the specified key or value is null
1577      */
replace(K key, V value)1578     public V replace(K key, V value) {
1579         if (key == null || value == null)
1580             throw new NullPointerException();
1581         return replaceNode(key, value, null);
1582     }
1583 
1584     // Overrides of JDK8+ Map extension method defaults
1585 
1586     /**
1587      * Returns the value to which the specified key is mapped, or the
1588      * given default value if this map contains no mapping for the
1589      * key.
1590      *
1591      * @param key the key whose associated value is to be returned
1592      * @param defaultValue the value to return if this map contains
1593      * no mapping for the given key
1594      * @return the mapping for the key, if present; else the default value
1595      * @throws NullPointerException if the specified key is null
1596      */
getOrDefault(Object key, V defaultValue)1597     public V getOrDefault(Object key, V defaultValue) {
1598         V v;
1599         return (v = get(key)) == null ? defaultValue : v;
1600     }
1601 
forEach(BiConsumer<? super K, ? super V> action)1602     public void forEach(BiConsumer<? super K, ? super V> action) {
1603         if (action == null) throw new NullPointerException();
1604         Node<K,V>[] t;
1605         if ((t = table) != null) {
1606             Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1607             for (Node<K,V> p; (p = it.advance()) != null; ) {
1608                 action.accept(p.key, p.val);
1609             }
1610         }
1611     }
1612 
replaceAll(BiFunction<? super K, ? super V, ? extends V> function)1613     public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1614         if (function == null) throw new NullPointerException();
1615         Node<K,V>[] t;
1616         if ((t = table) != null) {
1617             Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1618             for (Node<K,V> p; (p = it.advance()) != null; ) {
1619                 V oldValue = p.val;
1620                 for (K key = p.key;;) {
1621                     V newValue = function.apply(key, oldValue);
1622                     if (newValue == null)
1623                         throw new NullPointerException();
1624                     if (replaceNode(key, newValue, oldValue) != null ||
1625                         (oldValue = get(key)) == null)
1626                         break;
1627                 }
1628             }
1629         }
1630     }
1631 
1632     /**
1633      * Helper method for EntrySetView.removeIf.
1634      */
removeEntryIf(Predicate<? super Entry<K,V>> function)1635     boolean removeEntryIf(Predicate<? super Entry<K,V>> function) {
1636         if (function == null) throw new NullPointerException();
1637         Node<K,V>[] t;
1638         boolean removed = false;
1639         if ((t = table) != null) {
1640             Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1641             for (Node<K,V> p; (p = it.advance()) != null; ) {
1642                 K k = p.key;
1643                 V v = p.val;
1644                 Map.Entry<K,V> e = new AbstractMap.SimpleImmutableEntry<>(k, v);
1645                 if (function.test(e) && replaceNode(k, null, v) != null)
1646                     removed = true;
1647             }
1648         }
1649         return removed;
1650     }
1651 
1652     /**
1653      * Helper method for ValuesView.removeIf.
1654      */
removeValueIf(Predicate<? super V> function)1655     boolean removeValueIf(Predicate<? super V> function) {
1656         if (function == null) throw new NullPointerException();
1657         Node<K,V>[] t;
1658         boolean removed = false;
1659         if ((t = table) != null) {
1660             Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1661             for (Node<K,V> p; (p = it.advance()) != null; ) {
1662                 K k = p.key;
1663                 V v = p.val;
1664                 if (function.test(v) && replaceNode(k, null, v) != null)
1665                     removed = true;
1666             }
1667         }
1668         return removed;
1669     }
1670 
1671     /**
1672      * If the specified key is not already associated with a value,
1673      * attempts to compute its value using the given mapping function
1674      * and enters it into this map unless {@code null}.  The entire
1675      * method invocation is performed atomically, so the function is
1676      * applied at most once per key.  Some attempted update operations
1677      * on this map by other threads may be blocked while computation
1678      * is in progress, so the computation should be short and simple,
1679      * and must not attempt to update any other mappings of this map.
1680      *
1681      * @param key key with which the specified value is to be associated
1682      * @param mappingFunction the function to compute a value
1683      * @return the current (existing or computed) value associated with
1684      *         the specified key, or null if the computed value is null
1685      * @throws NullPointerException if the specified key or mappingFunction
1686      *         is null
1687      * @throws IllegalStateException if the computation detectably
1688      *         attempts a recursive update to this map that would
1689      *         otherwise never complete
1690      * @throws RuntimeException or Error if the mappingFunction does so,
1691      *         in which case the mapping is left unestablished
1692      */
computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction)1693     public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1694         if (key == null || mappingFunction == null)
1695             throw new NullPointerException();
1696         int h = spread(key.hashCode());
1697         V val = null;
1698         int binCount = 0;
1699         for (Node<K,V>[] tab = table;;) {
1700             Node<K,V> f; int n, i, fh; K fk; V fv;
1701             if (tab == null || (n = tab.length) == 0)
1702                 tab = initTable();
1703             else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1704                 Node<K,V> r = new ReservationNode<K,V>();
1705                 synchronized (r) {
1706                     if (casTabAt(tab, i, null, r)) {
1707                         binCount = 1;
1708                         Node<K,V> node = null;
1709                         try {
1710                             if ((val = mappingFunction.apply(key)) != null)
1711                                 node = new Node<K,V>(h, key, val);
1712                         } finally {
1713                             setTabAt(tab, i, node);
1714                         }
1715                     }
1716                 }
1717                 if (binCount != 0)
1718                     break;
1719             }
1720             else if ((fh = f.hash) == MOVED)
1721                 tab = helpTransfer(tab, f);
1722             else if (fh == h    // check first node without acquiring lock
1723                      && ((fk = f.key) == key || (fk != null && key.equals(fk)))
1724                      && (fv = f.val) != null)
1725                 return fv;
1726             else {
1727                 boolean added = false;
1728                 synchronized (f) {
1729                     if (tabAt(tab, i) == f) {
1730                         if (fh >= 0) {
1731                             binCount = 1;
1732                             for (Node<K,V> e = f;; ++binCount) {
1733                                 K ek;
1734                                 if (e.hash == h &&
1735                                     ((ek = e.key) == key ||
1736                                      (ek != null && key.equals(ek)))) {
1737                                     val = e.val;
1738                                     break;
1739                                 }
1740                                 Node<K,V> pred = e;
1741                                 if ((e = e.next) == null) {
1742                                     if ((val = mappingFunction.apply(key)) != null) {
1743                                         if (pred.next != null)
1744                                             throw new IllegalStateException("Recursive update");
1745                                         added = true;
1746                                         pred.next = new Node<K,V>(h, key, val);
1747                                     }
1748                                     break;
1749                                 }
1750                             }
1751                         }
1752                         else if (f instanceof TreeBin) {
1753                             binCount = 2;
1754                             TreeBin<K,V> t = (TreeBin<K,V>)f;
1755                             TreeNode<K,V> r, p;
1756                             if ((r = t.root) != null &&
1757                                 (p = r.findTreeNode(h, key, null)) != null)
1758                                 val = p.val;
1759                             else if ((val = mappingFunction.apply(key)) != null) {
1760                                 added = true;
1761                                 t.putTreeVal(h, key, val);
1762                             }
1763                         }
1764                         else if (f instanceof ReservationNode)
1765                             throw new IllegalStateException("Recursive update");
1766                     }
1767                 }
1768                 if (binCount != 0) {
1769                     if (binCount >= TREEIFY_THRESHOLD)
1770                         treeifyBin(tab, i);
1771                     if (!added)
1772                         return val;
1773                     break;
1774                 }
1775             }
1776         }
1777         if (val != null)
1778             addCount(1L, binCount);
1779         return val;
1780     }
1781 
1782     /**
1783      * If the value for the specified key is present, attempts to
1784      * compute a new mapping given the key and its current mapped
1785      * value.  The entire method invocation is performed atomically.
1786      * Some attempted update operations on this map by other threads
1787      * may be blocked while computation is in progress, so the
1788      * computation should be short and simple, and must not attempt to
1789      * update any other mappings of this map.
1790      *
1791      * @param key key with which a value may be associated
1792      * @param remappingFunction the function to compute a value
1793      * @return the new value associated with the specified key, or null if none
1794      * @throws NullPointerException if the specified key or remappingFunction
1795      *         is null
1796      * @throws IllegalStateException if the computation detectably
1797      *         attempts a recursive update to this map that would
1798      *         otherwise never complete
1799      * @throws RuntimeException or Error if the remappingFunction does so,
1800      *         in which case the mapping is unchanged
1801      */
computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction)1802     public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1803         if (key == null || remappingFunction == null)
1804             throw new NullPointerException();
1805         int h = spread(key.hashCode());
1806         V val = null;
1807         int delta = 0;
1808         int binCount = 0;
1809         for (Node<K,V>[] tab = table;;) {
1810             Node<K,V> f; int n, i, fh;
1811             if (tab == null || (n = tab.length) == 0)
1812                 tab = initTable();
1813             else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1814                 break;
1815             else if ((fh = f.hash) == MOVED)
1816                 tab = helpTransfer(tab, f);
1817             else {
1818                 synchronized (f) {
1819                     if (tabAt(tab, i) == f) {
1820                         if (fh >= 0) {
1821                             binCount = 1;
1822                             for (Node<K,V> e = f, pred = null;; ++binCount) {
1823                                 K ek;
1824                                 if (e.hash == h &&
1825                                     ((ek = e.key) == key ||
1826                                      (ek != null && key.equals(ek)))) {
1827                                     val = remappingFunction.apply(key, e.val);
1828                                     if (val != null)
1829                                         e.val = val;
1830                                     else {
1831                                         delta = -1;
1832                                         Node<K,V> en = e.next;
1833                                         if (pred != null)
1834                                             pred.next = en;
1835                                         else
1836                                             setTabAt(tab, i, en);
1837                                     }
1838                                     break;
1839                                 }
1840                                 pred = e;
1841                                 if ((e = e.next) == null)
1842                                     break;
1843                             }
1844                         }
1845                         else if (f instanceof TreeBin) {
1846                             binCount = 2;
1847                             TreeBin<K,V> t = (TreeBin<K,V>)f;
1848                             TreeNode<K,V> r, p;
1849                             if ((r = t.root) != null &&
1850                                 (p = r.findTreeNode(h, key, null)) != null) {
1851                                 val = remappingFunction.apply(key, p.val);
1852                                 if (val != null)
1853                                     p.val = val;
1854                                 else {
1855                                     delta = -1;
1856                                     if (t.removeTreeNode(p))
1857                                         setTabAt(tab, i, untreeify(t.first));
1858                                 }
1859                             }
1860                         }
1861                         else if (f instanceof ReservationNode)
1862                             throw new IllegalStateException("Recursive update");
1863                     }
1864                 }
1865                 if (binCount != 0)
1866                     break;
1867             }
1868         }
1869         if (delta != 0)
1870             addCount((long)delta, binCount);
1871         return val;
1872     }
1873 
1874     /**
1875      * Attempts to compute a mapping for the specified key and its
1876      * current mapped value (or {@code null} if there is no current
1877      * mapping). The entire method invocation is performed atomically.
1878      * Some attempted update operations on this map by other threads
1879      * may be blocked while computation is in progress, so the
1880      * computation should be short and simple, and must not attempt to
1881      * update any other mappings of this Map.
1882      *
1883      * @param key key with which the specified value is to be associated
1884      * @param remappingFunction the function to compute a value
1885      * @return the new value associated with the specified key, or null if none
1886      * @throws NullPointerException if the specified key or remappingFunction
1887      *         is null
1888      * @throws IllegalStateException if the computation detectably
1889      *         attempts a recursive update to this map that would
1890      *         otherwise never complete
1891      * @throws RuntimeException or Error if the remappingFunction does so,
1892      *         in which case the mapping is unchanged
1893      */
compute(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction)1894     public V compute(K key,
1895                      BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1896         if (key == null || remappingFunction == null)
1897             throw new NullPointerException();
1898         int h = spread(key.hashCode());
1899         V val = null;
1900         int delta = 0;
1901         int binCount = 0;
1902         for (Node<K,V>[] tab = table;;) {
1903             Node<K,V> f; int n, i, fh;
1904             if (tab == null || (n = tab.length) == 0)
1905                 tab = initTable();
1906             else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1907                 Node<K,V> r = new ReservationNode<K,V>();
1908                 synchronized (r) {
1909                     if (casTabAt(tab, i, null, r)) {
1910                         binCount = 1;
1911                         Node<K,V> node = null;
1912                         try {
1913                             if ((val = remappingFunction.apply(key, null)) != null) {
1914                                 delta = 1;
1915                                 node = new Node<K,V>(h, key, val);
1916                             }
1917                         } finally {
1918                             setTabAt(tab, i, node);
1919                         }
1920                     }
1921                 }
1922                 if (binCount != 0)
1923                     break;
1924             }
1925             else if ((fh = f.hash) == MOVED)
1926                 tab = helpTransfer(tab, f);
1927             else {
1928                 synchronized (f) {
1929                     if (tabAt(tab, i) == f) {
1930                         if (fh >= 0) {
1931                             binCount = 1;
1932                             for (Node<K,V> e = f, pred = null;; ++binCount) {
1933                                 K ek;
1934                                 if (e.hash == h &&
1935                                     ((ek = e.key) == key ||
1936                                      (ek != null && key.equals(ek)))) {
1937                                     val = remappingFunction.apply(key, e.val);
1938                                     if (val != null)
1939                                         e.val = val;
1940                                     else {
1941                                         delta = -1;
1942                                         Node<K,V> en = e.next;
1943                                         if (pred != null)
1944                                             pred.next = en;
1945                                         else
1946                                             setTabAt(tab, i, en);
1947                                     }
1948                                     break;
1949                                 }
1950                                 pred = e;
1951                                 if ((e = e.next) == null) {
1952                                     val = remappingFunction.apply(key, null);
1953                                     if (val != null) {
1954                                         if (pred.next != null)
1955                                             throw new IllegalStateException("Recursive update");
1956                                         delta = 1;
1957                                         pred.next = new Node<K,V>(h, key, val);
1958                                     }
1959                                     break;
1960                                 }
1961                             }
1962                         }
1963                         else if (f instanceof TreeBin) {
1964                             binCount = 1;
1965                             TreeBin<K,V> t = (TreeBin<K,V>)f;
1966                             TreeNode<K,V> r, p;
1967                             if ((r = t.root) != null)
1968                                 p = r.findTreeNode(h, key, null);
1969                             else
1970                                 p = null;
1971                             V pv = (p == null) ? null : p.val;
1972                             val = remappingFunction.apply(key, pv);
1973                             if (val != null) {
1974                                 if (p != null)
1975                                     p.val = val;
1976                                 else {
1977                                     delta = 1;
1978                                     t.putTreeVal(h, key, val);
1979                                 }
1980                             }
1981                             else if (p != null) {
1982                                 delta = -1;
1983                                 if (t.removeTreeNode(p))
1984                                     setTabAt(tab, i, untreeify(t.first));
1985                             }
1986                         }
1987                         else if (f instanceof ReservationNode)
1988                             throw new IllegalStateException("Recursive update");
1989                     }
1990                 }
1991                 if (binCount != 0) {
1992                     if (binCount >= TREEIFY_THRESHOLD)
1993                         treeifyBin(tab, i);
1994                     break;
1995                 }
1996             }
1997         }
1998         if (delta != 0)
1999             addCount((long)delta, binCount);
2000         return val;
2001     }
2002 
2003     /**
2004      * If the specified key is not already associated with a
2005      * (non-null) value, associates it with the given value.
2006      * Otherwise, replaces the value with the results of the given
2007      * remapping function, or removes if {@code null}. The entire
2008      * method invocation is performed atomically.  Some attempted
2009      * update operations on this map by other threads may be blocked
2010      * while computation is in progress, so the computation should be
2011      * short and simple, and must not attempt to update any other
2012      * mappings of this Map.
2013      *
2014      * @param key key with which the specified value is to be associated
2015      * @param value the value to use if absent
2016      * @param remappingFunction the function to recompute a value if present
2017      * @return the new value associated with the specified key, or null if none
2018      * @throws NullPointerException if the specified key or the
2019      *         remappingFunction is null
2020      * @throws RuntimeException or Error if the remappingFunction does so,
2021      *         in which case the mapping is unchanged
2022      */
merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction)2023     public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
2024         if (key == null || value == null || remappingFunction == null)
2025             throw new NullPointerException();
2026         int h = spread(key.hashCode());
2027         V val = null;
2028         int delta = 0;
2029         int binCount = 0;
2030         for (Node<K,V>[] tab = table;;) {
2031             Node<K,V> f; int n, i, fh;
2032             if (tab == null || (n = tab.length) == 0)
2033                 tab = initTable();
2034             else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
2035                 if (casTabAt(tab, i, null, new Node<K,V>(h, key, value))) {
2036                     delta = 1;
2037                     val = value;
2038                     break;
2039                 }
2040             }
2041             else if ((fh = f.hash) == MOVED)
2042                 tab = helpTransfer(tab, f);
2043             else {
2044                 synchronized (f) {
2045                     if (tabAt(tab, i) == f) {
2046                         if (fh >= 0) {
2047                             binCount = 1;
2048                             for (Node<K,V> e = f, pred = null;; ++binCount) {
2049                                 K ek;
2050                                 if (e.hash == h &&
2051                                     ((ek = e.key) == key ||
2052                                      (ek != null && key.equals(ek)))) {
2053                                     val = remappingFunction.apply(e.val, value);
2054                                     if (val != null)
2055                                         e.val = val;
2056                                     else {
2057                                         delta = -1;
2058                                         Node<K,V> en = e.next;
2059                                         if (pred != null)
2060                                             pred.next = en;
2061                                         else
2062                                             setTabAt(tab, i, en);
2063                                     }
2064                                     break;
2065                                 }
2066                                 pred = e;
2067                                 if ((e = e.next) == null) {
2068                                     delta = 1;
2069                                     val = value;
2070                                     pred.next = new Node<K,V>(h, key, val);
2071                                     break;
2072                                 }
2073                             }
2074                         }
2075                         else if (f instanceof TreeBin) {
2076                             binCount = 2;
2077                             TreeBin<K,V> t = (TreeBin<K,V>)f;
2078                             TreeNode<K,V> r = t.root;
2079                             TreeNode<K,V> p = (r == null) ? null :
2080                                 r.findTreeNode(h, key, null);
2081                             val = (p == null) ? value :
2082                                 remappingFunction.apply(p.val, value);
2083                             if (val != null) {
2084                                 if (p != null)
2085                                     p.val = val;
2086                                 else {
2087                                     delta = 1;
2088                                     t.putTreeVal(h, key, val);
2089                                 }
2090                             }
2091                             else if (p != null) {
2092                                 delta = -1;
2093                                 if (t.removeTreeNode(p))
2094                                     setTabAt(tab, i, untreeify(t.first));
2095                             }
2096                         }
2097                         else if (f instanceof ReservationNode)
2098                             throw new IllegalStateException("Recursive update");
2099                     }
2100                 }
2101                 if (binCount != 0) {
2102                     if (binCount >= TREEIFY_THRESHOLD)
2103                         treeifyBin(tab, i);
2104                     break;
2105                 }
2106             }
2107         }
2108         if (delta != 0)
2109             addCount((long)delta, binCount);
2110         return val;
2111     }
2112 
2113     // Hashtable legacy methods
2114 
2115     /**
2116      * Tests if some key maps into the specified value in this table.
2117      *
2118      * <p>Note that this method is identical in functionality to
2119      * {@link #containsValue(Object)}, and exists solely to ensure
2120      * full compatibility with class {@link java.util.Hashtable},
2121      * which supported this method prior to introduction of the
2122      * Java Collections Framework.
2123      *
2124      * @param  value a value to search for
2125      * @return {@code true} if and only if some key maps to the
2126      *         {@code value} argument in this table as
2127      *         determined by the {@code equals} method;
2128      *         {@code false} otherwise
2129      * @throws NullPointerException if the specified value is null
2130      */
contains(Object value)2131     public boolean contains(Object value) {
2132         return containsValue(value);
2133     }
2134 
2135     /**
2136      * Returns an enumeration of the keys in this table.
2137      *
2138      * @return an enumeration of the keys in this table
2139      * @see #keySet()
2140      */
keys()2141     public Enumeration<K> keys() {
2142         Node<K,V>[] t;
2143         int f = (t = table) == null ? 0 : t.length;
2144         return new KeyIterator<K,V>(t, f, 0, f, this);
2145     }
2146 
2147     /**
2148      * Returns an enumeration of the values in this table.
2149      *
2150      * @return an enumeration of the values in this table
2151      * @see #values()
2152      */
elements()2153     public Enumeration<V> elements() {
2154         Node<K,V>[] t;
2155         int f = (t = table) == null ? 0 : t.length;
2156         return new ValueIterator<K,V>(t, f, 0, f, this);
2157     }
2158 
2159     // ConcurrentHashMap-only methods
2160 
2161     /**
2162      * Returns the number of mappings. This method should be used
2163      * instead of {@link #size} because a ConcurrentHashMap may
2164      * contain more mappings than can be represented as an int. The
2165      * value returned is an estimate; the actual count may differ if
2166      * there are concurrent insertions or removals.
2167      *
2168      * @return the number of mappings
2169      * @since 1.8
2170      */
mappingCount()2171     public long mappingCount() {
2172         long n = sumCount();
2173         return (n < 0L) ? 0L : n; // ignore transient negative values
2174     }
2175 
2176     /**
2177      * Creates a new {@link Set} backed by a ConcurrentHashMap
2178      * from the given type to {@code Boolean.TRUE}.
2179      *
2180      * @param <K> the element type of the returned set
2181      * @return the new set
2182      * @since 1.8
2183      */
newKeySet()2184     public static <K> KeySetView<K,Boolean> newKeySet() {
2185         return new KeySetView<K,Boolean>
2186             (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2187     }
2188 
2189     /**
2190      * Creates a new {@link Set} backed by a ConcurrentHashMap
2191      * from the given type to {@code Boolean.TRUE}.
2192      *
2193      * @param initialCapacity The implementation performs internal
2194      * sizing to accommodate this many elements.
2195      * @param <K> the element type of the returned set
2196      * @return the new set
2197      * @throws IllegalArgumentException if the initial capacity of
2198      * elements is negative
2199      * @since 1.8
2200      */
newKeySet(int initialCapacity)2201     public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2202         return new KeySetView<K,Boolean>
2203             (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2204     }
2205 
2206     /**
2207      * Returns a {@link Set} view of the keys in this map, using the
2208      * given common mapped value for any additions (i.e., {@link
2209      * Collection#add} and {@link Collection#addAll(Collection)}).
2210      * This is of course only appropriate if it is acceptable to use
2211      * the same value for all additions from this view.
2212      *
2213      * @param mappedValue the mapped value to use for any additions
2214      * @return the set view
2215      * @throws NullPointerException if the mappedValue is null
2216      */
keySet(V mappedValue)2217     public KeySetView<K,V> keySet(V mappedValue) {
2218         if (mappedValue == null)
2219             throw new NullPointerException();
2220         return new KeySetView<K,V>(this, mappedValue);
2221     }
2222 
2223     /* ---------------- Special Nodes -------------- */
2224 
2225     /**
2226      * A node inserted at head of bins during transfer operations.
2227      */
2228     static final class ForwardingNode<K,V> extends Node<K,V> {
2229         final Node<K,V>[] nextTable;
ForwardingNode(Node<K,V>[] tab)2230         ForwardingNode(Node<K,V>[] tab) {
2231             super(MOVED, null, null);
2232             this.nextTable = tab;
2233         }
2234 
find(int h, Object k)2235         Node<K,V> find(int h, Object k) {
2236             // loop to avoid arbitrarily deep recursion on forwarding nodes
2237             outer: for (Node<K,V>[] tab = nextTable;;) {
2238                 Node<K,V> e; int n;
2239                 if (k == null || tab == null || (n = tab.length) == 0 ||
2240                     (e = tabAt(tab, (n - 1) & h)) == null)
2241                     return null;
2242                 for (;;) {
2243                     int eh; K ek;
2244                     if ((eh = e.hash) == h &&
2245                         ((ek = e.key) == k || (ek != null && k.equals(ek))))
2246                         return e;
2247                     if (eh < 0) {
2248                         if (e instanceof ForwardingNode) {
2249                             tab = ((ForwardingNode<K,V>)e).nextTable;
2250                             continue outer;
2251                         }
2252                         else
2253                             return e.find(h, k);
2254                     }
2255                     if ((e = e.next) == null)
2256                         return null;
2257                 }
2258             }
2259         }
2260     }
2261 
2262     /**
2263      * A place-holder node used in computeIfAbsent and compute.
2264      */
2265     static final class ReservationNode<K,V> extends Node<K,V> {
ReservationNode()2266         ReservationNode() {
2267             super(RESERVED, null, null);
2268         }
2269 
find(int h, Object k)2270         Node<K,V> find(int h, Object k) {
2271             return null;
2272         }
2273     }
2274 
2275     /* ---------------- Table Initialization and Resizing -------------- */
2276 
2277     /**
2278      * Returns the stamp bits for resizing a table of size n.
2279      * Must be negative when shifted left by RESIZE_STAMP_SHIFT.
2280      */
resizeStamp(int n)2281     static final int resizeStamp(int n) {
2282         return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
2283     }
2284 
2285     /**
2286      * Initializes table, using the size recorded in sizeCtl.
2287      */
initTable()2288     private final Node<K,V>[] initTable() {
2289         Node<K,V>[] tab; int sc;
2290         while ((tab = table) == null || tab.length == 0) {
2291             if ((sc = sizeCtl) < 0)
2292                 Thread.yield(); // lost initialization race; just spin
2293             else if (U.compareAndSetInt(this, SIZECTL, sc, -1)) {
2294                 try {
2295                     if ((tab = table) == null || tab.length == 0) {
2296                         int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2297                         @SuppressWarnings("unchecked")
2298                         Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2299                         table = tab = nt;
2300                         sc = n - (n >>> 2);
2301                     }
2302                 } finally {
2303                     sizeCtl = sc;
2304                 }
2305                 break;
2306             }
2307         }
2308         return tab;
2309     }
2310 
2311     /**
2312      * Adds to count, and if table is too small and not already
2313      * resizing, initiates transfer. If already resizing, helps
2314      * perform transfer if work is available.  Rechecks occupancy
2315      * after a transfer to see if another resize is already needed
2316      * because resizings are lagging additions.
2317      *
2318      * @param x the count to add
2319      * @param check if <0, don't check resize, if <= 1 only check if uncontended
2320      */
addCount(long x, int check)2321     private final void addCount(long x, int check) {
2322         CounterCell[] cs; long b, s;
2323         if ((cs = counterCells) != null ||
2324             !U.compareAndSetLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2325             CounterCell c; long v; int m;
2326             boolean uncontended = true;
2327             if (cs == null || (m = cs.length - 1) < 0 ||
2328                 (c = cs[ThreadLocalRandom.getProbe() & m]) == null ||
2329                 !(uncontended =
2330                   U.compareAndSetLong(c, CELLVALUE, v = c.value, v + x))) {
2331                 fullAddCount(x, uncontended);
2332                 return;
2333             }
2334             if (check <= 1)
2335                 return;
2336             s = sumCount();
2337         }
2338         if (check >= 0) {
2339             Node<K,V>[] tab, nt; int n, sc;
2340             while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2341                    (n = tab.length) < MAXIMUM_CAPACITY) {
2342                 int rs = resizeStamp(n);
2343                 if (sc < 0) {
2344                     if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2345                         sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
2346                         transferIndex <= 0)
2347                         break;
2348                     if (U.compareAndSetInt(this, SIZECTL, sc, sc + 1))
2349                         transfer(tab, nt);
2350                 }
2351                 else if (U.compareAndSetInt(this, SIZECTL, sc,
2352                                              (rs << RESIZE_STAMP_SHIFT) + 2))
2353                     transfer(tab, null);
2354                 s = sumCount();
2355             }
2356         }
2357     }
2358 
2359     /**
2360      * Helps transfer if a resize is in progress.
2361      */
helpTransfer(Node<K,V>[] tab, Node<K,V> f)2362     final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2363         Node<K,V>[] nextTab; int sc;
2364         if (tab != null && (f instanceof ForwardingNode) &&
2365             (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2366             int rs = resizeStamp(tab.length);
2367             while (nextTab == nextTable && table == tab &&
2368                    (sc = sizeCtl) < 0) {
2369                 if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2370                     sc == rs + MAX_RESIZERS || transferIndex <= 0)
2371                     break;
2372                 if (U.compareAndSetInt(this, SIZECTL, sc, sc + 1)) {
2373                     transfer(tab, nextTab);
2374                     break;
2375                 }
2376             }
2377             return nextTab;
2378         }
2379         return table;
2380     }
2381 
2382     /**
2383      * Tries to presize table to accommodate the given number of elements.
2384      *
2385      * @param size number of elements (doesn't need to be perfectly accurate)
2386      */
tryPresize(int size)2387     private final void tryPresize(int size) {
2388         int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2389             tableSizeFor(size + (size >>> 1) + 1);
2390         int sc;
2391         while ((sc = sizeCtl) >= 0) {
2392             Node<K,V>[] tab = table; int n;
2393             if (tab == null || (n = tab.length) == 0) {
2394                 n = (sc > c) ? sc : c;
2395                 if (U.compareAndSetInt(this, SIZECTL, sc, -1)) {
2396                     try {
2397                         if (table == tab) {
2398                             @SuppressWarnings("unchecked")
2399                             Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2400                             table = nt;
2401                             sc = n - (n >>> 2);
2402                         }
2403                     } finally {
2404                         sizeCtl = sc;
2405                     }
2406                 }
2407             }
2408             else if (c <= sc || n >= MAXIMUM_CAPACITY)
2409                 break;
2410             else if (tab == table) {
2411                 int rs = resizeStamp(n);
2412                 if (U.compareAndSetInt(this, SIZECTL, sc,
2413                                         (rs << RESIZE_STAMP_SHIFT) + 2))
2414                     transfer(tab, null);
2415             }
2416         }
2417     }
2418 
2419     /**
2420      * Moves and/or copies the nodes in each bin to new table. See
2421      * above for explanation.
2422      */
transfer(Node<K,V>[] tab, Node<K,V>[] nextTab)2423     private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2424         int n = tab.length, stride;
2425         if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2426             stride = MIN_TRANSFER_STRIDE; // subdivide range
2427         if (nextTab == null) {            // initiating
2428             try {
2429                 @SuppressWarnings("unchecked")
2430                 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
2431                 nextTab = nt;
2432             } catch (Throwable ex) {      // try to cope with OOME
2433                 sizeCtl = Integer.MAX_VALUE;
2434                 return;
2435             }
2436             nextTable = nextTab;
2437             transferIndex = n;
2438         }
2439         int nextn = nextTab.length;
2440         ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2441         boolean advance = true;
2442         boolean finishing = false; // to ensure sweep before committing nextTab
2443         for (int i = 0, bound = 0;;) {
2444             Node<K,V> f; int fh;
2445             while (advance) {
2446                 int nextIndex, nextBound;
2447                 if (--i >= bound || finishing)
2448                     advance = false;
2449                 else if ((nextIndex = transferIndex) <= 0) {
2450                     i = -1;
2451                     advance = false;
2452                 }
2453                 else if (U.compareAndSetInt
2454                          (this, TRANSFERINDEX, nextIndex,
2455                           nextBound = (nextIndex > stride ?
2456                                        nextIndex - stride : 0))) {
2457                     bound = nextBound;
2458                     i = nextIndex - 1;
2459                     advance = false;
2460                 }
2461             }
2462             if (i < 0 || i >= n || i + n >= nextn) {
2463                 int sc;
2464                 if (finishing) {
2465                     nextTable = null;
2466                     table = nextTab;
2467                     sizeCtl = (n << 1) - (n >>> 1);
2468                     return;
2469                 }
2470                 if (U.compareAndSetInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
2471                     if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
2472                         return;
2473                     finishing = advance = true;
2474                     i = n; // recheck before commit
2475                 }
2476             }
2477             else if ((f = tabAt(tab, i)) == null)
2478                 advance = casTabAt(tab, i, null, fwd);
2479             else if ((fh = f.hash) == MOVED)
2480                 advance = true; // already processed
2481             else {
2482                 synchronized (f) {
2483                     if (tabAt(tab, i) == f) {
2484                         Node<K,V> ln, hn;
2485                         if (fh >= 0) {
2486                             int runBit = fh & n;
2487                             Node<K,V> lastRun = f;
2488                             for (Node<K,V> p = f.next; p != null; p = p.next) {
2489                                 int b = p.hash & n;
2490                                 if (b != runBit) {
2491                                     runBit = b;
2492                                     lastRun = p;
2493                                 }
2494                             }
2495                             if (runBit == 0) {
2496                                 ln = lastRun;
2497                                 hn = null;
2498                             }
2499                             else {
2500                                 hn = lastRun;
2501                                 ln = null;
2502                             }
2503                             for (Node<K,V> p = f; p != lastRun; p = p.next) {
2504                                 int ph = p.hash; K pk = p.key; V pv = p.val;
2505                                 if ((ph & n) == 0)
2506                                     ln = new Node<K,V>(ph, pk, pv, ln);
2507                                 else
2508                                     hn = new Node<K,V>(ph, pk, pv, hn);
2509                             }
2510                             setTabAt(nextTab, i, ln);
2511                             setTabAt(nextTab, i + n, hn);
2512                             setTabAt(tab, i, fwd);
2513                             advance = true;
2514                         }
2515                         else if (f instanceof TreeBin) {
2516                             TreeBin<K,V> t = (TreeBin<K,V>)f;
2517                             TreeNode<K,V> lo = null, loTail = null;
2518                             TreeNode<K,V> hi = null, hiTail = null;
2519                             int lc = 0, hc = 0;
2520                             for (Node<K,V> e = t.first; e != null; e = e.next) {
2521                                 int h = e.hash;
2522                                 TreeNode<K,V> p = new TreeNode<K,V>
2523                                     (h, e.key, e.val, null, null);
2524                                 if ((h & n) == 0) {
2525                                     if ((p.prev = loTail) == null)
2526                                         lo = p;
2527                                     else
2528                                         loTail.next = p;
2529                                     loTail = p;
2530                                     ++lc;
2531                                 }
2532                                 else {
2533                                     if ((p.prev = hiTail) == null)
2534                                         hi = p;
2535                                     else
2536                                         hiTail.next = p;
2537                                     hiTail = p;
2538                                     ++hc;
2539                                 }
2540                             }
2541                             ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2542                                 (hc != 0) ? new TreeBin<K,V>(lo) : t;
2543                             hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2544                                 (lc != 0) ? new TreeBin<K,V>(hi) : t;
2545                             setTabAt(nextTab, i, ln);
2546                             setTabAt(nextTab, i + n, hn);
2547                             setTabAt(tab, i, fwd);
2548                             advance = true;
2549                         }
2550                     }
2551                 }
2552             }
2553         }
2554     }
2555 
2556     /* ---------------- Counter support -------------- */
2557 
2558     /**
2559      * A padded cell for distributing counts.  Adapted from LongAdder
2560      * and Striped64.  See their internal docs for explanation.
2561      */
2562     @jdk.internal.vm.annotation.Contended
2563     static final class CounterCell {
2564         volatile long value;
CounterCell(long x)2565         CounterCell(long x) { value = x; }
2566     }
2567 
sumCount()2568     final long sumCount() {
2569         CounterCell[] cs = counterCells;
2570         long sum = baseCount;
2571         if (cs != null) {
2572             for (CounterCell c : cs)
2573                 if (c != null)
2574                     sum += c.value;
2575         }
2576         return sum;
2577     }
2578 
2579     // See LongAdder version for explanation
fullAddCount(long x, boolean wasUncontended)2580     private final void fullAddCount(long x, boolean wasUncontended) {
2581         int h;
2582         if ((h = ThreadLocalRandom.getProbe()) == 0) {
2583             ThreadLocalRandom.localInit();      // force initialization
2584             h = ThreadLocalRandom.getProbe();
2585             wasUncontended = true;
2586         }
2587         boolean collide = false;                // True if last slot nonempty
2588         for (;;) {
2589             CounterCell[] cs; CounterCell c; int n; long v;
2590             if ((cs = counterCells) != null && (n = cs.length) > 0) {
2591                 if ((c = cs[(n - 1) & h]) == null) {
2592                     if (cellsBusy == 0) {            // Try to attach new Cell
2593                         CounterCell r = new CounterCell(x); // Optimistic create
2594                         if (cellsBusy == 0 &&
2595                             U.compareAndSetInt(this, CELLSBUSY, 0, 1)) {
2596                             boolean created = false;
2597                             try {               // Recheck under lock
2598                                 CounterCell[] rs; int m, j;
2599                                 if ((rs = counterCells) != null &&
2600                                     (m = rs.length) > 0 &&
2601                                     rs[j = (m - 1) & h] == null) {
2602                                     rs[j] = r;
2603                                     created = true;
2604                                 }
2605                             } finally {
2606                                 cellsBusy = 0;
2607                             }
2608                             if (created)
2609                                 break;
2610                             continue;           // Slot is now non-empty
2611                         }
2612                     }
2613                     collide = false;
2614                 }
2615                 else if (!wasUncontended)       // CAS already known to fail
2616                     wasUncontended = true;      // Continue after rehash
2617                 else if (U.compareAndSetLong(c, CELLVALUE, v = c.value, v + x))
2618                     break;
2619                 else if (counterCells != cs || n >= NCPU)
2620                     collide = false;            // At max size or stale
2621                 else if (!collide)
2622                     collide = true;
2623                 else if (cellsBusy == 0 &&
2624                          U.compareAndSetInt(this, CELLSBUSY, 0, 1)) {
2625                     try {
2626                         if (counterCells == cs) // Expand table unless stale
2627                             counterCells = Arrays.copyOf(cs, n << 1);
2628                     } finally {
2629                         cellsBusy = 0;
2630                     }
2631                     collide = false;
2632                     continue;                   // Retry with expanded table
2633                 }
2634                 h = ThreadLocalRandom.advanceProbe(h);
2635             }
2636             else if (cellsBusy == 0 && counterCells == cs &&
2637                      U.compareAndSetInt(this, CELLSBUSY, 0, 1)) {
2638                 boolean init = false;
2639                 try {                           // Initialize table
2640                     if (counterCells == cs) {
2641                         CounterCell[] rs = new CounterCell[2];
2642                         rs[h & 1] = new CounterCell(x);
2643                         counterCells = rs;
2644                         init = true;
2645                     }
2646                 } finally {
2647                     cellsBusy = 0;
2648                 }
2649                 if (init)
2650                     break;
2651             }
2652             else if (U.compareAndSetLong(this, BASECOUNT, v = baseCount, v + x))
2653                 break;                          // Fall back on using base
2654         }
2655     }
2656 
2657     /* ---------------- Conversion from/to TreeBins -------------- */
2658 
2659     /**
2660      * Replaces all linked nodes in bin at given index unless table is
2661      * too small, in which case resizes instead.
2662      */
treeifyBin(Node<K,V>[] tab, int index)2663     private final void treeifyBin(Node<K,V>[] tab, int index) {
2664         Node<K,V> b; int n;
2665         if (tab != null) {
2666             if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
2667                 tryPresize(n << 1);
2668             else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2669                 synchronized (b) {
2670                     if (tabAt(tab, index) == b) {
2671                         TreeNode<K,V> hd = null, tl = null;
2672                         for (Node<K,V> e = b; e != null; e = e.next) {
2673                             TreeNode<K,V> p =
2674                                 new TreeNode<K,V>(e.hash, e.key, e.val,
2675                                                   null, null);
2676                             if ((p.prev = tl) == null)
2677                                 hd = p;
2678                             else
2679                                 tl.next = p;
2680                             tl = p;
2681                         }
2682                         setTabAt(tab, index, new TreeBin<K,V>(hd));
2683                     }
2684                 }
2685             }
2686         }
2687     }
2688 
2689     /**
2690      * Returns a list of non-TreeNodes replacing those in given list.
2691      */
untreeify(Node<K,V> b)2692     static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2693         Node<K,V> hd = null, tl = null;
2694         for (Node<K,V> q = b; q != null; q = q.next) {
2695             Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val);
2696             if (tl == null)
2697                 hd = p;
2698             else
2699                 tl.next = p;
2700             tl = p;
2701         }
2702         return hd;
2703     }
2704 
2705     /* ---------------- TreeNodes -------------- */
2706 
2707     /**
2708      * Nodes for use in TreeBins.
2709      */
2710     static final class TreeNode<K,V> extends Node<K,V> {
2711         TreeNode<K,V> parent;  // red-black tree links
2712         TreeNode<K,V> left;
2713         TreeNode<K,V> right;
2714         TreeNode<K,V> prev;    // needed to unlink next upon deletion
2715         boolean red;
2716 
TreeNode(int hash, K key, V val, Node<K,V> next, TreeNode<K,V> parent)2717         TreeNode(int hash, K key, V val, Node<K,V> next,
2718                  TreeNode<K,V> parent) {
2719             super(hash, key, val, next);
2720             this.parent = parent;
2721         }
2722 
find(int h, Object k)2723         Node<K,V> find(int h, Object k) {
2724             return findTreeNode(h, k, null);
2725         }
2726 
2727         /**
2728          * Returns the TreeNode (or null if not found) for the given key
2729          * starting at given root.
2730          */
findTreeNode(int h, Object k, Class<?> kc)2731         final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2732             if (k != null) {
2733                 TreeNode<K,V> p = this;
2734                 do {
2735                     int ph, dir; K pk; TreeNode<K,V> q;
2736                     TreeNode<K,V> pl = p.left, pr = p.right;
2737                     if ((ph = p.hash) > h)
2738                         p = pl;
2739                     else if (ph < h)
2740                         p = pr;
2741                     else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2742                         return p;
2743                     else if (pl == null)
2744                         p = pr;
2745                     else if (pr == null)
2746                         p = pl;
2747                     else if ((kc != null ||
2748                               (kc = comparableClassFor(k)) != null) &&
2749                              (dir = compareComparables(kc, k, pk)) != 0)
2750                         p = (dir < 0) ? pl : pr;
2751                     else if ((q = pr.findTreeNode(h, k, kc)) != null)
2752                         return q;
2753                     else
2754                         p = pl;
2755                 } while (p != null);
2756             }
2757             return null;
2758         }
2759     }
2760 
2761     /* ---------------- TreeBins -------------- */
2762 
2763     /**
2764      * TreeNodes used at the heads of bins. TreeBins do not hold user
2765      * keys or values, but instead point to list of TreeNodes and
2766      * their root. They also maintain a parasitic read-write lock
2767      * forcing writers (who hold bin lock) to wait for readers (who do
2768      * not) to complete before tree restructuring operations.
2769      */
2770     static final class TreeBin<K,V> extends Node<K,V> {
2771         TreeNode<K,V> root;
2772         volatile TreeNode<K,V> first;
2773         volatile Thread waiter;
2774         volatile int lockState;
2775         // values for lockState
2776         static final int WRITER = 1; // set while holding write lock
2777         static final int WAITER = 2; // set when waiting for write lock
2778         static final int READER = 4; // increment value for setting read lock
2779 
2780         /**
2781          * Tie-breaking utility for ordering insertions when equal
2782          * hashCodes and non-comparable. We don't require a total
2783          * order, just a consistent insertion rule to maintain
2784          * equivalence across rebalancings. Tie-breaking further than
2785          * necessary simplifies testing a bit.
2786          */
tieBreakOrder(Object a, Object b)2787         static int tieBreakOrder(Object a, Object b) {
2788             int d;
2789             if (a == null || b == null ||
2790                 (d = a.getClass().getName().
2791                  compareTo(b.getClass().getName())) == 0)
2792                 d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2793                      -1 : 1);
2794             return d;
2795         }
2796 
2797         /**
2798          * Creates bin with initial set of nodes headed by b.
2799          */
TreeBin(TreeNode<K,V> b)2800         TreeBin(TreeNode<K,V> b) {
2801             super(TREEBIN, null, null);
2802             this.first = b;
2803             TreeNode<K,V> r = null;
2804             for (TreeNode<K,V> x = b, next; x != null; x = next) {
2805                 next = (TreeNode<K,V>)x.next;
2806                 x.left = x.right = null;
2807                 if (r == null) {
2808                     x.parent = null;
2809                     x.red = false;
2810                     r = x;
2811                 }
2812                 else {
2813                     K k = x.key;
2814                     int h = x.hash;
2815                     Class<?> kc = null;
2816                     for (TreeNode<K,V> p = r;;) {
2817                         int dir, ph;
2818                         K pk = p.key;
2819                         if ((ph = p.hash) > h)
2820                             dir = -1;
2821                         else if (ph < h)
2822                             dir = 1;
2823                         else if ((kc == null &&
2824                                   (kc = comparableClassFor(k)) == null) ||
2825                                  (dir = compareComparables(kc, k, pk)) == 0)
2826                             dir = tieBreakOrder(k, pk);
2827                         TreeNode<K,V> xp = p;
2828                         if ((p = (dir <= 0) ? p.left : p.right) == null) {
2829                             x.parent = xp;
2830                             if (dir <= 0)
2831                                 xp.left = x;
2832                             else
2833                                 xp.right = x;
2834                             r = balanceInsertion(r, x);
2835                             break;
2836                         }
2837                     }
2838                 }
2839             }
2840             this.root = r;
2841             assert checkInvariants(root);
2842         }
2843 
2844         /**
2845          * Acquires write lock for tree restructuring.
2846          */
lockRoot()2847         private final void lockRoot() {
2848             if (!U.compareAndSetInt(this, LOCKSTATE, 0, WRITER))
2849                 contendedLock(); // offload to separate method
2850         }
2851 
2852         /**
2853          * Releases write lock for tree restructuring.
2854          */
unlockRoot()2855         private final void unlockRoot() {
2856             lockState = 0;
2857         }
2858 
2859         /**
2860          * Possibly blocks awaiting root lock.
2861          */
contendedLock()2862         private final void contendedLock() {
2863             boolean waiting = false;
2864             for (int s;;) {
2865                 if (((s = lockState) & ~WAITER) == 0) {
2866                     if (U.compareAndSetInt(this, LOCKSTATE, s, WRITER)) {
2867                         if (waiting)
2868                             waiter = null;
2869                         return;
2870                     }
2871                 }
2872                 else if ((s & WAITER) == 0) {
2873                     if (U.compareAndSetInt(this, LOCKSTATE, s, s | WAITER)) {
2874                         waiting = true;
2875                         waiter = Thread.currentThread();
2876                     }
2877                 }
2878                 else if (waiting)
2879                     LockSupport.park(this);
2880             }
2881         }
2882 
2883         /**
2884          * Returns matching node or null if none. Tries to search
2885          * using tree comparisons from root, but continues linear
2886          * search when lock not available.
2887          */
find(int h, Object k)2888         final Node<K,V> find(int h, Object k) {
2889             if (k != null) {
2890                 for (Node<K,V> e = first; e != null; ) {
2891                     int s; K ek;
2892                     if (((s = lockState) & (WAITER|WRITER)) != 0) {
2893                         if (e.hash == h &&
2894                             ((ek = e.key) == k || (ek != null && k.equals(ek))))
2895                             return e;
2896                         e = e.next;
2897                     }
2898                     else if (U.compareAndSetInt(this, LOCKSTATE, s,
2899                                                  s + READER)) {
2900                         TreeNode<K,V> r, p;
2901                         try {
2902                             p = ((r = root) == null ? null :
2903                                  r.findTreeNode(h, k, null));
2904                         } finally {
2905                             Thread w;
2906                             if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2907                                 (READER|WAITER) && (w = waiter) != null)
2908                                 LockSupport.unpark(w);
2909                         }
2910                         return p;
2911                     }
2912                 }
2913             }
2914             return null;
2915         }
2916 
2917         /**
2918          * Finds or adds a node.
2919          * @return null if added
2920          */
putTreeVal(int h, K k, V v)2921         final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2922             Class<?> kc = null;
2923             boolean searched = false;
2924             for (TreeNode<K,V> p = root;;) {
2925                 int dir, ph; K pk;
2926                 if (p == null) {
2927                     first = root = new TreeNode<K,V>(h, k, v, null, null);
2928                     break;
2929                 }
2930                 else if ((ph = p.hash) > h)
2931                     dir = -1;
2932                 else if (ph < h)
2933                     dir = 1;
2934                 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2935                     return p;
2936                 else if ((kc == null &&
2937                           (kc = comparableClassFor(k)) == null) ||
2938                          (dir = compareComparables(kc, k, pk)) == 0) {
2939                     if (!searched) {
2940                         TreeNode<K,V> q, ch;
2941                         searched = true;
2942                         if (((ch = p.left) != null &&
2943                              (q = ch.findTreeNode(h, k, kc)) != null) ||
2944                             ((ch = p.right) != null &&
2945                              (q = ch.findTreeNode(h, k, kc)) != null))
2946                             return q;
2947                     }
2948                     dir = tieBreakOrder(k, pk);
2949                 }
2950 
2951                 TreeNode<K,V> xp = p;
2952                 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2953                     TreeNode<K,V> x, f = first;
2954                     first = x = new TreeNode<K,V>(h, k, v, f, xp);
2955                     if (f != null)
2956                         f.prev = x;
2957                     if (dir <= 0)
2958                         xp.left = x;
2959                     else
2960                         xp.right = x;
2961                     if (!xp.red)
2962                         x.red = true;
2963                     else {
2964                         lockRoot();
2965                         try {
2966                             root = balanceInsertion(root, x);
2967                         } finally {
2968                             unlockRoot();
2969                         }
2970                     }
2971                     break;
2972                 }
2973             }
2974             assert checkInvariants(root);
2975             return null;
2976         }
2977 
2978         /**
2979          * Removes the given node, that must be present before this
2980          * call.  This is messier than typical red-black deletion code
2981          * because we cannot swap the contents of an interior node
2982          * with a leaf successor that is pinned by "next" pointers
2983          * that are accessible independently of lock. So instead we
2984          * swap the tree linkages.
2985          *
2986          * @return true if now too small, so should be untreeified
2987          */
removeTreeNode(TreeNode<K,V> p)2988         final boolean removeTreeNode(TreeNode<K,V> p) {
2989             TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2990             TreeNode<K,V> pred = p.prev;  // unlink traversal pointers
2991             TreeNode<K,V> r, rl;
2992             if (pred == null)
2993                 first = next;
2994             else
2995                 pred.next = next;
2996             if (next != null)
2997                 next.prev = pred;
2998             if (first == null) {
2999                 root = null;
3000                 return true;
3001             }
3002             if ((r = root) == null || r.right == null || // too small
3003                 (rl = r.left) == null || rl.left == null)
3004                 return true;
3005             lockRoot();
3006             try {
3007                 TreeNode<K,V> replacement;
3008                 TreeNode<K,V> pl = p.left;
3009                 TreeNode<K,V> pr = p.right;
3010                 if (pl != null && pr != null) {
3011                     TreeNode<K,V> s = pr, sl;
3012                     while ((sl = s.left) != null) // find successor
3013                         s = sl;
3014                     boolean c = s.red; s.red = p.red; p.red = c; // swap colors
3015                     TreeNode<K,V> sr = s.right;
3016                     TreeNode<K,V> pp = p.parent;
3017                     if (s == pr) { // p was s's direct parent
3018                         p.parent = s;
3019                         s.right = p;
3020                     }
3021                     else {
3022                         TreeNode<K,V> sp = s.parent;
3023                         if ((p.parent = sp) != null) {
3024                             if (s == sp.left)
3025                                 sp.left = p;
3026                             else
3027                                 sp.right = p;
3028                         }
3029                         if ((s.right = pr) != null)
3030                             pr.parent = s;
3031                     }
3032                     p.left = null;
3033                     if ((p.right = sr) != null)
3034                         sr.parent = p;
3035                     if ((s.left = pl) != null)
3036                         pl.parent = s;
3037                     if ((s.parent = pp) == null)
3038                         r = s;
3039                     else if (p == pp.left)
3040                         pp.left = s;
3041                     else
3042                         pp.right = s;
3043                     if (sr != null)
3044                         replacement = sr;
3045                     else
3046                         replacement = p;
3047                 }
3048                 else if (pl != null)
3049                     replacement = pl;
3050                 else if (pr != null)
3051                     replacement = pr;
3052                 else
3053                     replacement = p;
3054                 if (replacement != p) {
3055                     TreeNode<K,V> pp = replacement.parent = p.parent;
3056                     if (pp == null)
3057                         r = replacement;
3058                     else if (p == pp.left)
3059                         pp.left = replacement;
3060                     else
3061                         pp.right = replacement;
3062                     p.left = p.right = p.parent = null;
3063                 }
3064 
3065                 root = (p.red) ? r : balanceDeletion(r, replacement);
3066 
3067                 if (p == replacement) {  // detach pointers
3068                     TreeNode<K,V> pp;
3069                     if ((pp = p.parent) != null) {
3070                         if (p == pp.left)
3071                             pp.left = null;
3072                         else if (p == pp.right)
3073                             pp.right = null;
3074                         p.parent = null;
3075                     }
3076                 }
3077             } finally {
3078                 unlockRoot();
3079             }
3080             assert checkInvariants(root);
3081             return false;
3082         }
3083 
3084         /* ------------------------------------------------------------ */
3085         // Red-black tree methods, all adapted from CLR
3086 
rotateLeft(TreeNode<K,V> root, TreeNode<K,V> p)3087         static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
3088                                               TreeNode<K,V> p) {
3089             TreeNode<K,V> r, pp, rl;
3090             if (p != null && (r = p.right) != null) {
3091                 if ((rl = p.right = r.left) != null)
3092                     rl.parent = p;
3093                 if ((pp = r.parent = p.parent) == null)
3094                     (root = r).red = false;
3095                 else if (pp.left == p)
3096                     pp.left = r;
3097                 else
3098                     pp.right = r;
3099                 r.left = p;
3100                 p.parent = r;
3101             }
3102             return root;
3103         }
3104 
rotateRight(TreeNode<K,V> root, TreeNode<K,V> p)3105         static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
3106                                                TreeNode<K,V> p) {
3107             TreeNode<K,V> l, pp, lr;
3108             if (p != null && (l = p.left) != null) {
3109                 if ((lr = p.left = l.right) != null)
3110                     lr.parent = p;
3111                 if ((pp = l.parent = p.parent) == null)
3112                     (root = l).red = false;
3113                 else if (pp.right == p)
3114                     pp.right = l;
3115                 else
3116                     pp.left = l;
3117                 l.right = p;
3118                 p.parent = l;
3119             }
3120             return root;
3121         }
3122 
balanceInsertion(TreeNode<K,V> root, TreeNode<K,V> x)3123         static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
3124                                                     TreeNode<K,V> x) {
3125             x.red = true;
3126             for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
3127                 if ((xp = x.parent) == null) {
3128                     x.red = false;
3129                     return x;
3130                 }
3131                 else if (!xp.red || (xpp = xp.parent) == null)
3132                     return root;
3133                 if (xp == (xppl = xpp.left)) {
3134                     if ((xppr = xpp.right) != null && xppr.red) {
3135                         xppr.red = false;
3136                         xp.red = false;
3137                         xpp.red = true;
3138                         x = xpp;
3139                     }
3140                     else {
3141                         if (x == xp.right) {
3142                             root = rotateLeft(root, x = xp);
3143                             xpp = (xp = x.parent) == null ? null : xp.parent;
3144                         }
3145                         if (xp != null) {
3146                             xp.red = false;
3147                             if (xpp != null) {
3148                                 xpp.red = true;
3149                                 root = rotateRight(root, xpp);
3150                             }
3151                         }
3152                     }
3153                 }
3154                 else {
3155                     if (xppl != null && xppl.red) {
3156                         xppl.red = false;
3157                         xp.red = false;
3158                         xpp.red = true;
3159                         x = xpp;
3160                     }
3161                     else {
3162                         if (x == xp.left) {
3163                             root = rotateRight(root, x = xp);
3164                             xpp = (xp = x.parent) == null ? null : xp.parent;
3165                         }
3166                         if (xp != null) {
3167                             xp.red = false;
3168                             if (xpp != null) {
3169                                 xpp.red = true;
3170                                 root = rotateLeft(root, xpp);
3171                             }
3172                         }
3173                     }
3174                 }
3175             }
3176         }
3177 
balanceDeletion(TreeNode<K,V> root, TreeNode<K,V> x)3178         static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3179                                                    TreeNode<K,V> x) {
3180             for (TreeNode<K,V> xp, xpl, xpr;;) {
3181                 if (x == null || x == root)
3182                     return root;
3183                 else if ((xp = x.parent) == null) {
3184                     x.red = false;
3185                     return x;
3186                 }
3187                 else if (x.red) {
3188                     x.red = false;
3189                     return root;
3190                 }
3191                 else if ((xpl = xp.left) == x) {
3192                     if ((xpr = xp.right) != null && xpr.red) {
3193                         xpr.red = false;
3194                         xp.red = true;
3195                         root = rotateLeft(root, xp);
3196                         xpr = (xp = x.parent) == null ? null : xp.right;
3197                     }
3198                     if (xpr == null)
3199                         x = xp;
3200                     else {
3201                         TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3202                         if ((sr == null || !sr.red) &&
3203                             (sl == null || !sl.red)) {
3204                             xpr.red = true;
3205                             x = xp;
3206                         }
3207                         else {
3208                             if (sr == null || !sr.red) {
3209                                 if (sl != null)
3210                                     sl.red = false;
3211                                 xpr.red = true;
3212                                 root = rotateRight(root, xpr);
3213                                 xpr = (xp = x.parent) == null ?
3214                                     null : xp.right;
3215                             }
3216                             if (xpr != null) {
3217                                 xpr.red = (xp == null) ? false : xp.red;
3218                                 if ((sr = xpr.right) != null)
3219                                     sr.red = false;
3220                             }
3221                             if (xp != null) {
3222                                 xp.red = false;
3223                                 root = rotateLeft(root, xp);
3224                             }
3225                             x = root;
3226                         }
3227                     }
3228                 }
3229                 else { // symmetric
3230                     if (xpl != null && xpl.red) {
3231                         xpl.red = false;
3232                         xp.red = true;
3233                         root = rotateRight(root, xp);
3234                         xpl = (xp = x.parent) == null ? null : xp.left;
3235                     }
3236                     if (xpl == null)
3237                         x = xp;
3238                     else {
3239                         TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3240                         if ((sl == null || !sl.red) &&
3241                             (sr == null || !sr.red)) {
3242                             xpl.red = true;
3243                             x = xp;
3244                         }
3245                         else {
3246                             if (sl == null || !sl.red) {
3247                                 if (sr != null)
3248                                     sr.red = false;
3249                                 xpl.red = true;
3250                                 root = rotateLeft(root, xpl);
3251                                 xpl = (xp = x.parent) == null ?
3252                                     null : xp.left;
3253                             }
3254                             if (xpl != null) {
3255                                 xpl.red = (xp == null) ? false : xp.red;
3256                                 if ((sl = xpl.left) != null)
3257                                     sl.red = false;
3258                             }
3259                             if (xp != null) {
3260                                 xp.red = false;
3261                                 root = rotateRight(root, xp);
3262                             }
3263                             x = root;
3264                         }
3265                     }
3266                 }
3267             }
3268         }
3269 
3270         /**
3271          * Checks invariants recursively for the tree of Nodes rooted at t.
3272          */
checkInvariants(TreeNode<K,V> t)3273         static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3274             TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3275                 tb = t.prev, tn = (TreeNode<K,V>)t.next;
3276             if (tb != null && tb.next != t)
3277                 return false;
3278             if (tn != null && tn.prev != t)
3279                 return false;
3280             if (tp != null && t != tp.left && t != tp.right)
3281                 return false;
3282             if (tl != null && (tl.parent != t || tl.hash > t.hash))
3283                 return false;
3284             if (tr != null && (tr.parent != t || tr.hash < t.hash))
3285                 return false;
3286             if (t.red && tl != null && tl.red && tr != null && tr.red)
3287                 return false;
3288             if (tl != null && !checkInvariants(tl))
3289                 return false;
3290             if (tr != null && !checkInvariants(tr))
3291                 return false;
3292             return true;
3293         }
3294 
3295         private static final Unsafe U = Unsafe.getUnsafe();
3296         private static final long LOCKSTATE
3297                 = U.objectFieldOffset(TreeBin.class, "lockState");
3298     }
3299 
3300     /* ----------------Table Traversal -------------- */
3301 
3302     /**
3303      * Records the table, its length, and current traversal index for a
3304      * traverser that must process a region of a forwarded table before
3305      * proceeding with current table.
3306      */
3307     static final class TableStack<K,V> {
3308         int length;
3309         int index;
3310         Node<K,V>[] tab;
3311         TableStack<K,V> next;
3312     }
3313 
3314     /**
3315      * Encapsulates traversal for methods such as containsValue; also
3316      * serves as a base class for other iterators and spliterators.
3317      *
3318      * Method advance visits once each still-valid node that was
3319      * reachable upon iterator construction. It might miss some that
3320      * were added to a bin after the bin was visited, which is OK wrt
3321      * consistency guarantees. Maintaining this property in the face
3322      * of possible ongoing resizes requires a fair amount of
3323      * bookkeeping state that is difficult to optimize away amidst
3324      * volatile accesses.  Even so, traversal maintains reasonable
3325      * throughput.
3326      *
3327      * Normally, iteration proceeds bin-by-bin traversing lists.
3328      * However, if the table has been resized, then all future steps
3329      * must traverse both the bin at the current index as well as at
3330      * (index + baseSize); and so on for further resizings. To
3331      * paranoically cope with potential sharing by users of iterators
3332      * across threads, iteration terminates if a bounds checks fails
3333      * for a table read.
3334      */
3335     static class Traverser<K,V> {
3336         Node<K,V>[] tab;        // current table; updated if resized
3337         Node<K,V> next;         // the next entry to use
3338         TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
3339         int index;              // index of bin to use next
3340         int baseIndex;          // current index of initial table
3341         int baseLimit;          // index bound for initial table
3342         final int baseSize;     // initial table size
3343 
Traverser(Node<K,V>[] tab, int size, int index, int limit)3344         Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3345             this.tab = tab;
3346             this.baseSize = size;
3347             this.baseIndex = this.index = index;
3348             this.baseLimit = limit;
3349             this.next = null;
3350         }
3351 
3352         /**
3353          * Advances if possible, returning next valid node, or null if none.
3354          */
advance()3355         final Node<K,V> advance() {
3356             Node<K,V> e;
3357             if ((e = next) != null)
3358                 e = e.next;
3359             for (;;) {
3360                 Node<K,V>[] t; int i, n;  // must use locals in checks
3361                 if (e != null)
3362                     return next = e;
3363                 if (baseIndex >= baseLimit || (t = tab) == null ||
3364                     (n = t.length) <= (i = index) || i < 0)
3365                     return next = null;
3366                 if ((e = tabAt(t, i)) != null && e.hash < 0) {
3367                     if (e instanceof ForwardingNode) {
3368                         tab = ((ForwardingNode<K,V>)e).nextTable;
3369                         e = null;
3370                         pushState(t, i, n);
3371                         continue;
3372                     }
3373                     else if (e instanceof TreeBin)
3374                         e = ((TreeBin<K,V>)e).first;
3375                     else
3376                         e = null;
3377                 }
3378                 if (stack != null)
3379                     recoverState(n);
3380                 else if ((index = i + baseSize) >= n)
3381                     index = ++baseIndex; // visit upper slots if present
3382             }
3383         }
3384 
3385         /**
3386          * Saves traversal state upon encountering a forwarding node.
3387          */
pushState(Node<K,V>[] t, int i, int n)3388         private void pushState(Node<K,V>[] t, int i, int n) {
3389             TableStack<K,V> s = spare;  // reuse if possible
3390             if (s != null)
3391                 spare = s.next;
3392             else
3393                 s = new TableStack<K,V>();
3394             s.tab = t;
3395             s.length = n;
3396             s.index = i;
3397             s.next = stack;
3398             stack = s;
3399         }
3400 
3401         /**
3402          * Possibly pops traversal state.
3403          *
3404          * @param n length of current table
3405          */
recoverState(int n)3406         private void recoverState(int n) {
3407             TableStack<K,V> s; int len;
3408             while ((s = stack) != null && (index += (len = s.length)) >= n) {
3409                 n = len;
3410                 index = s.index;
3411                 tab = s.tab;
3412                 s.tab = null;
3413                 TableStack<K,V> next = s.next;
3414                 s.next = spare; // save for reuse
3415                 stack = next;
3416                 spare = s;
3417             }
3418             if (s == null && (index += baseSize) >= n)
3419                 index = ++baseIndex;
3420         }
3421     }
3422 
3423     /**
3424      * Base of key, value, and entry Iterators. Adds fields to
3425      * Traverser to support iterator.remove.
3426      */
3427     static class BaseIterator<K,V> extends Traverser<K,V> {
3428         final ConcurrentHashMap<K,V> map;
3429         Node<K,V> lastReturned;
BaseIterator(Node<K,V>[] tab, int size, int index, int limit, ConcurrentHashMap<K,V> map)3430         BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3431                     ConcurrentHashMap<K,V> map) {
3432             super(tab, size, index, limit);
3433             this.map = map;
3434             advance();
3435         }
3436 
hasNext()3437         public final boolean hasNext() { return next != null; }
hasMoreElements()3438         public final boolean hasMoreElements() { return next != null; }
3439 
remove()3440         public final void remove() {
3441             Node<K,V> p;
3442             if ((p = lastReturned) == null)
3443                 throw new IllegalStateException();
3444             lastReturned = null;
3445             map.replaceNode(p.key, null, null);
3446         }
3447     }
3448 
3449     static final class KeyIterator<K,V> extends BaseIterator<K,V>
3450         implements Iterator<K>, Enumeration<K> {
KeyIterator(Node<K,V>[] tab, int size, int index, int limit, ConcurrentHashMap<K,V> map)3451         KeyIterator(Node<K,V>[] tab, int size, int index, int limit,
3452                     ConcurrentHashMap<K,V> map) {
3453             super(tab, size, index, limit, map);
3454         }
3455 
next()3456         public final K next() {
3457             Node<K,V> p;
3458             if ((p = next) == null)
3459                 throw new NoSuchElementException();
3460             K k = p.key;
3461             lastReturned = p;
3462             advance();
3463             return k;
3464         }
3465 
nextElement()3466         public final K nextElement() { return next(); }
3467     }
3468 
3469     static final class ValueIterator<K,V> extends BaseIterator<K,V>
3470         implements Iterator<V>, Enumeration<V> {
ValueIterator(Node<K,V>[] tab, int size, int index, int limit, ConcurrentHashMap<K,V> map)3471         ValueIterator(Node<K,V>[] tab, int size, int index, int limit,
3472                       ConcurrentHashMap<K,V> map) {
3473             super(tab, size, index, limit, map);
3474         }
3475 
next()3476         public final V next() {
3477             Node<K,V> p;
3478             if ((p = next) == null)
3479                 throw new NoSuchElementException();
3480             V v = p.val;
3481             lastReturned = p;
3482             advance();
3483             return v;
3484         }
3485 
nextElement()3486         public final V nextElement() { return next(); }
3487     }
3488 
3489     static final class EntryIterator<K,V> extends BaseIterator<K,V>
3490         implements Iterator<Map.Entry<K,V>> {
EntryIterator(Node<K,V>[] tab, int size, int index, int limit, ConcurrentHashMap<K,V> map)3491         EntryIterator(Node<K,V>[] tab, int size, int index, int limit,
3492                       ConcurrentHashMap<K,V> map) {
3493             super(tab, size, index, limit, map);
3494         }
3495 
next()3496         public final Map.Entry<K,V> next() {
3497             Node<K,V> p;
3498             if ((p = next) == null)
3499                 throw new NoSuchElementException();
3500             K k = p.key;
3501             V v = p.val;
3502             lastReturned = p;
3503             advance();
3504             return new MapEntry<K,V>(k, v, map);
3505         }
3506     }
3507 
3508     /**
3509      * Exported Entry for EntryIterator.
3510      */
3511     static final class MapEntry<K,V> implements Map.Entry<K,V> {
3512         final K key; // non-null
3513         V val;       // non-null
3514         final ConcurrentHashMap<K,V> map;
MapEntry(K key, V val, ConcurrentHashMap<K,V> map)3515         MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3516             this.key = key;
3517             this.val = val;
3518             this.map = map;
3519         }
getKey()3520         public K getKey()        { return key; }
getValue()3521         public V getValue()      { return val; }
hashCode()3522         public int hashCode()    { return key.hashCode() ^ val.hashCode(); }
toString()3523         public String toString() {
3524             return Helpers.mapEntryToString(key, val);
3525         }
3526 
equals(Object o)3527         public boolean equals(Object o) {
3528             Object k, v; Map.Entry<?,?> e;
3529             return ((o instanceof Map.Entry) &&
3530                     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3531                     (v = e.getValue()) != null &&
3532                     (k == key || k.equals(key)) &&
3533                     (v == val || v.equals(val)));
3534         }
3535 
3536         /**
3537          * Sets our entry's value and writes through to the map. The
3538          * value to return is somewhat arbitrary here. Since we do not
3539          * necessarily track asynchronous changes, the most recent
3540          * "previous" value could be different from what we return (or
3541          * could even have been removed, in which case the put will
3542          * re-establish). We do not and cannot guarantee more.
3543          */
setValue(V value)3544         public V setValue(V value) {
3545             if (value == null) throw new NullPointerException();
3546             V v = val;
3547             val = value;
3548             map.put(key, value);
3549             return v;
3550         }
3551     }
3552 
3553     static final class KeySpliterator<K,V> extends Traverser<K,V>
3554         implements Spliterator<K> {
3555         long est;               // size estimate
KeySpliterator(Node<K,V>[] tab, int size, int index, int limit, long est)3556         KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3557                        long est) {
3558             super(tab, size, index, limit);
3559             this.est = est;
3560         }
3561 
trySplit()3562         public KeySpliterator<K,V> trySplit() {
3563             int i, f, h;
3564             return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3565                 new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3566                                         f, est >>>= 1);
3567         }
3568 
forEachRemaining(Consumer<? super K> action)3569         public void forEachRemaining(Consumer<? super K> action) {
3570             if (action == null) throw new NullPointerException();
3571             for (Node<K,V> p; (p = advance()) != null;)
3572                 action.accept(p.key);
3573         }
3574 
tryAdvance(Consumer<? super K> action)3575         public boolean tryAdvance(Consumer<? super K> action) {
3576             if (action == null) throw new NullPointerException();
3577             Node<K,V> p;
3578             if ((p = advance()) == null)
3579                 return false;
3580             action.accept(p.key);
3581             return true;
3582         }
3583 
estimateSize()3584         public long estimateSize() { return est; }
3585 
characteristics()3586         public int characteristics() {
3587             return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3588                 Spliterator.NONNULL;
3589         }
3590     }
3591 
3592     static final class ValueSpliterator<K,V> extends Traverser<K,V>
3593         implements Spliterator<V> {
3594         long est;               // size estimate
ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit, long est)3595         ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3596                          long est) {
3597             super(tab, size, index, limit);
3598             this.est = est;
3599         }
3600 
trySplit()3601         public ValueSpliterator<K,V> trySplit() {
3602             int i, f, h;
3603             return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3604                 new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3605                                           f, est >>>= 1);
3606         }
3607 
forEachRemaining(Consumer<? super V> action)3608         public void forEachRemaining(Consumer<? super V> action) {
3609             if (action == null) throw new NullPointerException();
3610             for (Node<K,V> p; (p = advance()) != null;)
3611                 action.accept(p.val);
3612         }
3613 
tryAdvance(Consumer<? super V> action)3614         public boolean tryAdvance(Consumer<? super V> action) {
3615             if (action == null) throw new NullPointerException();
3616             Node<K,V> p;
3617             if ((p = advance()) == null)
3618                 return false;
3619             action.accept(p.val);
3620             return true;
3621         }
3622 
estimateSize()3623         public long estimateSize() { return est; }
3624 
characteristics()3625         public int characteristics() {
3626             return Spliterator.CONCURRENT | Spliterator.NONNULL;
3627         }
3628     }
3629 
3630     static final class EntrySpliterator<K,V> extends Traverser<K,V>
3631         implements Spliterator<Map.Entry<K,V>> {
3632         final ConcurrentHashMap<K,V> map; // To export MapEntry
3633         long est;               // size estimate
EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit, long est, ConcurrentHashMap<K,V> map)3634         EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3635                          long est, ConcurrentHashMap<K,V> map) {
3636             super(tab, size, index, limit);
3637             this.map = map;
3638             this.est = est;
3639         }
3640 
trySplit()3641         public EntrySpliterator<K,V> trySplit() {
3642             int i, f, h;
3643             return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3644                 new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3645                                           f, est >>>= 1, map);
3646         }
3647 
forEachRemaining(Consumer<? super Map.Entry<K,V>> action)3648         public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3649             if (action == null) throw new NullPointerException();
3650             for (Node<K,V> p; (p = advance()) != null; )
3651                 action.accept(new MapEntry<K,V>(p.key, p.val, map));
3652         }
3653 
tryAdvance(Consumer<? super Map.Entry<K,V>> action)3654         public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3655             if (action == null) throw new NullPointerException();
3656             Node<K,V> p;
3657             if ((p = advance()) == null)
3658                 return false;
3659             action.accept(new MapEntry<K,V>(p.key, p.val, map));
3660             return true;
3661         }
3662 
estimateSize()3663         public long estimateSize() { return est; }
3664 
characteristics()3665         public int characteristics() {
3666             return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3667                 Spliterator.NONNULL;
3668         }
3669     }
3670 
3671     // Parallel bulk operations
3672 
3673     /**
3674      * Computes initial batch value for bulk tasks. The returned value
3675      * is approximately exp2 of the number of times (minus one) to
3676      * split task by two before executing leaf action. This value is
3677      * faster to compute and more convenient to use as a guide to
3678      * splitting than is the depth, since it is used while dividing by
3679      * two anyway.
3680      */
batchFor(long b)3681     final int batchFor(long b) {
3682         long n;
3683         if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3684             return 0;
3685         int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3686         return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3687     }
3688 
3689     /**
3690      * Performs the given action for each (key, value).
3691      *
3692      * @param parallelismThreshold the (estimated) number of elements
3693      * needed for this operation to be executed in parallel
3694      * @param action the action
3695      * @since 1.8
3696      */
forEach(long parallelismThreshold, BiConsumer<? super K,? super V> action)3697     public void forEach(long parallelismThreshold,
3698                         BiConsumer<? super K,? super V> action) {
3699         if (action == null) throw new NullPointerException();
3700         new ForEachMappingTask<K,V>
3701             (null, batchFor(parallelismThreshold), 0, 0, table,
3702              action).invoke();
3703     }
3704 
3705     /**
3706      * Performs the given action for each non-null transformation
3707      * of each (key, value).
3708      *
3709      * @param parallelismThreshold the (estimated) number of elements
3710      * needed for this operation to be executed in parallel
3711      * @param transformer a function returning the transformation
3712      * for an element, or null if there is no transformation (in
3713      * which case the action is not applied)
3714      * @param action the action
3715      * @param <U> the return type of the transformer
3716      * @since 1.8
3717      */
forEach(long parallelismThreshold, BiFunction<? super K, ? super V, ? extends U> transformer, Consumer<? super U> action)3718     public <U> void forEach(long parallelismThreshold,
3719                             BiFunction<? super K, ? super V, ? extends U> transformer,
3720                             Consumer<? super U> action) {
3721         if (transformer == null || action == null)
3722             throw new NullPointerException();
3723         new ForEachTransformedMappingTask<K,V,U>
3724             (null, batchFor(parallelismThreshold), 0, 0, table,
3725              transformer, action).invoke();
3726     }
3727 
3728     /**
3729      * Returns a non-null result from applying the given search
3730      * function on each (key, value), or null if none.  Upon
3731      * success, further element processing is suppressed and the
3732      * results of any other parallel invocations of the search
3733      * function are ignored.
3734      *
3735      * @param parallelismThreshold the (estimated) number of elements
3736      * needed for this operation to be executed in parallel
3737      * @param searchFunction a function returning a non-null
3738      * result on success, else null
3739      * @param <U> the return type of the search function
3740      * @return a non-null result from applying the given search
3741      * function on each (key, value), or null if none
3742      * @since 1.8
3743      */
search(long parallelismThreshold, BiFunction<? super K, ? super V, ? extends U> searchFunction)3744     public <U> U search(long parallelismThreshold,
3745                         BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3746         if (searchFunction == null) throw new NullPointerException();
3747         return new SearchMappingsTask<K,V,U>
3748             (null, batchFor(parallelismThreshold), 0, 0, table,
3749              searchFunction, new AtomicReference<U>()).invoke();
3750     }
3751 
3752     /**
3753      * Returns the result of accumulating the given transformation
3754      * of all (key, value) pairs using the given reducer to
3755      * combine values, or null if none.
3756      *
3757      * @param parallelismThreshold the (estimated) number of elements
3758      * needed for this operation to be executed in parallel
3759      * @param transformer a function returning the transformation
3760      * for an element, or null if there is no transformation (in
3761      * which case it is not combined)
3762      * @param reducer a commutative associative combining function
3763      * @param <U> the return type of the transformer
3764      * @return the result of accumulating the given transformation
3765      * of all (key, value) pairs
3766      * @since 1.8
3767      */
reduce(long parallelismThreshold, BiFunction<? super K, ? super V, ? extends U> transformer, BiFunction<? super U, ? super U, ? extends U> reducer)3768     public <U> U reduce(long parallelismThreshold,
3769                         BiFunction<? super K, ? super V, ? extends U> transformer,
3770                         BiFunction<? super U, ? super U, ? extends U> reducer) {
3771         if (transformer == null || reducer == null)
3772             throw new NullPointerException();
3773         return new MapReduceMappingsTask<K,V,U>
3774             (null, batchFor(parallelismThreshold), 0, 0, table,
3775              null, transformer, reducer).invoke();
3776     }
3777 
3778     /**
3779      * Returns the result of accumulating the given transformation
3780      * of all (key, value) pairs using the given reducer to
3781      * combine values, and the given basis as an identity value.
3782      *
3783      * @param parallelismThreshold the (estimated) number of elements
3784      * needed for this operation to be executed in parallel
3785      * @param transformer a function returning the transformation
3786      * for an element
3787      * @param basis the identity (initial default value) for the reduction
3788      * @param reducer a commutative associative combining function
3789      * @return the result of accumulating the given transformation
3790      * of all (key, value) pairs
3791      * @since 1.8
3792      */
reduceToDouble(long parallelismThreshold, ToDoubleBiFunction<? super K, ? super V> transformer, double basis, DoubleBinaryOperator reducer)3793     public double reduceToDouble(long parallelismThreshold,
3794                                  ToDoubleBiFunction<? super K, ? super V> transformer,
3795                                  double basis,
3796                                  DoubleBinaryOperator reducer) {
3797         if (transformer == null || reducer == null)
3798             throw new NullPointerException();
3799         return new MapReduceMappingsToDoubleTask<K,V>
3800             (null, batchFor(parallelismThreshold), 0, 0, table,
3801              null, transformer, basis, reducer).invoke();
3802     }
3803 
3804     /**
3805      * Returns the result of accumulating the given transformation
3806      * of all (key, value) pairs using the given reducer to
3807      * combine values, and the given basis as an identity value.
3808      *
3809      * @param parallelismThreshold the (estimated) number of elements
3810      * needed for this operation to be executed in parallel
3811      * @param transformer a function returning the transformation
3812      * for an element
3813      * @param basis the identity (initial default value) for the reduction
3814      * @param reducer a commutative associative combining function
3815      * @return the result of accumulating the given transformation
3816      * of all (key, value) pairs
3817      * @since 1.8
3818      */
reduceToLong(long parallelismThreshold, ToLongBiFunction<? super K, ? super V> transformer, long basis, LongBinaryOperator reducer)3819     public long reduceToLong(long parallelismThreshold,
3820                              ToLongBiFunction<? super K, ? super V> transformer,
3821                              long basis,
3822                              LongBinaryOperator reducer) {
3823         if (transformer == null || reducer == null)
3824             throw new NullPointerException();
3825         return new MapReduceMappingsToLongTask<K,V>
3826             (null, batchFor(parallelismThreshold), 0, 0, table,
3827              null, transformer, basis, reducer).invoke();
3828     }
3829 
3830     /**
3831      * Returns the result of accumulating the given transformation
3832      * of all (key, value) pairs using the given reducer to
3833      * combine values, and the given basis as an identity value.
3834      *
3835      * @param parallelismThreshold the (estimated) number of elements
3836      * needed for this operation to be executed in parallel
3837      * @param transformer a function returning the transformation
3838      * for an element
3839      * @param basis the identity (initial default value) for the reduction
3840      * @param reducer a commutative associative combining function
3841      * @return the result of accumulating the given transformation
3842      * of all (key, value) pairs
3843      * @since 1.8
3844      */
reduceToInt(long parallelismThreshold, ToIntBiFunction<? super K, ? super V> transformer, int basis, IntBinaryOperator reducer)3845     public int reduceToInt(long parallelismThreshold,
3846                            ToIntBiFunction<? super K, ? super V> transformer,
3847                            int basis,
3848                            IntBinaryOperator reducer) {
3849         if (transformer == null || reducer == null)
3850             throw new NullPointerException();
3851         return new MapReduceMappingsToIntTask<K,V>
3852             (null, batchFor(parallelismThreshold), 0, 0, table,
3853              null, transformer, basis, reducer).invoke();
3854     }
3855 
3856     /**
3857      * Performs the given action for each key.
3858      *
3859      * @param parallelismThreshold the (estimated) number of elements
3860      * needed for this operation to be executed in parallel
3861      * @param action the action
3862      * @since 1.8
3863      */
forEachKey(long parallelismThreshold, Consumer<? super K> action)3864     public void forEachKey(long parallelismThreshold,
3865                            Consumer<? super K> action) {
3866         if (action == null) throw new NullPointerException();
3867         new ForEachKeyTask<K,V>
3868             (null, batchFor(parallelismThreshold), 0, 0, table,
3869              action).invoke();
3870     }
3871 
3872     /**
3873      * Performs the given action for each non-null transformation
3874      * of each key.
3875      *
3876      * @param parallelismThreshold the (estimated) number of elements
3877      * needed for this operation to be executed in parallel
3878      * @param transformer a function returning the transformation
3879      * for an element, or null if there is no transformation (in
3880      * which case the action is not applied)
3881      * @param action the action
3882      * @param <U> the return type of the transformer
3883      * @since 1.8
3884      */
forEachKey(long parallelismThreshold, Function<? super K, ? extends U> transformer, Consumer<? super U> action)3885     public <U> void forEachKey(long parallelismThreshold,
3886                                Function<? super K, ? extends U> transformer,
3887                                Consumer<? super U> action) {
3888         if (transformer == null || action == null)
3889             throw new NullPointerException();
3890         new ForEachTransformedKeyTask<K,V,U>
3891             (null, batchFor(parallelismThreshold), 0, 0, table,
3892              transformer, action).invoke();
3893     }
3894 
3895     /**
3896      * Returns a non-null result from applying the given search
3897      * function on each key, or null if none. Upon success,
3898      * further element processing is suppressed and the results of
3899      * any other parallel invocations of the search function are
3900      * ignored.
3901      *
3902      * @param parallelismThreshold the (estimated) number of elements
3903      * needed for this operation to be executed in parallel
3904      * @param searchFunction a function returning a non-null
3905      * result on success, else null
3906      * @param <U> the return type of the search function
3907      * @return a non-null result from applying the given search
3908      * function on each key, or null if none
3909      * @since 1.8
3910      */
searchKeys(long parallelismThreshold, Function<? super K, ? extends U> searchFunction)3911     public <U> U searchKeys(long parallelismThreshold,
3912                             Function<? super K, ? extends U> searchFunction) {
3913         if (searchFunction == null) throw new NullPointerException();
3914         return new SearchKeysTask<K,V,U>
3915             (null, batchFor(parallelismThreshold), 0, 0, table,
3916              searchFunction, new AtomicReference<U>()).invoke();
3917     }
3918 
3919     /**
3920      * Returns the result of accumulating all keys using the given
3921      * reducer to combine values, or null if none.
3922      *
3923      * @param parallelismThreshold the (estimated) number of elements
3924      * needed for this operation to be executed in parallel
3925      * @param reducer a commutative associative combining function
3926      * @return the result of accumulating all keys using the given
3927      * reducer to combine values, or null if none
3928      * @since 1.8
3929      */
reduceKeys(long parallelismThreshold, BiFunction<? super K, ? super K, ? extends K> reducer)3930     public K reduceKeys(long parallelismThreshold,
3931                         BiFunction<? super K, ? super K, ? extends K> reducer) {
3932         if (reducer == null) throw new NullPointerException();
3933         return new ReduceKeysTask<K,V>
3934             (null, batchFor(parallelismThreshold), 0, 0, table,
3935              null, reducer).invoke();
3936     }
3937 
3938     /**
3939      * Returns the result of accumulating the given transformation
3940      * of all keys using the given reducer to combine values, or
3941      * null if none.
3942      *
3943      * @param parallelismThreshold the (estimated) number of elements
3944      * needed for this operation to be executed in parallel
3945      * @param transformer a function returning the transformation
3946      * for an element, or null if there is no transformation (in
3947      * which case it is not combined)
3948      * @param reducer a commutative associative combining function
3949      * @param <U> the return type of the transformer
3950      * @return the result of accumulating the given transformation
3951      * of all keys
3952      * @since 1.8
3953      */
reduceKeys(long parallelismThreshold, Function<? super K, ? extends U> transformer, BiFunction<? super U, ? super U, ? extends U> reducer)3954     public <U> U reduceKeys(long parallelismThreshold,
3955                             Function<? super K, ? extends U> transformer,
3956          BiFunction<? super U, ? super U, ? extends U> reducer) {
3957         if (transformer == null || reducer == null)
3958             throw new NullPointerException();
3959         return new MapReduceKeysTask<K,V,U>
3960             (null, batchFor(parallelismThreshold), 0, 0, table,
3961              null, transformer, reducer).invoke();
3962     }
3963 
3964     /**
3965      * Returns the result of accumulating the given transformation
3966      * of all keys using the given reducer to combine values, and
3967      * the given basis as an identity value.
3968      *
3969      * @param parallelismThreshold the (estimated) number of elements
3970      * needed for this operation to be executed in parallel
3971      * @param transformer a function returning the transformation
3972      * for an element
3973      * @param basis the identity (initial default value) for the reduction
3974      * @param reducer a commutative associative combining function
3975      * @return the result of accumulating the given transformation
3976      * of all keys
3977      * @since 1.8
3978      */
reduceKeysToDouble(long parallelismThreshold, ToDoubleFunction<? super K> transformer, double basis, DoubleBinaryOperator reducer)3979     public double reduceKeysToDouble(long parallelismThreshold,
3980                                      ToDoubleFunction<? super K> transformer,
3981                                      double basis,
3982                                      DoubleBinaryOperator reducer) {
3983         if (transformer == null || reducer == null)
3984             throw new NullPointerException();
3985         return new MapReduceKeysToDoubleTask<K,V>
3986             (null, batchFor(parallelismThreshold), 0, 0, table,
3987              null, transformer, basis, reducer).invoke();
3988     }
3989 
3990     /**
3991      * Returns the result of accumulating the given transformation
3992      * of all keys using the given reducer to combine values, and
3993      * the given basis as an identity value.
3994      *
3995      * @param parallelismThreshold the (estimated) number of elements
3996      * needed for this operation to be executed in parallel
3997      * @param transformer a function returning the transformation
3998      * for an element
3999      * @param basis the identity (initial default value) for the reduction
4000      * @param reducer a commutative associative combining function
4001      * @return the result of accumulating the given transformation
4002      * of all keys
4003      * @since 1.8
4004      */
reduceKeysToLong(long parallelismThreshold, ToLongFunction<? super K> transformer, long basis, LongBinaryOperator reducer)4005     public long reduceKeysToLong(long parallelismThreshold,
4006                                  ToLongFunction<? super K> transformer,
4007                                  long basis,
4008                                  LongBinaryOperator reducer) {
4009         if (transformer == null || reducer == null)
4010             throw new NullPointerException();
4011         return new MapReduceKeysToLongTask<K,V>
4012             (null, batchFor(parallelismThreshold), 0, 0, table,
4013              null, transformer, basis, reducer).invoke();
4014     }
4015 
4016     /**
4017      * Returns the result of accumulating the given transformation
4018      * of all keys using the given reducer to combine values, and
4019      * the given basis as an identity value.
4020      *
4021      * @param parallelismThreshold the (estimated) number of elements
4022      * needed for this operation to be executed in parallel
4023      * @param transformer a function returning the transformation
4024      * for an element
4025      * @param basis the identity (initial default value) for the reduction
4026      * @param reducer a commutative associative combining function
4027      * @return the result of accumulating the given transformation
4028      * of all keys
4029      * @since 1.8
4030      */
reduceKeysToInt(long parallelismThreshold, ToIntFunction<? super K> transformer, int basis, IntBinaryOperator reducer)4031     public int reduceKeysToInt(long parallelismThreshold,
4032                                ToIntFunction<? super K> transformer,
4033                                int basis,
4034                                IntBinaryOperator reducer) {
4035         if (transformer == null || reducer == null)
4036             throw new NullPointerException();
4037         return new MapReduceKeysToIntTask<K,V>
4038             (null, batchFor(parallelismThreshold), 0, 0, table,
4039              null, transformer, basis, reducer).invoke();
4040     }
4041 
4042     /**
4043      * Performs the given action for each value.
4044      *
4045      * @param parallelismThreshold the (estimated) number of elements
4046      * needed for this operation to be executed in parallel
4047      * @param action the action
4048      * @since 1.8
4049      */
forEachValue(long parallelismThreshold, Consumer<? super V> action)4050     public void forEachValue(long parallelismThreshold,
4051                              Consumer<? super V> action) {
4052         if (action == null)
4053             throw new NullPointerException();
4054         new ForEachValueTask<K,V>
4055             (null, batchFor(parallelismThreshold), 0, 0, table,
4056              action).invoke();
4057     }
4058 
4059     /**
4060      * Performs the given action for each non-null transformation
4061      * of each value.
4062      *
4063      * @param parallelismThreshold the (estimated) number of elements
4064      * needed for this operation to be executed in parallel
4065      * @param transformer a function returning the transformation
4066      * for an element, or null if there is no transformation (in
4067      * which case the action is not applied)
4068      * @param action the action
4069      * @param <U> the return type of the transformer
4070      * @since 1.8
4071      */
forEachValue(long parallelismThreshold, Function<? super V, ? extends U> transformer, Consumer<? super U> action)4072     public <U> void forEachValue(long parallelismThreshold,
4073                                  Function<? super V, ? extends U> transformer,
4074                                  Consumer<? super U> action) {
4075         if (transformer == null || action == null)
4076             throw new NullPointerException();
4077         new ForEachTransformedValueTask<K,V,U>
4078             (null, batchFor(parallelismThreshold), 0, 0, table,
4079              transformer, action).invoke();
4080     }
4081 
4082     /**
4083      * Returns a non-null result from applying the given search
4084      * function on each value, or null if none.  Upon success,
4085      * further element processing is suppressed and the results of
4086      * any other parallel invocations of the search function are
4087      * ignored.
4088      *
4089      * @param parallelismThreshold the (estimated) number of elements
4090      * needed for this operation to be executed in parallel
4091      * @param searchFunction a function returning a non-null
4092      * result on success, else null
4093      * @param <U> the return type of the search function
4094      * @return a non-null result from applying the given search
4095      * function on each value, or null if none
4096      * @since 1.8
4097      */
searchValues(long parallelismThreshold, Function<? super V, ? extends U> searchFunction)4098     public <U> U searchValues(long parallelismThreshold,
4099                               Function<? super V, ? extends U> searchFunction) {
4100         if (searchFunction == null) throw new NullPointerException();
4101         return new SearchValuesTask<K,V,U>
4102             (null, batchFor(parallelismThreshold), 0, 0, table,
4103              searchFunction, new AtomicReference<U>()).invoke();
4104     }
4105 
4106     /**
4107      * Returns the result of accumulating all values using the
4108      * given reducer to combine values, or null if none.
4109      *
4110      * @param parallelismThreshold the (estimated) number of elements
4111      * needed for this operation to be executed in parallel
4112      * @param reducer a commutative associative combining function
4113      * @return the result of accumulating all values
4114      * @since 1.8
4115      */
reduceValues(long parallelismThreshold, BiFunction<? super V, ? super V, ? extends V> reducer)4116     public V reduceValues(long parallelismThreshold,
4117                           BiFunction<? super V, ? super V, ? extends V> reducer) {
4118         if (reducer == null) throw new NullPointerException();
4119         return new ReduceValuesTask<K,V>
4120             (null, batchFor(parallelismThreshold), 0, 0, table,
4121              null, reducer).invoke();
4122     }
4123 
4124     /**
4125      * Returns the result of accumulating the given transformation
4126      * of all values using the given reducer to combine values, or
4127      * null if none.
4128      *
4129      * @param parallelismThreshold the (estimated) number of elements
4130      * needed for this operation to be executed in parallel
4131      * @param transformer a function returning the transformation
4132      * for an element, or null if there is no transformation (in
4133      * which case it is not combined)
4134      * @param reducer a commutative associative combining function
4135      * @param <U> the return type of the transformer
4136      * @return the result of accumulating the given transformation
4137      * of all values
4138      * @since 1.8
4139      */
reduceValues(long parallelismThreshold, Function<? super V, ? extends U> transformer, BiFunction<? super U, ? super U, ? extends U> reducer)4140     public <U> U reduceValues(long parallelismThreshold,
4141                               Function<? super V, ? extends U> transformer,
4142                               BiFunction<? super U, ? super U, ? extends U> reducer) {
4143         if (transformer == null || reducer == null)
4144             throw new NullPointerException();
4145         return new MapReduceValuesTask<K,V,U>
4146             (null, batchFor(parallelismThreshold), 0, 0, table,
4147              null, transformer, reducer).invoke();
4148     }
4149 
4150     /**
4151      * Returns the result of accumulating the given transformation
4152      * of all values using the given reducer to combine values,
4153      * and the given basis as an identity value.
4154      *
4155      * @param parallelismThreshold the (estimated) number of elements
4156      * needed for this operation to be executed in parallel
4157      * @param transformer a function returning the transformation
4158      * for an element
4159      * @param basis the identity (initial default value) for the reduction
4160      * @param reducer a commutative associative combining function
4161      * @return the result of accumulating the given transformation
4162      * of all values
4163      * @since 1.8
4164      */
reduceValuesToDouble(long parallelismThreshold, ToDoubleFunction<? super V> transformer, double basis, DoubleBinaryOperator reducer)4165     public double reduceValuesToDouble(long parallelismThreshold,
4166                                        ToDoubleFunction<? super V> transformer,
4167                                        double basis,
4168                                        DoubleBinaryOperator reducer) {
4169         if (transformer == null || reducer == null)
4170             throw new NullPointerException();
4171         return new MapReduceValuesToDoubleTask<K,V>
4172             (null, batchFor(parallelismThreshold), 0, 0, table,
4173              null, transformer, basis, reducer).invoke();
4174     }
4175 
4176     /**
4177      * Returns the result of accumulating the given transformation
4178      * of all values using the given reducer to combine values,
4179      * and the given basis as an identity value.
4180      *
4181      * @param parallelismThreshold the (estimated) number of elements
4182      * needed for this operation to be executed in parallel
4183      * @param transformer a function returning the transformation
4184      * for an element
4185      * @param basis the identity (initial default value) for the reduction
4186      * @param reducer a commutative associative combining function
4187      * @return the result of accumulating the given transformation
4188      * of all values
4189      * @since 1.8
4190      */
reduceValuesToLong(long parallelismThreshold, ToLongFunction<? super V> transformer, long basis, LongBinaryOperator reducer)4191     public long reduceValuesToLong(long parallelismThreshold,
4192                                    ToLongFunction<? super V> transformer,
4193                                    long basis,
4194                                    LongBinaryOperator reducer) {
4195         if (transformer == null || reducer == null)
4196             throw new NullPointerException();
4197         return new MapReduceValuesToLongTask<K,V>
4198             (null, batchFor(parallelismThreshold), 0, 0, table,
4199              null, transformer, basis, reducer).invoke();
4200     }
4201 
4202     /**
4203      * Returns the result of accumulating the given transformation
4204      * of all values using the given reducer to combine values,
4205      * and the given basis as an identity value.
4206      *
4207      * @param parallelismThreshold the (estimated) number of elements
4208      * needed for this operation to be executed in parallel
4209      * @param transformer a function returning the transformation
4210      * for an element
4211      * @param basis the identity (initial default value) for the reduction
4212      * @param reducer a commutative associative combining function
4213      * @return the result of accumulating the given transformation
4214      * of all values
4215      * @since 1.8
4216      */
reduceValuesToInt(long parallelismThreshold, ToIntFunction<? super V> transformer, int basis, IntBinaryOperator reducer)4217     public int reduceValuesToInt(long parallelismThreshold,
4218                                  ToIntFunction<? super V> transformer,
4219                                  int basis,
4220                                  IntBinaryOperator reducer) {
4221         if (transformer == null || reducer == null)
4222             throw new NullPointerException();
4223         return new MapReduceValuesToIntTask<K,V>
4224             (null, batchFor(parallelismThreshold), 0, 0, table,
4225              null, transformer, basis, reducer).invoke();
4226     }
4227 
4228     /**
4229      * Performs the given action for each entry.
4230      *
4231      * @param parallelismThreshold the (estimated) number of elements
4232      * needed for this operation to be executed in parallel
4233      * @param action the action
4234      * @since 1.8
4235      */
forEachEntry(long parallelismThreshold, Consumer<? super Map.Entry<K,V>> action)4236     public void forEachEntry(long parallelismThreshold,
4237                              Consumer<? super Map.Entry<K,V>> action) {
4238         if (action == null) throw new NullPointerException();
4239         new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4240                                   action).invoke();
4241     }
4242 
4243     /**
4244      * Performs the given action for each non-null transformation
4245      * of each entry.
4246      *
4247      * @param parallelismThreshold the (estimated) number of elements
4248      * needed for this operation to be executed in parallel
4249      * @param transformer a function returning the transformation
4250      * for an element, or null if there is no transformation (in
4251      * which case the action is not applied)
4252      * @param action the action
4253      * @param <U> the return type of the transformer
4254      * @since 1.8
4255      */
forEachEntry(long parallelismThreshold, Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action)4256     public <U> void forEachEntry(long parallelismThreshold,
4257                                  Function<Map.Entry<K,V>, ? extends U> transformer,
4258                                  Consumer<? super U> action) {
4259         if (transformer == null || action == null)
4260             throw new NullPointerException();
4261         new ForEachTransformedEntryTask<K,V,U>
4262             (null, batchFor(parallelismThreshold), 0, 0, table,
4263              transformer, action).invoke();
4264     }
4265 
4266     /**
4267      * Returns a non-null result from applying the given search
4268      * function on each entry, or null if none.  Upon success,
4269      * further element processing is suppressed and the results of
4270      * any other parallel invocations of the search function are
4271      * ignored.
4272      *
4273      * @param parallelismThreshold the (estimated) number of elements
4274      * needed for this operation to be executed in parallel
4275      * @param searchFunction a function returning a non-null
4276      * result on success, else null
4277      * @param <U> the return type of the search function
4278      * @return a non-null result from applying the given search
4279      * function on each entry, or null if none
4280      * @since 1.8
4281      */
searchEntries(long parallelismThreshold, Function<Map.Entry<K,V>, ? extends U> searchFunction)4282     public <U> U searchEntries(long parallelismThreshold,
4283                                Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4284         if (searchFunction == null) throw new NullPointerException();
4285         return new SearchEntriesTask<K,V,U>
4286             (null, batchFor(parallelismThreshold), 0, 0, table,
4287              searchFunction, new AtomicReference<U>()).invoke();
4288     }
4289 
4290     /**
4291      * Returns the result of accumulating all entries using the
4292      * given reducer to combine values, or null if none.
4293      *
4294      * @param parallelismThreshold the (estimated) number of elements
4295      * needed for this operation to be executed in parallel
4296      * @param reducer a commutative associative combining function
4297      * @return the result of accumulating all entries
4298      * @since 1.8
4299      */
reduceEntries(long parallelismThreshold, BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer)4300     public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4301                                         BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4302         if (reducer == null) throw new NullPointerException();
4303         return new ReduceEntriesTask<K,V>
4304             (null, batchFor(parallelismThreshold), 0, 0, table,
4305              null, reducer).invoke();
4306     }
4307 
4308     /**
4309      * Returns the result of accumulating the given transformation
4310      * of all entries using the given reducer to combine values,
4311      * or null if none.
4312      *
4313      * @param parallelismThreshold the (estimated) number of elements
4314      * needed for this operation to be executed in parallel
4315      * @param transformer a function returning the transformation
4316      * for an element, or null if there is no transformation (in
4317      * which case it is not combined)
4318      * @param reducer a commutative associative combining function
4319      * @param <U> the return type of the transformer
4320      * @return the result of accumulating the given transformation
4321      * of all entries
4322      * @since 1.8
4323      */
reduceEntries(long parallelismThreshold, Function<Map.Entry<K,V>, ? extends U> transformer, BiFunction<? super U, ? super U, ? extends U> reducer)4324     public <U> U reduceEntries(long parallelismThreshold,
4325                                Function<Map.Entry<K,V>, ? extends U> transformer,
4326                                BiFunction<? super U, ? super U, ? extends U> reducer) {
4327         if (transformer == null || reducer == null)
4328             throw new NullPointerException();
4329         return new MapReduceEntriesTask<K,V,U>
4330             (null, batchFor(parallelismThreshold), 0, 0, table,
4331              null, transformer, reducer).invoke();
4332     }
4333 
4334     /**
4335      * Returns the result of accumulating the given transformation
4336      * of all entries using the given reducer to combine values,
4337      * and the given basis as an identity value.
4338      *
4339      * @param parallelismThreshold the (estimated) number of elements
4340      * needed for this operation to be executed in parallel
4341      * @param transformer a function returning the transformation
4342      * for an element
4343      * @param basis the identity (initial default value) for the reduction
4344      * @param reducer a commutative associative combining function
4345      * @return the result of accumulating the given transformation
4346      * of all entries
4347      * @since 1.8
4348      */
reduceEntriesToDouble(long parallelismThreshold, ToDoubleFunction<Map.Entry<K,V>> transformer, double basis, DoubleBinaryOperator reducer)4349     public double reduceEntriesToDouble(long parallelismThreshold,
4350                                         ToDoubleFunction<Map.Entry<K,V>> transformer,
4351                                         double basis,
4352                                         DoubleBinaryOperator reducer) {
4353         if (transformer == null || reducer == null)
4354             throw new NullPointerException();
4355         return new MapReduceEntriesToDoubleTask<K,V>
4356             (null, batchFor(parallelismThreshold), 0, 0, table,
4357              null, transformer, basis, reducer).invoke();
4358     }
4359 
4360     /**
4361      * Returns the result of accumulating the given transformation
4362      * of all entries using the given reducer to combine values,
4363      * and the given basis as an identity value.
4364      *
4365      * @param parallelismThreshold the (estimated) number of elements
4366      * needed for this operation to be executed in parallel
4367      * @param transformer a function returning the transformation
4368      * for an element
4369      * @param basis the identity (initial default value) for the reduction
4370      * @param reducer a commutative associative combining function
4371      * @return the result of accumulating the given transformation
4372      * of all entries
4373      * @since 1.8
4374      */
reduceEntriesToLong(long parallelismThreshold, ToLongFunction<Map.Entry<K,V>> transformer, long basis, LongBinaryOperator reducer)4375     public long reduceEntriesToLong(long parallelismThreshold,
4376                                     ToLongFunction<Map.Entry<K,V>> transformer,
4377                                     long basis,
4378                                     LongBinaryOperator reducer) {
4379         if (transformer == null || reducer == null)
4380             throw new NullPointerException();
4381         return new MapReduceEntriesToLongTask<K,V>
4382             (null, batchFor(parallelismThreshold), 0, 0, table,
4383              null, transformer, basis, reducer).invoke();
4384     }
4385 
4386     /**
4387      * Returns the result of accumulating the given transformation
4388      * of all entries using the given reducer to combine values,
4389      * and the given basis as an identity value.
4390      *
4391      * @param parallelismThreshold the (estimated) number of elements
4392      * needed for this operation to be executed in parallel
4393      * @param transformer a function returning the transformation
4394      * for an element
4395      * @param basis the identity (initial default value) for the reduction
4396      * @param reducer a commutative associative combining function
4397      * @return the result of accumulating the given transformation
4398      * of all entries
4399      * @since 1.8
4400      */
reduceEntriesToInt(long parallelismThreshold, ToIntFunction<Map.Entry<K,V>> transformer, int basis, IntBinaryOperator reducer)4401     public int reduceEntriesToInt(long parallelismThreshold,
4402                                   ToIntFunction<Map.Entry<K,V>> transformer,
4403                                   int basis,
4404                                   IntBinaryOperator reducer) {
4405         if (transformer == null || reducer == null)
4406             throw new NullPointerException();
4407         return new MapReduceEntriesToIntTask<K,V>
4408             (null, batchFor(parallelismThreshold), 0, 0, table,
4409              null, transformer, basis, reducer).invoke();
4410     }
4411 
4412 
4413     /* ----------------Views -------------- */
4414 
4415     /**
4416      * Base class for views.
4417      */
4418     abstract static class CollectionView<K,V,E>
4419         implements Collection<E>, java.io.Serializable {
4420         private static final long serialVersionUID = 7249069246763182397L;
4421         final ConcurrentHashMap<K,V> map;
CollectionView(ConcurrentHashMap<K,V> map)4422         CollectionView(ConcurrentHashMap<K,V> map)  { this.map = map; }
4423 
4424         /**
4425          * Returns the map backing this view.
4426          *
4427          * @return the map backing this view
4428          */
getMap()4429         public ConcurrentHashMap<K,V> getMap() { return map; }
4430 
4431         /**
4432          * Removes all of the elements from this view, by removing all
4433          * the mappings from the map backing this view.
4434          */
clear()4435         public final void clear()      { map.clear(); }
size()4436         public final int size()        { return map.size(); }
isEmpty()4437         public final boolean isEmpty() { return map.isEmpty(); }
4438 
4439         // implementations below rely on concrete classes supplying these
4440         // abstract methods
4441         /**
4442          * Returns an iterator over the elements in this collection.
4443          *
4444          * <p>The returned iterator is
4445          * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
4446          *
4447          * @return an iterator over the elements in this collection
4448          */
iterator()4449         public abstract Iterator<E> iterator();
contains(Object o)4450         public abstract boolean contains(Object o);
remove(Object o)4451         public abstract boolean remove(Object o);
4452 
4453         private static final String OOME_MSG = "Required array size too large";
4454 
toArray()4455         public final Object[] toArray() {
4456             long sz = map.mappingCount();
4457             if (sz > MAX_ARRAY_SIZE)
4458                 throw new OutOfMemoryError(OOME_MSG);
4459             int n = (int)sz;
4460             Object[] r = new Object[n];
4461             int i = 0;
4462             for (E e : this) {
4463                 if (i == n) {
4464                     if (n >= MAX_ARRAY_SIZE)
4465                         throw new OutOfMemoryError(OOME_MSG);
4466                     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4467                         n = MAX_ARRAY_SIZE;
4468                     else
4469                         n += (n >>> 1) + 1;
4470                     r = Arrays.copyOf(r, n);
4471                 }
4472                 r[i++] = e;
4473             }
4474             return (i == n) ? r : Arrays.copyOf(r, i);
4475         }
4476 
4477         @SuppressWarnings("unchecked")
toArray(T[] a)4478         public final <T> T[] toArray(T[] a) {
4479             long sz = map.mappingCount();
4480             if (sz > MAX_ARRAY_SIZE)
4481                 throw new OutOfMemoryError(OOME_MSG);
4482             int m = (int)sz;
4483             T[] r = (a.length >= m) ? a :
4484                 (T[])java.lang.reflect.Array
4485                 .newInstance(a.getClass().getComponentType(), m);
4486             int n = r.length;
4487             int i = 0;
4488             for (E e : this) {
4489                 if (i == n) {
4490                     if (n >= MAX_ARRAY_SIZE)
4491                         throw new OutOfMemoryError(OOME_MSG);
4492                     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4493                         n = MAX_ARRAY_SIZE;
4494                     else
4495                         n += (n >>> 1) + 1;
4496                     r = Arrays.copyOf(r, n);
4497                 }
4498                 r[i++] = (T)e;
4499             }
4500             if (a == r && i < n) {
4501                 r[i] = null; // null-terminate
4502                 return r;
4503             }
4504             return (i == n) ? r : Arrays.copyOf(r, i);
4505         }
4506 
4507         /**
4508          * Returns a string representation of this collection.
4509          * The string representation consists of the string representations
4510          * of the collection's elements in the order they are returned by
4511          * its iterator, enclosed in square brackets ({@code "[]"}).
4512          * Adjacent elements are separated by the characters {@code ", "}
4513          * (comma and space).  Elements are converted to strings as by
4514          * {@link String#valueOf(Object)}.
4515          *
4516          * @return a string representation of this collection
4517          */
toString()4518         public final String toString() {
4519             StringBuilder sb = new StringBuilder();
4520             sb.append('[');
4521             Iterator<E> it = iterator();
4522             if (it.hasNext()) {
4523                 for (;;) {
4524                     Object e = it.next();
4525                     sb.append(e == this ? "(this Collection)" : e);
4526                     if (!it.hasNext())
4527                         break;
4528                     sb.append(',').append(' ');
4529                 }
4530             }
4531             return sb.append(']').toString();
4532         }
4533 
containsAll(Collection<?> c)4534         public final boolean containsAll(Collection<?> c) {
4535             if (c != this) {
4536                 for (Object e : c) {
4537                     if (e == null || !contains(e))
4538                         return false;
4539                 }
4540             }
4541             return true;
4542         }
4543 
removeAll(Collection<?> c)4544         public boolean removeAll(Collection<?> c) {
4545             if (c == null) throw new NullPointerException();
4546             boolean modified = false;
4547             // Use (c instanceof Set) as a hint that lookup in c is as
4548             // efficient as this view
4549             Node<K,V>[] t;
4550             if ((t = map.table) == null) {
4551                 return false;
4552             } else if (c instanceof Set<?> && c.size() > t.length) {
4553                 for (Iterator<?> it = iterator(); it.hasNext(); ) {
4554                     if (c.contains(it.next())) {
4555                         it.remove();
4556                         modified = true;
4557                     }
4558                 }
4559             } else {
4560                 for (Object e : c)
4561                     modified |= remove(e);
4562             }
4563             return modified;
4564         }
4565 
retainAll(Collection<?> c)4566         public final boolean retainAll(Collection<?> c) {
4567             if (c == null) throw new NullPointerException();
4568             boolean modified = false;
4569             for (Iterator<E> it = iterator(); it.hasNext();) {
4570                 if (!c.contains(it.next())) {
4571                     it.remove();
4572                     modified = true;
4573                 }
4574             }
4575             return modified;
4576         }
4577 
4578     }
4579 
4580     /**
4581      * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4582      * which additions may optionally be enabled by mapping to a
4583      * common value.  This class cannot be directly instantiated.
4584      * See {@link #keySet(Object) keySet(V)},
4585      * {@link #newKeySet() newKeySet()},
4586      * {@link #newKeySet(int) newKeySet(int)}.
4587      *
4588      * @since 1.8
4589      */
4590     public static class KeySetView<K,V> extends CollectionView<K,V,K>
4591         implements Set<K>, java.io.Serializable {
4592         private static final long serialVersionUID = 7249069246763182397L;
4593         private final V value;
KeySetView(ConcurrentHashMap<K,V> map, V value)4594         KeySetView(ConcurrentHashMap<K,V> map, V value) {  // non-public
4595             super(map);
4596             this.value = value;
4597         }
4598 
4599         /**
4600          * Returns the default mapped value for additions,
4601          * or {@code null} if additions are not supported.
4602          *
4603          * @return the default mapped value for additions, or {@code null}
4604          * if not supported
4605          */
getMappedValue()4606         public V getMappedValue() { return value; }
4607 
4608         /**
4609          * {@inheritDoc}
4610          * @throws NullPointerException if the specified key is null
4611          */
contains(Object o)4612         public boolean contains(Object o) { return map.containsKey(o); }
4613 
4614         /**
4615          * Removes the key from this map view, by removing the key (and its
4616          * corresponding value) from the backing map.  This method does
4617          * nothing if the key is not in the map.
4618          *
4619          * @param  o the key to be removed from the backing map
4620          * @return {@code true} if the backing map contained the specified key
4621          * @throws NullPointerException if the specified key is null
4622          */
remove(Object o)4623         public boolean remove(Object o) { return map.remove(o) != null; }
4624 
4625         /**
4626          * @return an iterator over the keys of the backing map
4627          */
iterator()4628         public Iterator<K> iterator() {
4629             Node<K,V>[] t;
4630             ConcurrentHashMap<K,V> m = map;
4631             int f = (t = m.table) == null ? 0 : t.length;
4632             return new KeyIterator<K,V>(t, f, 0, f, m);
4633         }
4634 
4635         /**
4636          * Adds the specified key to this set view by mapping the key to
4637          * the default mapped value in the backing map, if defined.
4638          *
4639          * @param e key to be added
4640          * @return {@code true} if this set changed as a result of the call
4641          * @throws NullPointerException if the specified key is null
4642          * @throws UnsupportedOperationException if no default mapped value
4643          * for additions was provided
4644          */
add(K e)4645         public boolean add(K e) {
4646             V v;
4647             if ((v = value) == null)
4648                 throw new UnsupportedOperationException();
4649             return map.putVal(e, v, true) == null;
4650         }
4651 
4652         /**
4653          * Adds all of the elements in the specified collection to this set,
4654          * as if by calling {@link #add} on each one.
4655          *
4656          * @param c the elements to be inserted into this set
4657          * @return {@code true} if this set changed as a result of the call
4658          * @throws NullPointerException if the collection or any of its
4659          * elements are {@code null}
4660          * @throws UnsupportedOperationException if no default mapped value
4661          * for additions was provided
4662          */
addAll(Collection<? extends K> c)4663         public boolean addAll(Collection<? extends K> c) {
4664             boolean added = false;
4665             V v;
4666             if ((v = value) == null)
4667                 throw new UnsupportedOperationException();
4668             for (K e : c) {
4669                 if (map.putVal(e, v, true) == null)
4670                     added = true;
4671             }
4672             return added;
4673         }
4674 
hashCode()4675         public int hashCode() {
4676             int h = 0;
4677             for (K e : this)
4678                 h += e.hashCode();
4679             return h;
4680         }
4681 
equals(Object o)4682         public boolean equals(Object o) {
4683             Set<?> c;
4684             return ((o instanceof Set) &&
4685                     ((c = (Set<?>)o) == this ||
4686                      (containsAll(c) && c.containsAll(this))));
4687         }
4688 
spliterator()4689         public Spliterator<K> spliterator() {
4690             Node<K,V>[] t;
4691             ConcurrentHashMap<K,V> m = map;
4692             long n = m.sumCount();
4693             int f = (t = m.table) == null ? 0 : t.length;
4694             return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4695         }
4696 
forEach(Consumer<? super K> action)4697         public void forEach(Consumer<? super K> action) {
4698             if (action == null) throw new NullPointerException();
4699             Node<K,V>[] t;
4700             if ((t = map.table) != null) {
4701                 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4702                 for (Node<K,V> p; (p = it.advance()) != null; )
4703                     action.accept(p.key);
4704             }
4705         }
4706     }
4707 
4708     /**
4709      * A view of a ConcurrentHashMap as a {@link Collection} of
4710      * values, in which additions are disabled. This class cannot be
4711      * directly instantiated. See {@link #values()}.
4712      */
4713     static final class ValuesView<K,V> extends CollectionView<K,V,V>
4714         implements Collection<V>, java.io.Serializable {
4715         private static final long serialVersionUID = 2249069246763182397L;
ValuesView(ConcurrentHashMap<K,V> map)4716         ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
contains(Object o)4717         public final boolean contains(Object o) {
4718             return map.containsValue(o);
4719         }
4720 
remove(Object o)4721         public final boolean remove(Object o) {
4722             if (o != null) {
4723                 for (Iterator<V> it = iterator(); it.hasNext();) {
4724                     if (o.equals(it.next())) {
4725                         it.remove();
4726                         return true;
4727                     }
4728                 }
4729             }
4730             return false;
4731         }
4732 
iterator()4733         public final Iterator<V> iterator() {
4734             ConcurrentHashMap<K,V> m = map;
4735             Node<K,V>[] t;
4736             int f = (t = m.table) == null ? 0 : t.length;
4737             return new ValueIterator<K,V>(t, f, 0, f, m);
4738         }
4739 
add(V e)4740         public final boolean add(V e) {
4741             throw new UnsupportedOperationException();
4742         }
addAll(Collection<? extends V> c)4743         public final boolean addAll(Collection<? extends V> c) {
4744             throw new UnsupportedOperationException();
4745         }
4746 
removeAll(Collection<?> c)4747         @Override public boolean removeAll(Collection<?> c) {
4748             if (c == null) throw new NullPointerException();
4749             boolean modified = false;
4750             for (Iterator<V> it = iterator(); it.hasNext();) {
4751                 if (c.contains(it.next())) {
4752                     it.remove();
4753                     modified = true;
4754                 }
4755             }
4756             return modified;
4757         }
4758 
removeIf(Predicate<? super V> filter)4759         public boolean removeIf(Predicate<? super V> filter) {
4760             return map.removeValueIf(filter);
4761         }
4762 
spliterator()4763         public Spliterator<V> spliterator() {
4764             Node<K,V>[] t;
4765             ConcurrentHashMap<K,V> m = map;
4766             long n = m.sumCount();
4767             int f = (t = m.table) == null ? 0 : t.length;
4768             return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4769         }
4770 
forEach(Consumer<? super V> action)4771         public void forEach(Consumer<? super V> action) {
4772             if (action == null) throw new NullPointerException();
4773             Node<K,V>[] t;
4774             if ((t = map.table) != null) {
4775                 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4776                 for (Node<K,V> p; (p = it.advance()) != null; )
4777                     action.accept(p.val);
4778             }
4779         }
4780     }
4781 
4782     /**
4783      * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4784      * entries.  This class cannot be directly instantiated. See
4785      * {@link #entrySet()}.
4786      */
4787     static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4788         implements Set<Map.Entry<K,V>>, java.io.Serializable {
4789         private static final long serialVersionUID = 2249069246763182397L;
EntrySetView(ConcurrentHashMap<K,V> map)4790         EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4791 
contains(Object o)4792         public boolean contains(Object o) {
4793             Object k, v, r; Map.Entry<?,?> e;
4794             return ((o instanceof Map.Entry) &&
4795                     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4796                     (r = map.get(k)) != null &&
4797                     (v = e.getValue()) != null &&
4798                     (v == r || v.equals(r)));
4799         }
4800 
remove(Object o)4801         public boolean remove(Object o) {
4802             Object k, v; Map.Entry<?,?> e;
4803             return ((o instanceof Map.Entry) &&
4804                     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4805                     (v = e.getValue()) != null &&
4806                     map.remove(k, v));
4807         }
4808 
4809         /**
4810          * @return an iterator over the entries of the backing map
4811          */
iterator()4812         public Iterator<Map.Entry<K,V>> iterator() {
4813             ConcurrentHashMap<K,V> m = map;
4814             Node<K,V>[] t;
4815             int f = (t = m.table) == null ? 0 : t.length;
4816             return new EntryIterator<K,V>(t, f, 0, f, m);
4817         }
4818 
add(Entry<K,V> e)4819         public boolean add(Entry<K,V> e) {
4820             return map.putVal(e.getKey(), e.getValue(), false) == null;
4821         }
4822 
addAll(Collection<? extends Entry<K,V>> c)4823         public boolean addAll(Collection<? extends Entry<K,V>> c) {
4824             boolean added = false;
4825             for (Entry<K,V> e : c) {
4826                 if (add(e))
4827                     added = true;
4828             }
4829             return added;
4830         }
4831 
removeIf(Predicate<? super Entry<K,V>> filter)4832         public boolean removeIf(Predicate<? super Entry<K,V>> filter) {
4833             return map.removeEntryIf(filter);
4834         }
4835 
hashCode()4836         public final int hashCode() {
4837             int h = 0;
4838             Node<K,V>[] t;
4839             if ((t = map.table) != null) {
4840                 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4841                 for (Node<K,V> p; (p = it.advance()) != null; ) {
4842                     h += p.hashCode();
4843                 }
4844             }
4845             return h;
4846         }
4847 
equals(Object o)4848         public final boolean equals(Object o) {
4849             Set<?> c;
4850             return ((o instanceof Set) &&
4851                     ((c = (Set<?>)o) == this ||
4852                      (containsAll(c) && c.containsAll(this))));
4853         }
4854 
spliterator()4855         public Spliterator<Map.Entry<K,V>> spliterator() {
4856             Node<K,V>[] t;
4857             ConcurrentHashMap<K,V> m = map;
4858             long n = m.sumCount();
4859             int f = (t = m.table) == null ? 0 : t.length;
4860             return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4861         }
4862 
forEach(Consumer<? super Map.Entry<K,V>> action)4863         public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4864             if (action == null) throw new NullPointerException();
4865             Node<K,V>[] t;
4866             if ((t = map.table) != null) {
4867                 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4868                 for (Node<K,V> p; (p = it.advance()) != null; )
4869                     action.accept(new MapEntry<K,V>(p.key, p.val, map));
4870             }
4871         }
4872 
4873     }
4874 
4875     // -------------------------------------------------------
4876 
4877     /**
4878      * Base class for bulk tasks. Repeats some fields and code from
4879      * class Traverser, because we need to subclass CountedCompleter.
4880      */
4881     @SuppressWarnings("serial")
4882     abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4883         Node<K,V>[] tab;        // same as Traverser
4884         Node<K,V> next;
4885         TableStack<K,V> stack, spare;
4886         int index;
4887         int baseIndex;
4888         int baseLimit;
4889         final int baseSize;
4890         int batch;              // split control
4891 
BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t)4892         BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4893             super(par);
4894             this.batch = b;
4895             this.index = this.baseIndex = i;
4896             if ((this.tab = t) == null)
4897                 this.baseSize = this.baseLimit = 0;
4898             else if (par == null)
4899                 this.baseSize = this.baseLimit = t.length;
4900             else {
4901                 this.baseLimit = f;
4902                 this.baseSize = par.baseSize;
4903             }
4904         }
4905 
4906         /**
4907          * Same as Traverser version.
4908          */
advance()4909         final Node<K,V> advance() {
4910             Node<K,V> e;
4911             if ((e = next) != null)
4912                 e = e.next;
4913             for (;;) {
4914                 Node<K,V>[] t; int i, n;
4915                 if (e != null)
4916                     return next = e;
4917                 if (baseIndex >= baseLimit || (t = tab) == null ||
4918                     (n = t.length) <= (i = index) || i < 0)
4919                     return next = null;
4920                 if ((e = tabAt(t, i)) != null && e.hash < 0) {
4921                     if (e instanceof ForwardingNode) {
4922                         tab = ((ForwardingNode<K,V>)e).nextTable;
4923                         e = null;
4924                         pushState(t, i, n);
4925                         continue;
4926                     }
4927                     else if (e instanceof TreeBin)
4928                         e = ((TreeBin<K,V>)e).first;
4929                     else
4930                         e = null;
4931                 }
4932                 if (stack != null)
4933                     recoverState(n);
4934                 else if ((index = i + baseSize) >= n)
4935                     index = ++baseIndex;
4936             }
4937         }
4938 
pushState(Node<K,V>[] t, int i, int n)4939         private void pushState(Node<K,V>[] t, int i, int n) {
4940             TableStack<K,V> s = spare;
4941             if (s != null)
4942                 spare = s.next;
4943             else
4944                 s = new TableStack<K,V>();
4945             s.tab = t;
4946             s.length = n;
4947             s.index = i;
4948             s.next = stack;
4949             stack = s;
4950         }
4951 
recoverState(int n)4952         private void recoverState(int n) {
4953             TableStack<K,V> s; int len;
4954             while ((s = stack) != null && (index += (len = s.length)) >= n) {
4955                 n = len;
4956                 index = s.index;
4957                 tab = s.tab;
4958                 s.tab = null;
4959                 TableStack<K,V> next = s.next;
4960                 s.next = spare; // save for reuse
4961                 stack = next;
4962                 spare = s;
4963             }
4964             if (s == null && (index += baseSize) >= n)
4965                 index = ++baseIndex;
4966         }
4967     }
4968 
4969     /*
4970      * Task classes. Coded in a regular but ugly format/style to
4971      * simplify checks that each variant differs in the right way from
4972      * others. The null screenings exist because compilers cannot tell
4973      * that we've already null-checked task arguments, so we force
4974      * simplest hoisted bypass to help avoid convoluted traps.
4975      */
4976     @SuppressWarnings("serial")
4977     static final class ForEachKeyTask<K,V>
4978         extends BulkTask<K,V,Void> {
4979         final Consumer<? super K> action;
ForEachKeyTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, Consumer<? super K> action)4980         ForEachKeyTask
4981             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4982              Consumer<? super K> action) {
4983             super(p, b, i, f, t);
4984             this.action = action;
4985         }
compute()4986         public final void compute() {
4987             final Consumer<? super K> action;
4988             if ((action = this.action) != null) {
4989                 for (int i = baseIndex, f, h; batch > 0 &&
4990                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
4991                     addToPendingCount(1);
4992                     new ForEachKeyTask<K,V>
4993                         (this, batch >>>= 1, baseLimit = h, f, tab,
4994                          action).fork();
4995                 }
4996                 for (Node<K,V> p; (p = advance()) != null;)
4997                     action.accept(p.key);
4998                 propagateCompletion();
4999             }
5000         }
5001     }
5002 
5003     @SuppressWarnings("serial")
5004     static final class ForEachValueTask<K,V>
5005         extends BulkTask<K,V,Void> {
5006         final Consumer<? super V> action;
ForEachValueTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, Consumer<? super V> action)5007         ForEachValueTask
5008             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5009              Consumer<? super V> action) {
5010             super(p, b, i, f, t);
5011             this.action = action;
5012         }
compute()5013         public final void compute() {
5014             final Consumer<? super V> action;
5015             if ((action = this.action) != null) {
5016                 for (int i = baseIndex, f, h; batch > 0 &&
5017                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
5018                     addToPendingCount(1);
5019                     new ForEachValueTask<K,V>
5020                         (this, batch >>>= 1, baseLimit = h, f, tab,
5021                          action).fork();
5022                 }
5023                 for (Node<K,V> p; (p = advance()) != null;)
5024                     action.accept(p.val);
5025                 propagateCompletion();
5026             }
5027         }
5028     }
5029 
5030     @SuppressWarnings("serial")
5031     static final class ForEachEntryTask<K,V>
5032         extends BulkTask<K,V,Void> {
5033         final Consumer<? super Entry<K,V>> action;
ForEachEntryTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, Consumer<? super Entry<K,V>> action)5034         ForEachEntryTask
5035             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5036              Consumer<? super Entry<K,V>> action) {
5037             super(p, b, i, f, t);
5038             this.action = action;
5039         }
compute()5040         public final void compute() {
5041             final Consumer<? super Entry<K,V>> action;
5042             if ((action = this.action) != null) {
5043                 for (int i = baseIndex, f, h; batch > 0 &&
5044                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
5045                     addToPendingCount(1);
5046                     new ForEachEntryTask<K,V>
5047                         (this, batch >>>= 1, baseLimit = h, f, tab,
5048                          action).fork();
5049                 }
5050                 for (Node<K,V> p; (p = advance()) != null; )
5051                     action.accept(p);
5052                 propagateCompletion();
5053             }
5054         }
5055     }
5056 
5057     @SuppressWarnings("serial")
5058     static final class ForEachMappingTask<K,V>
5059         extends BulkTask<K,V,Void> {
5060         final BiConsumer<? super K, ? super V> action;
ForEachMappingTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, BiConsumer<? super K,? super V> action)5061         ForEachMappingTask
5062             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5063              BiConsumer<? super K,? super V> action) {
5064             super(p, b, i, f, t);
5065             this.action = action;
5066         }
compute()5067         public final void compute() {
5068             final BiConsumer<? super K, ? super V> action;
5069             if ((action = this.action) != null) {
5070                 for (int i = baseIndex, f, h; batch > 0 &&
5071                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
5072                     addToPendingCount(1);
5073                     new ForEachMappingTask<K,V>
5074                         (this, batch >>>= 1, baseLimit = h, f, tab,
5075                          action).fork();
5076                 }
5077                 for (Node<K,V> p; (p = advance()) != null; )
5078                     action.accept(p.key, p.val);
5079                 propagateCompletion();
5080             }
5081         }
5082     }
5083 
5084     @SuppressWarnings("serial")
5085     static final class ForEachTransformedKeyTask<K,V,U>
5086         extends BulkTask<K,V,Void> {
5087         final Function<? super K, ? extends U> transformer;
5088         final Consumer<? super U> action;
ForEachTransformedKeyTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, Function<? super K, ? extends U> transformer, Consumer<? super U> action)5089         ForEachTransformedKeyTask
5090             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5091              Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
5092             super(p, b, i, f, t);
5093             this.transformer = transformer; this.action = action;
5094         }
compute()5095         public final void compute() {
5096             final Function<? super K, ? extends U> transformer;
5097             final Consumer<? super U> action;
5098             if ((transformer = this.transformer) != null &&
5099                 (action = this.action) != null) {
5100                 for (int i = baseIndex, f, h; batch > 0 &&
5101                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
5102                     addToPendingCount(1);
5103                     new ForEachTransformedKeyTask<K,V,U>
5104                         (this, batch >>>= 1, baseLimit = h, f, tab,
5105                          transformer, action).fork();
5106                 }
5107                 for (Node<K,V> p; (p = advance()) != null; ) {
5108                     U u;
5109                     if ((u = transformer.apply(p.key)) != null)
5110                         action.accept(u);
5111                 }
5112                 propagateCompletion();
5113             }
5114         }
5115     }
5116 
5117     @SuppressWarnings("serial")
5118     static final class ForEachTransformedValueTask<K,V,U>
5119         extends BulkTask<K,V,Void> {
5120         final Function<? super V, ? extends U> transformer;
5121         final Consumer<? super U> action;
ForEachTransformedValueTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, Function<? super V, ? extends U> transformer, Consumer<? super U> action)5122         ForEachTransformedValueTask
5123             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5124              Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
5125             super(p, b, i, f, t);
5126             this.transformer = transformer; this.action = action;
5127         }
compute()5128         public final void compute() {
5129             final Function<? super V, ? extends U> transformer;
5130             final Consumer<? super U> action;
5131             if ((transformer = this.transformer) != null &&
5132                 (action = this.action) != null) {
5133                 for (int i = baseIndex, f, h; batch > 0 &&
5134                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
5135                     addToPendingCount(1);
5136                     new ForEachTransformedValueTask<K,V,U>
5137                         (this, batch >>>= 1, baseLimit = h, f, tab,
5138                          transformer, action).fork();
5139                 }
5140                 for (Node<K,V> p; (p = advance()) != null; ) {
5141                     U u;
5142                     if ((u = transformer.apply(p.val)) != null)
5143                         action.accept(u);
5144                 }
5145                 propagateCompletion();
5146             }
5147         }
5148     }
5149 
5150     @SuppressWarnings("serial")
5151     static final class ForEachTransformedEntryTask<K,V,U>
5152         extends BulkTask<K,V,Void> {
5153         final Function<Map.Entry<K,V>, ? extends U> transformer;
5154         final Consumer<? super U> action;
ForEachTransformedEntryTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action)5155         ForEachTransformedEntryTask
5156             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5157              Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5158             super(p, b, i, f, t);
5159             this.transformer = transformer; this.action = action;
5160         }
compute()5161         public final void compute() {
5162             final Function<Map.Entry<K,V>, ? extends U> transformer;
5163             final Consumer<? super U> action;
5164             if ((transformer = this.transformer) != null &&
5165                 (action = this.action) != null) {
5166                 for (int i = baseIndex, f, h; batch > 0 &&
5167                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
5168                     addToPendingCount(1);
5169                     new ForEachTransformedEntryTask<K,V,U>
5170                         (this, batch >>>= 1, baseLimit = h, f, tab,
5171                          transformer, action).fork();
5172                 }
5173                 for (Node<K,V> p; (p = advance()) != null; ) {
5174                     U u;
5175                     if ((u = transformer.apply(p)) != null)
5176                         action.accept(u);
5177                 }
5178                 propagateCompletion();
5179             }
5180         }
5181     }
5182 
5183     @SuppressWarnings("serial")
5184     static final class ForEachTransformedMappingTask<K,V,U>
5185         extends BulkTask<K,V,Void> {
5186         final BiFunction<? super K, ? super V, ? extends U> transformer;
5187         final Consumer<? super U> action;
ForEachTransformedMappingTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, BiFunction<? super K, ? super V, ? extends U> transformer, Consumer<? super U> action)5188         ForEachTransformedMappingTask
5189             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5190              BiFunction<? super K, ? super V, ? extends U> transformer,
5191              Consumer<? super U> action) {
5192             super(p, b, i, f, t);
5193             this.transformer = transformer; this.action = action;
5194         }
compute()5195         public final void compute() {
5196             final BiFunction<? super K, ? super V, ? extends U> transformer;
5197             final Consumer<? super U> action;
5198             if ((transformer = this.transformer) != null &&
5199                 (action = this.action) != null) {
5200                 for (int i = baseIndex, f, h; batch > 0 &&
5201                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
5202                     addToPendingCount(1);
5203                     new ForEachTransformedMappingTask<K,V,U>
5204                         (this, batch >>>= 1, baseLimit = h, f, tab,
5205                          transformer, action).fork();
5206                 }
5207                 for (Node<K,V> p; (p = advance()) != null; ) {
5208                     U u;
5209                     if ((u = transformer.apply(p.key, p.val)) != null)
5210                         action.accept(u);
5211                 }
5212                 propagateCompletion();
5213             }
5214         }
5215     }
5216 
5217     @SuppressWarnings("serial")
5218     static final class SearchKeysTask<K,V,U>
5219         extends BulkTask<K,V,U> {
5220         final Function<? super K, ? extends U> searchFunction;
5221         final AtomicReference<U> result;
SearchKeysTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, Function<? super K, ? extends U> searchFunction, AtomicReference<U> result)5222         SearchKeysTask
5223             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5224              Function<? super K, ? extends U> searchFunction,
5225              AtomicReference<U> result) {
5226             super(p, b, i, f, t);
5227             this.searchFunction = searchFunction; this.result = result;
5228         }
getRawResult()5229         public final U getRawResult() { return result.get(); }
compute()5230         public final void compute() {
5231             final Function<? super K, ? extends U> searchFunction;
5232             final AtomicReference<U> result;
5233             if ((searchFunction = this.searchFunction) != null &&
5234                 (result = this.result) != null) {
5235                 for (int i = baseIndex, f, h; batch > 0 &&
5236                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
5237                     if (result.get() != null)
5238                         return;
5239                     addToPendingCount(1);
5240                     new SearchKeysTask<K,V,U>
5241                         (this, batch >>>= 1, baseLimit = h, f, tab,
5242                          searchFunction, result).fork();
5243                 }
5244                 while (result.get() == null) {
5245                     U u;
5246                     Node<K,V> p;
5247                     if ((p = advance()) == null) {
5248                         propagateCompletion();
5249                         break;
5250                     }
5251                     if ((u = searchFunction.apply(p.key)) != null) {
5252                         if (result.compareAndSet(null, u))
5253                             quietlyCompleteRoot();
5254                         break;
5255                     }
5256                 }
5257             }
5258         }
5259     }
5260 
5261     @SuppressWarnings("serial")
5262     static final class SearchValuesTask<K,V,U>
5263         extends BulkTask<K,V,U> {
5264         final Function<? super V, ? extends U> searchFunction;
5265         final AtomicReference<U> result;
SearchValuesTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, Function<? super V, ? extends U> searchFunction, AtomicReference<U> result)5266         SearchValuesTask
5267             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5268              Function<? super V, ? extends U> searchFunction,
5269              AtomicReference<U> result) {
5270             super(p, b, i, f, t);
5271             this.searchFunction = searchFunction; this.result = result;
5272         }
getRawResult()5273         public final U getRawResult() { return result.get(); }
compute()5274         public final void compute() {
5275             final Function<? super V, ? extends U> searchFunction;
5276             final AtomicReference<U> result;
5277             if ((searchFunction = this.searchFunction) != null &&
5278                 (result = this.result) != null) {
5279                 for (int i = baseIndex, f, h; batch > 0 &&
5280                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
5281                     if (result.get() != null)
5282                         return;
5283                     addToPendingCount(1);
5284                     new SearchValuesTask<K,V,U>
5285                         (this, batch >>>= 1, baseLimit = h, f, tab,
5286                          searchFunction, result).fork();
5287                 }
5288                 while (result.get() == null) {
5289                     U u;
5290                     Node<K,V> p;
5291                     if ((p = advance()) == null) {
5292                         propagateCompletion();
5293                         break;
5294                     }
5295                     if ((u = searchFunction.apply(p.val)) != null) {
5296                         if (result.compareAndSet(null, u))
5297                             quietlyCompleteRoot();
5298                         break;
5299                     }
5300                 }
5301             }
5302         }
5303     }
5304 
5305     @SuppressWarnings("serial")
5306     static final class SearchEntriesTask<K,V,U>
5307         extends BulkTask<K,V,U> {
5308         final Function<Entry<K,V>, ? extends U> searchFunction;
5309         final AtomicReference<U> result;
SearchEntriesTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, Function<Entry<K,V>, ? extends U> searchFunction, AtomicReference<U> result)5310         SearchEntriesTask
5311             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5312              Function<Entry<K,V>, ? extends U> searchFunction,
5313              AtomicReference<U> result) {
5314             super(p, b, i, f, t);
5315             this.searchFunction = searchFunction; this.result = result;
5316         }
getRawResult()5317         public final U getRawResult() { return result.get(); }
compute()5318         public final void compute() {
5319             final Function<Entry<K,V>, ? extends U> searchFunction;
5320             final AtomicReference<U> result;
5321             if ((searchFunction = this.searchFunction) != null &&
5322                 (result = this.result) != null) {
5323                 for (int i = baseIndex, f, h; batch > 0 &&
5324                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
5325                     if (result.get() != null)
5326                         return;
5327                     addToPendingCount(1);
5328                     new SearchEntriesTask<K,V,U>
5329                         (this, batch >>>= 1, baseLimit = h, f, tab,
5330                          searchFunction, result).fork();
5331                 }
5332                 while (result.get() == null) {
5333                     U u;
5334                     Node<K,V> p;
5335                     if ((p = advance()) == null) {
5336                         propagateCompletion();
5337                         break;
5338                     }
5339                     if ((u = searchFunction.apply(p)) != null) {
5340                         if (result.compareAndSet(null, u))
5341                             quietlyCompleteRoot();
5342                         return;
5343                     }
5344                 }
5345             }
5346         }
5347     }
5348 
5349     @SuppressWarnings("serial")
5350     static final class SearchMappingsTask<K,V,U>
5351         extends BulkTask<K,V,U> {
5352         final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5353         final AtomicReference<U> result;
SearchMappingsTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, BiFunction<? super K, ? super V, ? extends U> searchFunction, AtomicReference<U> result)5354         SearchMappingsTask
5355             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5356              BiFunction<? super K, ? super V, ? extends U> searchFunction,
5357              AtomicReference<U> result) {
5358             super(p, b, i, f, t);
5359             this.searchFunction = searchFunction; this.result = result;
5360         }
getRawResult()5361         public final U getRawResult() { return result.get(); }
compute()5362         public final void compute() {
5363             final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5364             final AtomicReference<U> result;
5365             if ((searchFunction = this.searchFunction) != null &&
5366                 (result = this.result) != null) {
5367                 for (int i = baseIndex, f, h; batch > 0 &&
5368                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
5369                     if (result.get() != null)
5370                         return;
5371                     addToPendingCount(1);
5372                     new SearchMappingsTask<K,V,U>
5373                         (this, batch >>>= 1, baseLimit = h, f, tab,
5374                          searchFunction, result).fork();
5375                 }
5376                 while (result.get() == null) {
5377                     U u;
5378                     Node<K,V> p;
5379                     if ((p = advance()) == null) {
5380                         propagateCompletion();
5381                         break;
5382                     }
5383                     if ((u = searchFunction.apply(p.key, p.val)) != null) {
5384                         if (result.compareAndSet(null, u))
5385                             quietlyCompleteRoot();
5386                         break;
5387                     }
5388                 }
5389             }
5390         }
5391     }
5392 
5393     @SuppressWarnings("serial")
5394     static final class ReduceKeysTask<K,V>
5395         extends BulkTask<K,V,K> {
5396         final BiFunction<? super K, ? super K, ? extends K> reducer;
5397         K result;
5398         ReduceKeysTask<K,V> rights, nextRight;
ReduceKeysTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, ReduceKeysTask<K,V> nextRight, BiFunction<? super K, ? super K, ? extends K> reducer)5399         ReduceKeysTask
5400             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5401              ReduceKeysTask<K,V> nextRight,
5402              BiFunction<? super K, ? super K, ? extends K> reducer) {
5403             super(p, b, i, f, t); this.nextRight = nextRight;
5404             this.reducer = reducer;
5405         }
getRawResult()5406         public final K getRawResult() { return result; }
compute()5407         public final void compute() {
5408             final BiFunction<? super K, ? super K, ? extends K> reducer;
5409             if ((reducer = this.reducer) != null) {
5410                 for (int i = baseIndex, f, h; batch > 0 &&
5411                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
5412                     addToPendingCount(1);
5413                     (rights = new ReduceKeysTask<K,V>
5414                      (this, batch >>>= 1, baseLimit = h, f, tab,
5415                       rights, reducer)).fork();
5416                 }
5417                 K r = null;
5418                 for (Node<K,V> p; (p = advance()) != null; ) {
5419                     K u = p.key;
5420                     r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5421                 }
5422                 result = r;
5423                 CountedCompleter<?> c;
5424                 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5425                     @SuppressWarnings("unchecked")
5426                     ReduceKeysTask<K,V>
5427                         t = (ReduceKeysTask<K,V>)c,
5428                         s = t.rights;
5429                     while (s != null) {
5430                         K tr, sr;
5431                         if ((sr = s.result) != null)
5432                             t.result = (((tr = t.result) == null) ? sr :
5433                                         reducer.apply(tr, sr));
5434                         s = t.rights = s.nextRight;
5435                     }
5436                 }
5437             }
5438         }
5439     }
5440 
5441     @SuppressWarnings("serial")
5442     static final class ReduceValuesTask<K,V>
5443         extends BulkTask<K,V,V> {
5444         final BiFunction<? super V, ? super V, ? extends V> reducer;
5445         V result;
5446         ReduceValuesTask<K,V> rights, nextRight;
ReduceValuesTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, ReduceValuesTask<K,V> nextRight, BiFunction<? super V, ? super V, ? extends V> reducer)5447         ReduceValuesTask
5448             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5449              ReduceValuesTask<K,V> nextRight,
5450              BiFunction<? super V, ? super V, ? extends V> reducer) {
5451             super(p, b, i, f, t); this.nextRight = nextRight;
5452             this.reducer = reducer;
5453         }
getRawResult()5454         public final V getRawResult() { return result; }
compute()5455         public final void compute() {
5456             final BiFunction<? super V, ? super V, ? extends V> reducer;
5457             if ((reducer = this.reducer) != null) {
5458                 for (int i = baseIndex, f, h; batch > 0 &&
5459                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
5460                     addToPendingCount(1);
5461                     (rights = new ReduceValuesTask<K,V>
5462                      (this, batch >>>= 1, baseLimit = h, f, tab,
5463                       rights, reducer)).fork();
5464                 }
5465                 V r = null;
5466                 for (Node<K,V> p; (p = advance()) != null; ) {
5467                     V v = p.val;
5468                     r = (r == null) ? v : reducer.apply(r, v);
5469                 }
5470                 result = r;
5471                 CountedCompleter<?> c;
5472                 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5473                     @SuppressWarnings("unchecked")
5474                     ReduceValuesTask<K,V>
5475                         t = (ReduceValuesTask<K,V>)c,
5476                         s = t.rights;
5477                     while (s != null) {
5478                         V tr, sr;
5479                         if ((sr = s.result) != null)
5480                             t.result = (((tr = t.result) == null) ? sr :
5481                                         reducer.apply(tr, sr));
5482                         s = t.rights = s.nextRight;
5483                     }
5484                 }
5485             }
5486         }
5487     }
5488 
5489     @SuppressWarnings("serial")
5490     static final class ReduceEntriesTask<K,V>
5491         extends BulkTask<K,V,Map.Entry<K,V>> {
5492         final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5493         Map.Entry<K,V> result;
5494         ReduceEntriesTask<K,V> rights, nextRight;
ReduceEntriesTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, ReduceEntriesTask<K,V> nextRight, BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer)5495         ReduceEntriesTask
5496             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5497              ReduceEntriesTask<K,V> nextRight,
5498              BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5499             super(p, b, i, f, t); this.nextRight = nextRight;
5500             this.reducer = reducer;
5501         }
getRawResult()5502         public final Map.Entry<K,V> getRawResult() { return result; }
compute()5503         public final void compute() {
5504             final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5505             if ((reducer = this.reducer) != null) {
5506                 for (int i = baseIndex, f, h; batch > 0 &&
5507                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
5508                     addToPendingCount(1);
5509                     (rights = new ReduceEntriesTask<K,V>
5510                      (this, batch >>>= 1, baseLimit = h, f, tab,
5511                       rights, reducer)).fork();
5512                 }
5513                 Map.Entry<K,V> r = null;
5514                 for (Node<K,V> p; (p = advance()) != null; )
5515                     r = (r == null) ? p : reducer.apply(r, p);
5516                 result = r;
5517                 CountedCompleter<?> c;
5518                 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5519                     @SuppressWarnings("unchecked")
5520                     ReduceEntriesTask<K,V>
5521                         t = (ReduceEntriesTask<K,V>)c,
5522                         s = t.rights;
5523                     while (s != null) {
5524                         Map.Entry<K,V> tr, sr;
5525                         if ((sr = s.result) != null)
5526                             t.result = (((tr = t.result) == null) ? sr :
5527                                         reducer.apply(tr, sr));
5528                         s = t.rights = s.nextRight;
5529                     }
5530                 }
5531             }
5532         }
5533     }
5534 
5535     @SuppressWarnings("serial")
5536     static final class MapReduceKeysTask<K,V,U>
5537         extends BulkTask<K,V,U> {
5538         final Function<? super K, ? extends U> transformer;
5539         final BiFunction<? super U, ? super U, ? extends U> reducer;
5540         U result;
5541         MapReduceKeysTask<K,V,U> rights, nextRight;
MapReduceKeysTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, MapReduceKeysTask<K,V,U> nextRight, Function<? super K, ? extends U> transformer, BiFunction<? super U, ? super U, ? extends U> reducer)5542         MapReduceKeysTask
5543             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5544              MapReduceKeysTask<K,V,U> nextRight,
5545              Function<? super K, ? extends U> transformer,
5546              BiFunction<? super U, ? super U, ? extends U> reducer) {
5547             super(p, b, i, f, t); this.nextRight = nextRight;
5548             this.transformer = transformer;
5549             this.reducer = reducer;
5550         }
getRawResult()5551         public final U getRawResult() { return result; }
compute()5552         public final void compute() {
5553             final Function<? super K, ? extends U> transformer;
5554             final BiFunction<? super U, ? super U, ? extends U> reducer;
5555             if ((transformer = this.transformer) != null &&
5556                 (reducer = this.reducer) != null) {
5557                 for (int i = baseIndex, f, h; batch > 0 &&
5558                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
5559                     addToPendingCount(1);
5560                     (rights = new MapReduceKeysTask<K,V,U>
5561                      (this, batch >>>= 1, baseLimit = h, f, tab,
5562                       rights, transformer, reducer)).fork();
5563                 }
5564                 U r = null;
5565                 for (Node<K,V> p; (p = advance()) != null; ) {
5566                     U u;
5567                     if ((u = transformer.apply(p.key)) != null)
5568                         r = (r == null) ? u : reducer.apply(r, u);
5569                 }
5570                 result = r;
5571                 CountedCompleter<?> c;
5572                 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5573                     @SuppressWarnings("unchecked")
5574                     MapReduceKeysTask<K,V,U>
5575                         t = (MapReduceKeysTask<K,V,U>)c,
5576                         s = t.rights;
5577                     while (s != null) {
5578                         U tr, sr;
5579                         if ((sr = s.result) != null)
5580                             t.result = (((tr = t.result) == null) ? sr :
5581                                         reducer.apply(tr, sr));
5582                         s = t.rights = s.nextRight;
5583                     }
5584                 }
5585             }
5586         }
5587     }
5588 
5589     @SuppressWarnings("serial")
5590     static final class MapReduceValuesTask<K,V,U>
5591         extends BulkTask<K,V,U> {
5592         final Function<? super V, ? extends U> transformer;
5593         final BiFunction<? super U, ? super U, ? extends U> reducer;
5594         U result;
5595         MapReduceValuesTask<K,V,U> rights, nextRight;
MapReduceValuesTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, MapReduceValuesTask<K,V,U> nextRight, Function<? super V, ? extends U> transformer, BiFunction<? super U, ? super U, ? extends U> reducer)5596         MapReduceValuesTask
5597             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5598              MapReduceValuesTask<K,V,U> nextRight,
5599              Function<? super V, ? extends U> transformer,
5600              BiFunction<? super U, ? super U, ? extends U> reducer) {
5601             super(p, b, i, f, t); this.nextRight = nextRight;
5602             this.transformer = transformer;
5603             this.reducer = reducer;
5604         }
getRawResult()5605         public final U getRawResult() { return result; }
compute()5606         public final void compute() {
5607             final Function<? super V, ? extends U> transformer;
5608             final BiFunction<? super U, ? super U, ? extends U> reducer;
5609             if ((transformer = this.transformer) != null &&
5610                 (reducer = this.reducer) != null) {
5611                 for (int i = baseIndex, f, h; batch > 0 &&
5612                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
5613                     addToPendingCount(1);
5614                     (rights = new MapReduceValuesTask<K,V,U>
5615                      (this, batch >>>= 1, baseLimit = h, f, tab,
5616                       rights, transformer, reducer)).fork();
5617                 }
5618                 U r = null;
5619                 for (Node<K,V> p; (p = advance()) != null; ) {
5620                     U u;
5621                     if ((u = transformer.apply(p.val)) != null)
5622                         r = (r == null) ? u : reducer.apply(r, u);
5623                 }
5624                 result = r;
5625                 CountedCompleter<?> c;
5626                 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5627                     @SuppressWarnings("unchecked")
5628                     MapReduceValuesTask<K,V,U>
5629                         t = (MapReduceValuesTask<K,V,U>)c,
5630                         s = t.rights;
5631                     while (s != null) {
5632                         U tr, sr;
5633                         if ((sr = s.result) != null)
5634                             t.result = (((tr = t.result) == null) ? sr :
5635                                         reducer.apply(tr, sr));
5636                         s = t.rights = s.nextRight;
5637                     }
5638                 }
5639             }
5640         }
5641     }
5642 
5643     @SuppressWarnings("serial")
5644     static final class MapReduceEntriesTask<K,V,U>
5645         extends BulkTask<K,V,U> {
5646         final Function<Map.Entry<K,V>, ? extends U> transformer;
5647         final BiFunction<? super U, ? super U, ? extends U> reducer;
5648         U result;
5649         MapReduceEntriesTask<K,V,U> rights, nextRight;
MapReduceEntriesTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, MapReduceEntriesTask<K,V,U> nextRight, Function<Map.Entry<K,V>, ? extends U> transformer, BiFunction<? super U, ? super U, ? extends U> reducer)5650         MapReduceEntriesTask
5651             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5652              MapReduceEntriesTask<K,V,U> nextRight,
5653              Function<Map.Entry<K,V>, ? extends U> transformer,
5654              BiFunction<? super U, ? super U, ? extends U> reducer) {
5655             super(p, b, i, f, t); this.nextRight = nextRight;
5656             this.transformer = transformer;
5657             this.reducer = reducer;
5658         }
getRawResult()5659         public final U getRawResult() { return result; }
compute()5660         public final void compute() {
5661             final Function<Map.Entry<K,V>, ? extends U> transformer;
5662             final BiFunction<? super U, ? super U, ? extends U> reducer;
5663             if ((transformer = this.transformer) != null &&
5664                 (reducer = this.reducer) != null) {
5665                 for (int i = baseIndex, f, h; batch > 0 &&
5666                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
5667                     addToPendingCount(1);
5668                     (rights = new MapReduceEntriesTask<K,V,U>
5669                      (this, batch >>>= 1, baseLimit = h, f, tab,
5670                       rights, transformer, reducer)).fork();
5671                 }
5672                 U r = null;
5673                 for (Node<K,V> p; (p = advance()) != null; ) {
5674                     U u;
5675                     if ((u = transformer.apply(p)) != null)
5676                         r = (r == null) ? u : reducer.apply(r, u);
5677                 }
5678                 result = r;
5679                 CountedCompleter<?> c;
5680                 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5681                     @SuppressWarnings("unchecked")
5682                     MapReduceEntriesTask<K,V,U>
5683                         t = (MapReduceEntriesTask<K,V,U>)c,
5684                         s = t.rights;
5685                     while (s != null) {
5686                         U tr, sr;
5687                         if ((sr = s.result) != null)
5688                             t.result = (((tr = t.result) == null) ? sr :
5689                                         reducer.apply(tr, sr));
5690                         s = t.rights = s.nextRight;
5691                     }
5692                 }
5693             }
5694         }
5695     }
5696 
5697     @SuppressWarnings("serial")
5698     static final class MapReduceMappingsTask<K,V,U>
5699         extends BulkTask<K,V,U> {
5700         final BiFunction<? super K, ? super V, ? extends U> transformer;
5701         final BiFunction<? super U, ? super U, ? extends U> reducer;
5702         U result;
5703         MapReduceMappingsTask<K,V,U> rights, nextRight;
MapReduceMappingsTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, MapReduceMappingsTask<K,V,U> nextRight, BiFunction<? super K, ? super V, ? extends U> transformer, BiFunction<? super U, ? super U, ? extends U> reducer)5704         MapReduceMappingsTask
5705             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5706              MapReduceMappingsTask<K,V,U> nextRight,
5707              BiFunction<? super K, ? super V, ? extends U> transformer,
5708              BiFunction<? super U, ? super U, ? extends U> reducer) {
5709             super(p, b, i, f, t); this.nextRight = nextRight;
5710             this.transformer = transformer;
5711             this.reducer = reducer;
5712         }
getRawResult()5713         public final U getRawResult() { return result; }
compute()5714         public final void compute() {
5715             final BiFunction<? super K, ? super V, ? extends U> transformer;
5716             final BiFunction<? super U, ? super U, ? extends U> reducer;
5717             if ((transformer = this.transformer) != null &&
5718                 (reducer = this.reducer) != null) {
5719                 for (int i = baseIndex, f, h; batch > 0 &&
5720                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
5721                     addToPendingCount(1);
5722                     (rights = new MapReduceMappingsTask<K,V,U>
5723                      (this, batch >>>= 1, baseLimit = h, f, tab,
5724                       rights, transformer, reducer)).fork();
5725                 }
5726                 U r = null;
5727                 for (Node<K,V> p; (p = advance()) != null; ) {
5728                     U u;
5729                     if ((u = transformer.apply(p.key, p.val)) != null)
5730                         r = (r == null) ? u : reducer.apply(r, u);
5731                 }
5732                 result = r;
5733                 CountedCompleter<?> c;
5734                 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5735                     @SuppressWarnings("unchecked")
5736                     MapReduceMappingsTask<K,V,U>
5737                         t = (MapReduceMappingsTask<K,V,U>)c,
5738                         s = t.rights;
5739                     while (s != null) {
5740                         U tr, sr;
5741                         if ((sr = s.result) != null)
5742                             t.result = (((tr = t.result) == null) ? sr :
5743                                         reducer.apply(tr, sr));
5744                         s = t.rights = s.nextRight;
5745                     }
5746                 }
5747             }
5748         }
5749     }
5750 
5751     @SuppressWarnings("serial")
5752     static final class MapReduceKeysToDoubleTask<K,V>
5753         extends BulkTask<K,V,Double> {
5754         final ToDoubleFunction<? super K> transformer;
5755         final DoubleBinaryOperator reducer;
5756         final double basis;
5757         double result;
5758         MapReduceKeysToDoubleTask<K,V> rights, nextRight;
MapReduceKeysToDoubleTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, MapReduceKeysToDoubleTask<K,V> nextRight, ToDoubleFunction<? super K> transformer, double basis, DoubleBinaryOperator reducer)5759         MapReduceKeysToDoubleTask
5760             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5761              MapReduceKeysToDoubleTask<K,V> nextRight,
5762              ToDoubleFunction<? super K> transformer,
5763              double basis,
5764              DoubleBinaryOperator reducer) {
5765             super(p, b, i, f, t); this.nextRight = nextRight;
5766             this.transformer = transformer;
5767             this.basis = basis; this.reducer = reducer;
5768         }
getRawResult()5769         public final Double getRawResult() { return result; }
compute()5770         public final void compute() {
5771             final ToDoubleFunction<? super K> transformer;
5772             final DoubleBinaryOperator reducer;
5773             if ((transformer = this.transformer) != null &&
5774                 (reducer = this.reducer) != null) {
5775                 double r = this.basis;
5776                 for (int i = baseIndex, f, h; batch > 0 &&
5777                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
5778                     addToPendingCount(1);
5779                     (rights = new MapReduceKeysToDoubleTask<K,V>
5780                      (this, batch >>>= 1, baseLimit = h, f, tab,
5781                       rights, transformer, r, reducer)).fork();
5782                 }
5783                 for (Node<K,V> p; (p = advance()) != null; )
5784                     r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5785                 result = r;
5786                 CountedCompleter<?> c;
5787                 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5788                     @SuppressWarnings("unchecked")
5789                     MapReduceKeysToDoubleTask<K,V>
5790                         t = (MapReduceKeysToDoubleTask<K,V>)c,
5791                         s = t.rights;
5792                     while (s != null) {
5793                         t.result = reducer.applyAsDouble(t.result, s.result);
5794                         s = t.rights = s.nextRight;
5795                     }
5796                 }
5797             }
5798         }
5799     }
5800 
5801     @SuppressWarnings("serial")
5802     static final class MapReduceValuesToDoubleTask<K,V>
5803         extends BulkTask<K,V,Double> {
5804         final ToDoubleFunction<? super V> transformer;
5805         final DoubleBinaryOperator reducer;
5806         final double basis;
5807         double result;
5808         MapReduceValuesToDoubleTask<K,V> rights, nextRight;
MapReduceValuesToDoubleTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, MapReduceValuesToDoubleTask<K,V> nextRight, ToDoubleFunction<? super V> transformer, double basis, DoubleBinaryOperator reducer)5809         MapReduceValuesToDoubleTask
5810             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5811              MapReduceValuesToDoubleTask<K,V> nextRight,
5812              ToDoubleFunction<? super V> transformer,
5813              double basis,
5814              DoubleBinaryOperator reducer) {
5815             super(p, b, i, f, t); this.nextRight = nextRight;
5816             this.transformer = transformer;
5817             this.basis = basis; this.reducer = reducer;
5818         }
getRawResult()5819         public final Double getRawResult() { return result; }
compute()5820         public final void compute() {
5821             final ToDoubleFunction<? super V> transformer;
5822             final DoubleBinaryOperator reducer;
5823             if ((transformer = this.transformer) != null &&
5824                 (reducer = this.reducer) != null) {
5825                 double r = this.basis;
5826                 for (int i = baseIndex, f, h; batch > 0 &&
5827                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
5828                     addToPendingCount(1);
5829                     (rights = new MapReduceValuesToDoubleTask<K,V>
5830                      (this, batch >>>= 1, baseLimit = h, f, tab,
5831                       rights, transformer, r, reducer)).fork();
5832                 }
5833                 for (Node<K,V> p; (p = advance()) != null; )
5834                     r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5835                 result = r;
5836                 CountedCompleter<?> c;
5837                 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5838                     @SuppressWarnings("unchecked")
5839                     MapReduceValuesToDoubleTask<K,V>
5840                         t = (MapReduceValuesToDoubleTask<K,V>)c,
5841                         s = t.rights;
5842                     while (s != null) {
5843                         t.result = reducer.applyAsDouble(t.result, s.result);
5844                         s = t.rights = s.nextRight;
5845                     }
5846                 }
5847             }
5848         }
5849     }
5850 
5851     @SuppressWarnings("serial")
5852     static final class MapReduceEntriesToDoubleTask<K,V>
5853         extends BulkTask<K,V,Double> {
5854         final ToDoubleFunction<Map.Entry<K,V>> transformer;
5855         final DoubleBinaryOperator reducer;
5856         final double basis;
5857         double result;
5858         MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
MapReduceEntriesToDoubleTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, MapReduceEntriesToDoubleTask<K,V> nextRight, ToDoubleFunction<Map.Entry<K,V>> transformer, double basis, DoubleBinaryOperator reducer)5859         MapReduceEntriesToDoubleTask
5860             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5861              MapReduceEntriesToDoubleTask<K,V> nextRight,
5862              ToDoubleFunction<Map.Entry<K,V>> transformer,
5863              double basis,
5864              DoubleBinaryOperator reducer) {
5865             super(p, b, i, f, t); this.nextRight = nextRight;
5866             this.transformer = transformer;
5867             this.basis = basis; this.reducer = reducer;
5868         }
getRawResult()5869         public final Double getRawResult() { return result; }
compute()5870         public final void compute() {
5871             final ToDoubleFunction<Map.Entry<K,V>> transformer;
5872             final DoubleBinaryOperator reducer;
5873             if ((transformer = this.transformer) != null &&
5874                 (reducer = this.reducer) != null) {
5875                 double r = this.basis;
5876                 for (int i = baseIndex, f, h; batch > 0 &&
5877                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
5878                     addToPendingCount(1);
5879                     (rights = new MapReduceEntriesToDoubleTask<K,V>
5880                      (this, batch >>>= 1, baseLimit = h, f, tab,
5881                       rights, transformer, r, reducer)).fork();
5882                 }
5883                 for (Node<K,V> p; (p = advance()) != null; )
5884                     r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5885                 result = r;
5886                 CountedCompleter<?> c;
5887                 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5888                     @SuppressWarnings("unchecked")
5889                     MapReduceEntriesToDoubleTask<K,V>
5890                         t = (MapReduceEntriesToDoubleTask<K,V>)c,
5891                         s = t.rights;
5892                     while (s != null) {
5893                         t.result = reducer.applyAsDouble(t.result, s.result);
5894                         s = t.rights = s.nextRight;
5895                     }
5896                 }
5897             }
5898         }
5899     }
5900 
5901     @SuppressWarnings("serial")
5902     static final class MapReduceMappingsToDoubleTask<K,V>
5903         extends BulkTask<K,V,Double> {
5904         final ToDoubleBiFunction<? super K, ? super V> transformer;
5905         final DoubleBinaryOperator reducer;
5906         final double basis;
5907         double result;
5908         MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
MapReduceMappingsToDoubleTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, MapReduceMappingsToDoubleTask<K,V> nextRight, ToDoubleBiFunction<? super K, ? super V> transformer, double basis, DoubleBinaryOperator reducer)5909         MapReduceMappingsToDoubleTask
5910             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5911              MapReduceMappingsToDoubleTask<K,V> nextRight,
5912              ToDoubleBiFunction<? super K, ? super V> transformer,
5913              double basis,
5914              DoubleBinaryOperator reducer) {
5915             super(p, b, i, f, t); this.nextRight = nextRight;
5916             this.transformer = transformer;
5917             this.basis = basis; this.reducer = reducer;
5918         }
getRawResult()5919         public final Double getRawResult() { return result; }
compute()5920         public final void compute() {
5921             final ToDoubleBiFunction<? super K, ? super V> transformer;
5922             final DoubleBinaryOperator reducer;
5923             if ((transformer = this.transformer) != null &&
5924                 (reducer = this.reducer) != null) {
5925                 double r = this.basis;
5926                 for (int i = baseIndex, f, h; batch > 0 &&
5927                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
5928                     addToPendingCount(1);
5929                     (rights = new MapReduceMappingsToDoubleTask<K,V>
5930                      (this, batch >>>= 1, baseLimit = h, f, tab,
5931                       rights, transformer, r, reducer)).fork();
5932                 }
5933                 for (Node<K,V> p; (p = advance()) != null; )
5934                     r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5935                 result = r;
5936                 CountedCompleter<?> c;
5937                 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5938                     @SuppressWarnings("unchecked")
5939                     MapReduceMappingsToDoubleTask<K,V>
5940                         t = (MapReduceMappingsToDoubleTask<K,V>)c,
5941                         s = t.rights;
5942                     while (s != null) {
5943                         t.result = reducer.applyAsDouble(t.result, s.result);
5944                         s = t.rights = s.nextRight;
5945                     }
5946                 }
5947             }
5948         }
5949     }
5950 
5951     @SuppressWarnings("serial")
5952     static final class MapReduceKeysToLongTask<K,V>
5953         extends BulkTask<K,V,Long> {
5954         final ToLongFunction<? super K> transformer;
5955         final LongBinaryOperator reducer;
5956         final long basis;
5957         long result;
5958         MapReduceKeysToLongTask<K,V> rights, nextRight;
MapReduceKeysToLongTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, MapReduceKeysToLongTask<K,V> nextRight, ToLongFunction<? super K> transformer, long basis, LongBinaryOperator reducer)5959         MapReduceKeysToLongTask
5960             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5961              MapReduceKeysToLongTask<K,V> nextRight,
5962              ToLongFunction<? super K> transformer,
5963              long basis,
5964              LongBinaryOperator reducer) {
5965             super(p, b, i, f, t); this.nextRight = nextRight;
5966             this.transformer = transformer;
5967             this.basis = basis; this.reducer = reducer;
5968         }
getRawResult()5969         public final Long getRawResult() { return result; }
compute()5970         public final void compute() {
5971             final ToLongFunction<? super K> transformer;
5972             final LongBinaryOperator reducer;
5973             if ((transformer = this.transformer) != null &&
5974                 (reducer = this.reducer) != null) {
5975                 long r = this.basis;
5976                 for (int i = baseIndex, f, h; batch > 0 &&
5977                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
5978                     addToPendingCount(1);
5979                     (rights = new MapReduceKeysToLongTask<K,V>
5980                      (this, batch >>>= 1, baseLimit = h, f, tab,
5981                       rights, transformer, r, reducer)).fork();
5982                 }
5983                 for (Node<K,V> p; (p = advance()) != null; )
5984                     r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5985                 result = r;
5986                 CountedCompleter<?> c;
5987                 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5988                     @SuppressWarnings("unchecked")
5989                     MapReduceKeysToLongTask<K,V>
5990                         t = (MapReduceKeysToLongTask<K,V>)c,
5991                         s = t.rights;
5992                     while (s != null) {
5993                         t.result = reducer.applyAsLong(t.result, s.result);
5994                         s = t.rights = s.nextRight;
5995                     }
5996                 }
5997             }
5998         }
5999     }
6000 
6001     @SuppressWarnings("serial")
6002     static final class MapReduceValuesToLongTask<K,V>
6003         extends BulkTask<K,V,Long> {
6004         final ToLongFunction<? super V> transformer;
6005         final LongBinaryOperator reducer;
6006         final long basis;
6007         long result;
6008         MapReduceValuesToLongTask<K,V> rights, nextRight;
MapReduceValuesToLongTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, MapReduceValuesToLongTask<K,V> nextRight, ToLongFunction<? super V> transformer, long basis, LongBinaryOperator reducer)6009         MapReduceValuesToLongTask
6010             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6011              MapReduceValuesToLongTask<K,V> nextRight,
6012              ToLongFunction<? super V> transformer,
6013              long basis,
6014              LongBinaryOperator reducer) {
6015             super(p, b, i, f, t); this.nextRight = nextRight;
6016             this.transformer = transformer;
6017             this.basis = basis; this.reducer = reducer;
6018         }
getRawResult()6019         public final Long getRawResult() { return result; }
compute()6020         public final void compute() {
6021             final ToLongFunction<? super V> transformer;
6022             final LongBinaryOperator reducer;
6023             if ((transformer = this.transformer) != null &&
6024                 (reducer = this.reducer) != null) {
6025                 long r = this.basis;
6026                 for (int i = baseIndex, f, h; batch > 0 &&
6027                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
6028                     addToPendingCount(1);
6029                     (rights = new MapReduceValuesToLongTask<K,V>
6030                      (this, batch >>>= 1, baseLimit = h, f, tab,
6031                       rights, transformer, r, reducer)).fork();
6032                 }
6033                 for (Node<K,V> p; (p = advance()) != null; )
6034                     r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
6035                 result = r;
6036                 CountedCompleter<?> c;
6037                 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6038                     @SuppressWarnings("unchecked")
6039                     MapReduceValuesToLongTask<K,V>
6040                         t = (MapReduceValuesToLongTask<K,V>)c,
6041                         s = t.rights;
6042                     while (s != null) {
6043                         t.result = reducer.applyAsLong(t.result, s.result);
6044                         s = t.rights = s.nextRight;
6045                     }
6046                 }
6047             }
6048         }
6049     }
6050 
6051     @SuppressWarnings("serial")
6052     static final class MapReduceEntriesToLongTask<K,V>
6053         extends BulkTask<K,V,Long> {
6054         final ToLongFunction<Map.Entry<K,V>> transformer;
6055         final LongBinaryOperator reducer;
6056         final long basis;
6057         long result;
6058         MapReduceEntriesToLongTask<K,V> rights, nextRight;
MapReduceEntriesToLongTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, MapReduceEntriesToLongTask<K,V> nextRight, ToLongFunction<Map.Entry<K,V>> transformer, long basis, LongBinaryOperator reducer)6059         MapReduceEntriesToLongTask
6060             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6061              MapReduceEntriesToLongTask<K,V> nextRight,
6062              ToLongFunction<Map.Entry<K,V>> transformer,
6063              long basis,
6064              LongBinaryOperator reducer) {
6065             super(p, b, i, f, t); this.nextRight = nextRight;
6066             this.transformer = transformer;
6067             this.basis = basis; this.reducer = reducer;
6068         }
getRawResult()6069         public final Long getRawResult() { return result; }
compute()6070         public final void compute() {
6071             final ToLongFunction<Map.Entry<K,V>> transformer;
6072             final LongBinaryOperator reducer;
6073             if ((transformer = this.transformer) != null &&
6074                 (reducer = this.reducer) != null) {
6075                 long r = this.basis;
6076                 for (int i = baseIndex, f, h; batch > 0 &&
6077                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
6078                     addToPendingCount(1);
6079                     (rights = new MapReduceEntriesToLongTask<K,V>
6080                      (this, batch >>>= 1, baseLimit = h, f, tab,
6081                       rights, transformer, r, reducer)).fork();
6082                 }
6083                 for (Node<K,V> p; (p = advance()) != null; )
6084                     r = reducer.applyAsLong(r, transformer.applyAsLong(p));
6085                 result = r;
6086                 CountedCompleter<?> c;
6087                 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6088                     @SuppressWarnings("unchecked")
6089                     MapReduceEntriesToLongTask<K,V>
6090                         t = (MapReduceEntriesToLongTask<K,V>)c,
6091                         s = t.rights;
6092                     while (s != null) {
6093                         t.result = reducer.applyAsLong(t.result, s.result);
6094                         s = t.rights = s.nextRight;
6095                     }
6096                 }
6097             }
6098         }
6099     }
6100 
6101     @SuppressWarnings("serial")
6102     static final class MapReduceMappingsToLongTask<K,V>
6103         extends BulkTask<K,V,Long> {
6104         final ToLongBiFunction<? super K, ? super V> transformer;
6105         final LongBinaryOperator reducer;
6106         final long basis;
6107         long result;
6108         MapReduceMappingsToLongTask<K,V> rights, nextRight;
MapReduceMappingsToLongTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, MapReduceMappingsToLongTask<K,V> nextRight, ToLongBiFunction<? super K, ? super V> transformer, long basis, LongBinaryOperator reducer)6109         MapReduceMappingsToLongTask
6110             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6111              MapReduceMappingsToLongTask<K,V> nextRight,
6112              ToLongBiFunction<? super K, ? super V> transformer,
6113              long basis,
6114              LongBinaryOperator reducer) {
6115             super(p, b, i, f, t); this.nextRight = nextRight;
6116             this.transformer = transformer;
6117             this.basis = basis; this.reducer = reducer;
6118         }
getRawResult()6119         public final Long getRawResult() { return result; }
compute()6120         public final void compute() {
6121             final ToLongBiFunction<? super K, ? super V> transformer;
6122             final LongBinaryOperator reducer;
6123             if ((transformer = this.transformer) != null &&
6124                 (reducer = this.reducer) != null) {
6125                 long r = this.basis;
6126                 for (int i = baseIndex, f, h; batch > 0 &&
6127                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
6128                     addToPendingCount(1);
6129                     (rights = new MapReduceMappingsToLongTask<K,V>
6130                      (this, batch >>>= 1, baseLimit = h, f, tab,
6131                       rights, transformer, r, reducer)).fork();
6132                 }
6133                 for (Node<K,V> p; (p = advance()) != null; )
6134                     r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
6135                 result = r;
6136                 CountedCompleter<?> c;
6137                 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6138                     @SuppressWarnings("unchecked")
6139                     MapReduceMappingsToLongTask<K,V>
6140                         t = (MapReduceMappingsToLongTask<K,V>)c,
6141                         s = t.rights;
6142                     while (s != null) {
6143                         t.result = reducer.applyAsLong(t.result, s.result);
6144                         s = t.rights = s.nextRight;
6145                     }
6146                 }
6147             }
6148         }
6149     }
6150 
6151     @SuppressWarnings("serial")
6152     static final class MapReduceKeysToIntTask<K,V>
6153         extends BulkTask<K,V,Integer> {
6154         final ToIntFunction<? super K> transformer;
6155         final IntBinaryOperator reducer;
6156         final int basis;
6157         int result;
6158         MapReduceKeysToIntTask<K,V> rights, nextRight;
MapReduceKeysToIntTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, MapReduceKeysToIntTask<K,V> nextRight, ToIntFunction<? super K> transformer, int basis, IntBinaryOperator reducer)6159         MapReduceKeysToIntTask
6160             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6161              MapReduceKeysToIntTask<K,V> nextRight,
6162              ToIntFunction<? super K> transformer,
6163              int basis,
6164              IntBinaryOperator reducer) {
6165             super(p, b, i, f, t); this.nextRight = nextRight;
6166             this.transformer = transformer;
6167             this.basis = basis; this.reducer = reducer;
6168         }
getRawResult()6169         public final Integer getRawResult() { return result; }
compute()6170         public final void compute() {
6171             final ToIntFunction<? super K> transformer;
6172             final IntBinaryOperator reducer;
6173             if ((transformer = this.transformer) != null &&
6174                 (reducer = this.reducer) != null) {
6175                 int r = this.basis;
6176                 for (int i = baseIndex, f, h; batch > 0 &&
6177                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
6178                     addToPendingCount(1);
6179                     (rights = new MapReduceKeysToIntTask<K,V>
6180                      (this, batch >>>= 1, baseLimit = h, f, tab,
6181                       rights, transformer, r, reducer)).fork();
6182                 }
6183                 for (Node<K,V> p; (p = advance()) != null; )
6184                     r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
6185                 result = r;
6186                 CountedCompleter<?> c;
6187                 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6188                     @SuppressWarnings("unchecked")
6189                     MapReduceKeysToIntTask<K,V>
6190                         t = (MapReduceKeysToIntTask<K,V>)c,
6191                         s = t.rights;
6192                     while (s != null) {
6193                         t.result = reducer.applyAsInt(t.result, s.result);
6194                         s = t.rights = s.nextRight;
6195                     }
6196                 }
6197             }
6198         }
6199     }
6200 
6201     @SuppressWarnings("serial")
6202     static final class MapReduceValuesToIntTask<K,V>
6203         extends BulkTask<K,V,Integer> {
6204         final ToIntFunction<? super V> transformer;
6205         final IntBinaryOperator reducer;
6206         final int basis;
6207         int result;
6208         MapReduceValuesToIntTask<K,V> rights, nextRight;
MapReduceValuesToIntTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, MapReduceValuesToIntTask<K,V> nextRight, ToIntFunction<? super V> transformer, int basis, IntBinaryOperator reducer)6209         MapReduceValuesToIntTask
6210             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6211              MapReduceValuesToIntTask<K,V> nextRight,
6212              ToIntFunction<? super V> transformer,
6213              int basis,
6214              IntBinaryOperator reducer) {
6215             super(p, b, i, f, t); this.nextRight = nextRight;
6216             this.transformer = transformer;
6217             this.basis = basis; this.reducer = reducer;
6218         }
getRawResult()6219         public final Integer getRawResult() { return result; }
compute()6220         public final void compute() {
6221             final ToIntFunction<? super V> transformer;
6222             final IntBinaryOperator reducer;
6223             if ((transformer = this.transformer) != null &&
6224                 (reducer = this.reducer) != null) {
6225                 int r = this.basis;
6226                 for (int i = baseIndex, f, h; batch > 0 &&
6227                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
6228                     addToPendingCount(1);
6229                     (rights = new MapReduceValuesToIntTask<K,V>
6230                      (this, batch >>>= 1, baseLimit = h, f, tab,
6231                       rights, transformer, r, reducer)).fork();
6232                 }
6233                 for (Node<K,V> p; (p = advance()) != null; )
6234                     r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
6235                 result = r;
6236                 CountedCompleter<?> c;
6237                 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6238                     @SuppressWarnings("unchecked")
6239                     MapReduceValuesToIntTask<K,V>
6240                         t = (MapReduceValuesToIntTask<K,V>)c,
6241                         s = t.rights;
6242                     while (s != null) {
6243                         t.result = reducer.applyAsInt(t.result, s.result);
6244                         s = t.rights = s.nextRight;
6245                     }
6246                 }
6247             }
6248         }
6249     }
6250 
6251     @SuppressWarnings("serial")
6252     static final class MapReduceEntriesToIntTask<K,V>
6253         extends BulkTask<K,V,Integer> {
6254         final ToIntFunction<Map.Entry<K,V>> transformer;
6255         final IntBinaryOperator reducer;
6256         final int basis;
6257         int result;
6258         MapReduceEntriesToIntTask<K,V> rights, nextRight;
MapReduceEntriesToIntTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, MapReduceEntriesToIntTask<K,V> nextRight, ToIntFunction<Map.Entry<K,V>> transformer, int basis, IntBinaryOperator reducer)6259         MapReduceEntriesToIntTask
6260             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6261              MapReduceEntriesToIntTask<K,V> nextRight,
6262              ToIntFunction<Map.Entry<K,V>> transformer,
6263              int basis,
6264              IntBinaryOperator reducer) {
6265             super(p, b, i, f, t); this.nextRight = nextRight;
6266             this.transformer = transformer;
6267             this.basis = basis; this.reducer = reducer;
6268         }
getRawResult()6269         public final Integer getRawResult() { return result; }
compute()6270         public final void compute() {
6271             final ToIntFunction<Map.Entry<K,V>> transformer;
6272             final IntBinaryOperator reducer;
6273             if ((transformer = this.transformer) != null &&
6274                 (reducer = this.reducer) != null) {
6275                 int r = this.basis;
6276                 for (int i = baseIndex, f, h; batch > 0 &&
6277                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
6278                     addToPendingCount(1);
6279                     (rights = new MapReduceEntriesToIntTask<K,V>
6280                      (this, batch >>>= 1, baseLimit = h, f, tab,
6281                       rights, transformer, r, reducer)).fork();
6282                 }
6283                 for (Node<K,V> p; (p = advance()) != null; )
6284                     r = reducer.applyAsInt(r, transformer.applyAsInt(p));
6285                 result = r;
6286                 CountedCompleter<?> c;
6287                 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6288                     @SuppressWarnings("unchecked")
6289                     MapReduceEntriesToIntTask<K,V>
6290                         t = (MapReduceEntriesToIntTask<K,V>)c,
6291                         s = t.rights;
6292                     while (s != null) {
6293                         t.result = reducer.applyAsInt(t.result, s.result);
6294                         s = t.rights = s.nextRight;
6295                     }
6296                 }
6297             }
6298         }
6299     }
6300 
6301     @SuppressWarnings("serial")
6302     static final class MapReduceMappingsToIntTask<K,V>
6303         extends BulkTask<K,V,Integer> {
6304         final ToIntBiFunction<? super K, ? super V> transformer;
6305         final IntBinaryOperator reducer;
6306         final int basis;
6307         int result;
6308         MapReduceMappingsToIntTask<K,V> rights, nextRight;
MapReduceMappingsToIntTask(BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t, MapReduceMappingsToIntTask<K,V> nextRight, ToIntBiFunction<? super K, ? super V> transformer, int basis, IntBinaryOperator reducer)6309         MapReduceMappingsToIntTask
6310             (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6311              MapReduceMappingsToIntTask<K,V> nextRight,
6312              ToIntBiFunction<? super K, ? super V> transformer,
6313              int basis,
6314              IntBinaryOperator reducer) {
6315             super(p, b, i, f, t); this.nextRight = nextRight;
6316             this.transformer = transformer;
6317             this.basis = basis; this.reducer = reducer;
6318         }
getRawResult()6319         public final Integer getRawResult() { return result; }
compute()6320         public final void compute() {
6321             final ToIntBiFunction<? super K, ? super V> transformer;
6322             final IntBinaryOperator reducer;
6323             if ((transformer = this.transformer) != null &&
6324                 (reducer = this.reducer) != null) {
6325                 int r = this.basis;
6326                 for (int i = baseIndex, f, h; batch > 0 &&
6327                          (h = ((f = baseLimit) + i) >>> 1) > i;) {
6328                     addToPendingCount(1);
6329                     (rights = new MapReduceMappingsToIntTask<K,V>
6330                      (this, batch >>>= 1, baseLimit = h, f, tab,
6331                       rights, transformer, r, reducer)).fork();
6332                 }
6333                 for (Node<K,V> p; (p = advance()) != null; )
6334                     r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6335                 result = r;
6336                 CountedCompleter<?> c;
6337                 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6338                     @SuppressWarnings("unchecked")
6339                     MapReduceMappingsToIntTask<K,V>
6340                         t = (MapReduceMappingsToIntTask<K,V>)c,
6341                         s = t.rights;
6342                     while (s != null) {
6343                         t.result = reducer.applyAsInt(t.result, s.result);
6344                         s = t.rights = s.nextRight;
6345                     }
6346                 }
6347             }
6348         }
6349     }
6350 
6351     // Unsafe mechanics
6352     private static final Unsafe U = Unsafe.getUnsafe();
6353     private static final long SIZECTL;
6354     private static final long TRANSFERINDEX;
6355     private static final long BASECOUNT;
6356     private static final long CELLSBUSY;
6357     private static final long CELLVALUE;
6358     private static final int ABASE;
6359     private static final int ASHIFT;
6360 
6361     static {
6362         SIZECTL = U.objectFieldOffset
6363             (ConcurrentHashMap.class, "sizeCtl");
6364         TRANSFERINDEX = U.objectFieldOffset
6365             (ConcurrentHashMap.class, "transferIndex");
6366         BASECOUNT = U.objectFieldOffset
6367             (ConcurrentHashMap.class, "baseCount");
6368         CELLSBUSY = U.objectFieldOffset
6369             (ConcurrentHashMap.class, "cellsBusy");
6370 
6371         CELLVALUE = U.objectFieldOffset
6372             (CounterCell.class, "value");
6373 
6374         ABASE = U.arrayBaseOffset(Node[].class);
6375         int scale = U.arrayIndexScale(Node[].class);
6376         if ((scale & (scale - 1)) != 0)
6377             throw new ExceptionInInitializerError("array index scale not a power of two");
6378         ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6379 
6380         // Reduce the risk of rare disastrous classloading in first call to
6381         // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
6382         Class<?> ensureLoaded = LockSupport.class;
6383 
6384         // Eager class load observed to help JIT during startup
6385         ensureLoaded = ReservationNode.class;
6386     }
6387 }
6388