1 /* 2 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 3 * 4 * This code is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License version 2 only, as 6 * published by the Free Software Foundation. Oracle designates this 7 * particular file as subject to the "Classpath" exception as provided 8 * by Oracle in the LICENSE file that accompanied this code. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 */ 24 25 /* 26 * This file is available under and governed by the GNU General Public 27 * License version 2 only, as published by the Free Software Foundation. 28 * However, the following notice accompanied the original version of this 29 * file: 30 * 31 * Written by Doug Lea with assistance from members of JCP JSR-166 32 * Expert Group and released to the public domain, as explained at 33 * http://creativecommons.org/publicdomain/zero/1.0/ 34 */ 35 36 package java.util.concurrent.locks; 37 38 import java.lang.invoke.MethodHandles; 39 import java.lang.invoke.VarHandle; 40 import java.util.ArrayList; 41 import java.util.Collection; 42 import java.util.Date; 43 import java.util.concurrent.TimeUnit; 44 45 /** 46 * Provides a framework for implementing blocking locks and related 47 * synchronizers (semaphores, events, etc) that rely on 48 * first-in-first-out (FIFO) wait queues. This class is designed to 49 * be a useful basis for most kinds of synchronizers that rely on a 50 * single atomic {@code int} value to represent state. Subclasses 51 * must define the protected methods that change this state, and which 52 * define what that state means in terms of this object being acquired 53 * or released. Given these, the other methods in this class carry 54 * out all queuing and blocking mechanics. Subclasses can maintain 55 * other state fields, but only the atomically updated {@code int} 56 * value manipulated using methods {@link #getState}, {@link 57 * #setState} and {@link #compareAndSetState} is tracked with respect 58 * to synchronization. 59 * 60 * <p>Subclasses should be defined as non-public internal helper 61 * classes that are used to implement the synchronization properties 62 * of their enclosing class. Class 63 * {@code AbstractQueuedSynchronizer} does not implement any 64 * synchronization interface. Instead it defines methods such as 65 * {@link #acquireInterruptibly} that can be invoked as 66 * appropriate by concrete locks and related synchronizers to 67 * implement their public methods. 68 * 69 * <p>This class supports either or both a default <em>exclusive</em> 70 * mode and a <em>shared</em> mode. When acquired in exclusive mode, 71 * attempted acquires by other threads cannot succeed. Shared mode 72 * acquires by multiple threads may (but need not) succeed. This class 73 * does not "understand" these differences except in the 74 * mechanical sense that when a shared mode acquire succeeds, the next 75 * waiting thread (if one exists) must also determine whether it can 76 * acquire as well. Threads waiting in the different modes share the 77 * same FIFO queue. Usually, implementation subclasses support only 78 * one of these modes, but both can come into play for example in a 79 * {@link ReadWriteLock}. Subclasses that support only exclusive or 80 * only shared modes need not define the methods supporting the unused mode. 81 * 82 * <p>This class defines a nested {@link ConditionObject} class that 83 * can be used as a {@link Condition} implementation by subclasses 84 * supporting exclusive mode for which method {@link 85 * #isHeldExclusively} reports whether synchronization is exclusively 86 * held with respect to the current thread, method {@link #release} 87 * invoked with the current {@link #getState} value fully releases 88 * this object, and {@link #acquire}, given this saved state value, 89 * eventually restores this object to its previous acquired state. No 90 * {@code AbstractQueuedSynchronizer} method otherwise creates such a 91 * condition, so if this constraint cannot be met, do not use it. The 92 * behavior of {@link ConditionObject} depends of course on the 93 * semantics of its synchronizer implementation. 94 * 95 * <p>This class provides inspection, instrumentation, and monitoring 96 * methods for the internal queue, as well as similar methods for 97 * condition objects. These can be exported as desired into classes 98 * using an {@code AbstractQueuedSynchronizer} for their 99 * synchronization mechanics. 100 * 101 * <p>Serialization of this class stores only the underlying atomic 102 * integer maintaining state, so deserialized objects have empty 103 * thread queues. Typical subclasses requiring serializability will 104 * define a {@code readObject} method that restores this to a known 105 * initial state upon deserialization. 106 * 107 * <h3>Usage</h3> 108 * 109 * <p>To use this class as the basis of a synchronizer, redefine the 110 * following methods, as applicable, by inspecting and/or modifying 111 * the synchronization state using {@link #getState}, {@link 112 * #setState} and/or {@link #compareAndSetState}: 113 * 114 * <ul> 115 * <li>{@link #tryAcquire} 116 * <li>{@link #tryRelease} 117 * <li>{@link #tryAcquireShared} 118 * <li>{@link #tryReleaseShared} 119 * <li>{@link #isHeldExclusively} 120 * </ul> 121 * 122 * Each of these methods by default throws {@link 123 * UnsupportedOperationException}. Implementations of these methods 124 * must be internally thread-safe, and should in general be short and 125 * not block. Defining these methods is the <em>only</em> supported 126 * means of using this class. All other methods are declared 127 * {@code final} because they cannot be independently varied. 128 * 129 * <p>You may also find the inherited methods from {@link 130 * AbstractOwnableSynchronizer} useful to keep track of the thread 131 * owning an exclusive synchronizer. You are encouraged to use them 132 * -- this enables monitoring and diagnostic tools to assist users in 133 * determining which threads hold locks. 134 * 135 * <p>Even though this class is based on an internal FIFO queue, it 136 * does not automatically enforce FIFO acquisition policies. The core 137 * of exclusive synchronization takes the form: 138 * 139 * <pre> 140 * Acquire: 141 * while (!tryAcquire(arg)) { 142 * <em>enqueue thread if it is not already queued</em>; 143 * <em>possibly block current thread</em>; 144 * } 145 * 146 * Release: 147 * if (tryRelease(arg)) 148 * <em>unblock the first queued thread</em>; 149 * </pre> 150 * 151 * (Shared mode is similar but may involve cascading signals.) 152 * 153 * <p id="barging">Because checks in acquire are invoked before 154 * enqueuing, a newly acquiring thread may <em>barge</em> ahead of 155 * others that are blocked and queued. However, you can, if desired, 156 * define {@code tryAcquire} and/or {@code tryAcquireShared} to 157 * disable barging by internally invoking one or more of the inspection 158 * methods, thereby providing a <em>fair</em> FIFO acquisition order. 159 * In particular, most fair synchronizers can define {@code tryAcquire} 160 * to return {@code false} if {@link #hasQueuedPredecessors} (a method 161 * specifically designed to be used by fair synchronizers) returns 162 * {@code true}. Other variations are possible. 163 * 164 * <p>Throughput and scalability are generally highest for the 165 * default barging (also known as <em>greedy</em>, 166 * <em>renouncement</em>, and <em>convoy-avoidance</em>) strategy. 167 * While this is not guaranteed to be fair or starvation-free, earlier 168 * queued threads are allowed to recontend before later queued 169 * threads, and each recontention has an unbiased chance to succeed 170 * against incoming threads. Also, while acquires do not 171 * "spin" in the usual sense, they may perform multiple 172 * invocations of {@code tryAcquire} interspersed with other 173 * computations before blocking. This gives most of the benefits of 174 * spins when exclusive synchronization is only briefly held, without 175 * most of the liabilities when it isn't. If so desired, you can 176 * augment this by preceding calls to acquire methods with 177 * "fast-path" checks, possibly prechecking {@link #hasContended} 178 * and/or {@link #hasQueuedThreads} to only do so if the synchronizer 179 * is likely not to be contended. 180 * 181 * <p>This class provides an efficient and scalable basis for 182 * synchronization in part by specializing its range of use to 183 * synchronizers that can rely on {@code int} state, acquire, and 184 * release parameters, and an internal FIFO wait queue. When this does 185 * not suffice, you can build synchronizers from a lower level using 186 * {@link java.util.concurrent.atomic atomic} classes, your own custom 187 * {@link java.util.Queue} classes, and {@link LockSupport} blocking 188 * support. 189 * 190 * <h3>Usage Examples</h3> 191 * 192 * <p>Here is a non-reentrant mutual exclusion lock class that uses 193 * the value zero to represent the unlocked state, and one to 194 * represent the locked state. While a non-reentrant lock 195 * does not strictly require recording of the current owner 196 * thread, this class does so anyway to make usage easier to monitor. 197 * It also supports conditions and exposes some instrumentation methods: 198 * 199 * <pre> {@code 200 * class Mutex implements Lock, java.io.Serializable { 201 * 202 * // Our internal helper class 203 * private static class Sync extends AbstractQueuedSynchronizer { 204 * // Acquires the lock if state is zero 205 * public boolean tryAcquire(int acquires) { 206 * assert acquires == 1; // Otherwise unused 207 * if (compareAndSetState(0, 1)) { 208 * setExclusiveOwnerThread(Thread.currentThread()); 209 * return true; 210 * } 211 * return false; 212 * } 213 * 214 * // Releases the lock by setting state to zero 215 * protected boolean tryRelease(int releases) { 216 * assert releases == 1; // Otherwise unused 217 * if (!isHeldExclusively()) 218 * throw new IllegalMonitorStateException(); 219 * setExclusiveOwnerThread(null); 220 * setState(0); 221 * return true; 222 * } 223 * 224 * // Reports whether in locked state 225 * public boolean isLocked() { 226 * return getState() != 0; 227 * } 228 * 229 * public boolean isHeldExclusively() { 230 * // a data race, but safe due to out-of-thin-air guarantees 231 * return getExclusiveOwnerThread() == Thread.currentThread(); 232 * } 233 * 234 * // Provides a Condition 235 * public Condition newCondition() { 236 * return new ConditionObject(); 237 * } 238 * 239 * // Deserializes properly 240 * private void readObject(ObjectInputStream s) 241 * throws IOException, ClassNotFoundException { 242 * s.defaultReadObject(); 243 * setState(0); // reset to unlocked state 244 * } 245 * } 246 * 247 * // The sync object does all the hard work. We just forward to it. 248 * private final Sync sync = new Sync(); 249 * 250 * public void lock() { sync.acquire(1); } 251 * public boolean tryLock() { return sync.tryAcquire(1); } 252 * public void unlock() { sync.release(1); } 253 * public Condition newCondition() { return sync.newCondition(); } 254 * public boolean isLocked() { return sync.isLocked(); } 255 * public boolean isHeldByCurrentThread() { 256 * return sync.isHeldExclusively(); 257 * } 258 * public boolean hasQueuedThreads() { 259 * return sync.hasQueuedThreads(); 260 * } 261 * public void lockInterruptibly() throws InterruptedException { 262 * sync.acquireInterruptibly(1); 263 * } 264 * public boolean tryLock(long timeout, TimeUnit unit) 265 * throws InterruptedException { 266 * return sync.tryAcquireNanos(1, unit.toNanos(timeout)); 267 * } 268 * }}</pre> 269 * 270 * <p>Here is a latch class that is like a 271 * {@link java.util.concurrent.CountDownLatch CountDownLatch} 272 * except that it only requires a single {@code signal} to 273 * fire. Because a latch is non-exclusive, it uses the {@code shared} 274 * acquire and release methods. 275 * 276 * <pre> {@code 277 * class BooleanLatch { 278 * 279 * private static class Sync extends AbstractQueuedSynchronizer { 280 * boolean isSignalled() { return getState() != 0; } 281 * 282 * protected int tryAcquireShared(int ignore) { 283 * return isSignalled() ? 1 : -1; 284 * } 285 * 286 * protected boolean tryReleaseShared(int ignore) { 287 * setState(1); 288 * return true; 289 * } 290 * } 291 * 292 * private final Sync sync = new Sync(); 293 * public boolean isSignalled() { return sync.isSignalled(); } 294 * public void signal() { sync.releaseShared(1); } 295 * public void await() throws InterruptedException { 296 * sync.acquireSharedInterruptibly(1); 297 * } 298 * }}</pre> 299 * 300 * @since 1.5 301 * @author Doug Lea 302 */ 303 public abstract class AbstractQueuedSynchronizer 304 extends AbstractOwnableSynchronizer 305 implements java.io.Serializable { 306 307 private static final long serialVersionUID = 7373984972572414691L; 308 309 /** 310 * Creates a new {@code AbstractQueuedSynchronizer} instance 311 * with initial synchronization state of zero. 312 */ AbstractQueuedSynchronizer()313 protected AbstractQueuedSynchronizer() { } 314 315 /** 316 * Wait queue node class. 317 * 318 * <p>The wait queue is a variant of a "CLH" (Craig, Landin, and 319 * Hagersten) lock queue. CLH locks are normally used for 320 * spinlocks. We instead use them for blocking synchronizers, but 321 * use the same basic tactic of holding some of the control 322 * information about a thread in the predecessor of its node. A 323 * "status" field in each node keeps track of whether a thread 324 * should block. A node is signalled when its predecessor 325 * releases. Each node of the queue otherwise serves as a 326 * specific-notification-style monitor holding a single waiting 327 * thread. The status field does NOT control whether threads are 328 * granted locks etc though. A thread may try to acquire if it is 329 * first in the queue. But being first does not guarantee success; 330 * it only gives the right to contend. So the currently released 331 * contender thread may need to rewait. 332 * 333 * <p>To enqueue into a CLH lock, you atomically splice it in as new 334 * tail. To dequeue, you just set the head field. 335 * <pre> 336 * +------+ prev +-----+ +-----+ 337 * head | | <---- | | <---- | | tail 338 * +------+ +-----+ +-----+ 339 * </pre> 340 * 341 * <p>Insertion into a CLH queue requires only a single atomic 342 * operation on "tail", so there is a simple atomic point of 343 * demarcation from unqueued to queued. Similarly, dequeuing 344 * involves only updating the "head". However, it takes a bit 345 * more work for nodes to determine who their successors are, 346 * in part to deal with possible cancellation due to timeouts 347 * and interrupts. 348 * 349 * <p>The "prev" links (not used in original CLH locks), are mainly 350 * needed to handle cancellation. If a node is cancelled, its 351 * successor is (normally) relinked to a non-cancelled 352 * predecessor. For explanation of similar mechanics in the case 353 * of spin locks, see the papers by Scott and Scherer at 354 * http://www.cs.rochester.edu/u/scott/synchronization/ 355 * 356 * <p>We also use "next" links to implement blocking mechanics. 357 * The thread id for each node is kept in its own node, so a 358 * predecessor signals the next node to wake up by traversing 359 * next link to determine which thread it is. Determination of 360 * successor must avoid races with newly queued nodes to set 361 * the "next" fields of their predecessors. This is solved 362 * when necessary by checking backwards from the atomically 363 * updated "tail" when a node's successor appears to be null. 364 * (Or, said differently, the next-links are an optimization 365 * so that we don't usually need a backward scan.) 366 * 367 * <p>Cancellation introduces some conservatism to the basic 368 * algorithms. Since we must poll for cancellation of other 369 * nodes, we can miss noticing whether a cancelled node is 370 * ahead or behind us. This is dealt with by always unparking 371 * successors upon cancellation, allowing them to stabilize on 372 * a new predecessor, unless we can identify an uncancelled 373 * predecessor who will carry this responsibility. 374 * 375 * <p>CLH queues need a dummy header node to get started. But 376 * we don't create them on construction, because it would be wasted 377 * effort if there is never contention. Instead, the node 378 * is constructed and head and tail pointers are set upon first 379 * contention. 380 * 381 * <p>Threads waiting on Conditions use the same nodes, but 382 * use an additional link. Conditions only need to link nodes 383 * in simple (non-concurrent) linked queues because they are 384 * only accessed when exclusively held. Upon await, a node is 385 * inserted into a condition queue. Upon signal, the node is 386 * transferred to the main queue. A special value of status 387 * field is used to mark which queue a node is on. 388 * 389 * <p>Thanks go to Dave Dice, Mark Moir, Victor Luchangco, Bill 390 * Scherer and Michael Scott, along with members of JSR-166 391 * expert group, for helpful ideas, discussions, and critiques 392 * on the design of this class. 393 */ 394 static final class Node { 395 /** Marker to indicate a node is waiting in shared mode */ 396 static final Node SHARED = new Node(); 397 /** Marker to indicate a node is waiting in exclusive mode */ 398 static final Node EXCLUSIVE = null; 399 400 /** waitStatus value to indicate thread has cancelled. */ 401 static final int CANCELLED = 1; 402 /** waitStatus value to indicate successor's thread needs unparking. */ 403 static final int SIGNAL = -1; 404 /** waitStatus value to indicate thread is waiting on condition. */ 405 static final int CONDITION = -2; 406 /** 407 * waitStatus value to indicate the next acquireShared should 408 * unconditionally propagate. 409 */ 410 static final int PROPAGATE = -3; 411 412 /** 413 * Status field, taking on only the values: 414 * SIGNAL: The successor of this node is (or will soon be) 415 * blocked (via park), so the current node must 416 * unpark its successor when it releases or 417 * cancels. To avoid races, acquire methods must 418 * first indicate they need a signal, 419 * then retry the atomic acquire, and then, 420 * on failure, block. 421 * CANCELLED: This node is cancelled due to timeout or interrupt. 422 * Nodes never leave this state. In particular, 423 * a thread with cancelled node never again blocks. 424 * CONDITION: This node is currently on a condition queue. 425 * It will not be used as a sync queue node 426 * until transferred, at which time the status 427 * will be set to 0. (Use of this value here has 428 * nothing to do with the other uses of the 429 * field, but simplifies mechanics.) 430 * PROPAGATE: A releaseShared should be propagated to other 431 * nodes. This is set (for head node only) in 432 * doReleaseShared to ensure propagation 433 * continues, even if other operations have 434 * since intervened. 435 * 0: None of the above 436 * 437 * The values are arranged numerically to simplify use. 438 * Non-negative values mean that a node doesn't need to 439 * signal. So, most code doesn't need to check for particular 440 * values, just for sign. 441 * 442 * The field is initialized to 0 for normal sync nodes, and 443 * CONDITION for condition nodes. It is modified using CAS 444 * (or when possible, unconditional volatile writes). 445 */ 446 volatile int waitStatus; 447 448 /** 449 * Link to predecessor node that current node/thread relies on 450 * for checking waitStatus. Assigned during enqueuing, and nulled 451 * out (for sake of GC) only upon dequeuing. Also, upon 452 * cancellation of a predecessor, we short-circuit while 453 * finding a non-cancelled one, which will always exist 454 * because the head node is never cancelled: A node becomes 455 * head only as a result of successful acquire. A 456 * cancelled thread never succeeds in acquiring, and a thread only 457 * cancels itself, not any other node. 458 */ 459 volatile Node prev; 460 461 /** 462 * Link to the successor node that the current node/thread 463 * unparks upon release. Assigned during enqueuing, adjusted 464 * when bypassing cancelled predecessors, and nulled out (for 465 * sake of GC) when dequeued. The enq operation does not 466 * assign next field of a predecessor until after attachment, 467 * so seeing a null next field does not necessarily mean that 468 * node is at end of queue. However, if a next field appears 469 * to be null, we can scan prev's from the tail to 470 * double-check. The next field of cancelled nodes is set to 471 * point to the node itself instead of null, to make life 472 * easier for isOnSyncQueue. 473 */ 474 volatile Node next; 475 476 /** 477 * The thread that enqueued this node. Initialized on 478 * construction and nulled out after use. 479 */ 480 volatile Thread thread; 481 482 /** 483 * Link to next node waiting on condition, or the special 484 * value SHARED. Because condition queues are accessed only 485 * when holding in exclusive mode, we just need a simple 486 * linked queue to hold nodes while they are waiting on 487 * conditions. They are then transferred to the queue to 488 * re-acquire. And because conditions can only be exclusive, 489 * we save a field by using special value to indicate shared 490 * mode. 491 */ 492 Node nextWaiter; 493 494 /** 495 * Returns true if node is waiting in shared mode. 496 */ isShared()497 final boolean isShared() { 498 return nextWaiter == SHARED; 499 } 500 501 /** 502 * Returns previous node, or throws NullPointerException if null. 503 * Use when predecessor cannot be null. The null check could 504 * be elided, but is present to help the VM. 505 * 506 * @return the predecessor of this node 507 */ predecessor()508 final Node predecessor() { 509 Node p = prev; 510 if (p == null) 511 throw new NullPointerException(); 512 else 513 return p; 514 } 515 516 /** Establishes initial head or SHARED marker. */ Node()517 Node() {} 518 519 /** Constructor used by addWaiter. */ Node(Node nextWaiter)520 Node(Node nextWaiter) { 521 this.nextWaiter = nextWaiter; 522 THREAD.set(this, Thread.currentThread()); 523 } 524 525 /** Constructor used by addConditionWaiter. */ Node(int waitStatus)526 Node(int waitStatus) { 527 WAITSTATUS.set(this, waitStatus); 528 THREAD.set(this, Thread.currentThread()); 529 } 530 531 /** CASes waitStatus field. */ compareAndSetWaitStatus(int expect, int update)532 final boolean compareAndSetWaitStatus(int expect, int update) { 533 return WAITSTATUS.compareAndSet(this, expect, update); 534 } 535 536 /** CASes next field. */ compareAndSetNext(Node expect, Node update)537 final boolean compareAndSetNext(Node expect, Node update) { 538 return NEXT.compareAndSet(this, expect, update); 539 } 540 setPrevRelaxed(Node p)541 final void setPrevRelaxed(Node p) { 542 PREV.set(this, p); 543 } 544 545 // VarHandle mechanics 546 private static final VarHandle NEXT; 547 private static final VarHandle PREV; 548 private static final VarHandle THREAD; 549 private static final VarHandle WAITSTATUS; 550 static { 551 try { 552 MethodHandles.Lookup l = MethodHandles.lookup(); 553 NEXT = l.findVarHandle(Node.class, "next", Node.class); 554 PREV = l.findVarHandle(Node.class, "prev", Node.class); 555 THREAD = l.findVarHandle(Node.class, "thread", Thread.class); 556 WAITSTATUS = l.findVarHandle(Node.class, "waitStatus", int.class); 557 } catch (ReflectiveOperationException e) { 558 throw new ExceptionInInitializerError(e); 559 } 560 } 561 } 562 563 /** 564 * Head of the wait queue, lazily initialized. Except for 565 * initialization, it is modified only via method setHead. Note: 566 * If head exists, its waitStatus is guaranteed not to be 567 * CANCELLED. 568 */ 569 private transient volatile Node head; 570 571 /** 572 * Tail of the wait queue, lazily initialized. Modified only via 573 * method enq to add new wait node. 574 */ 575 private transient volatile Node tail; 576 577 /** 578 * The synchronization state. 579 */ 580 private volatile int state; 581 582 /** 583 * Returns the current value of synchronization state. 584 * This operation has memory semantics of a {@code volatile} read. 585 * @return current state value 586 */ getState()587 protected final int getState() { 588 return state; 589 } 590 591 /** 592 * Sets the value of synchronization state. 593 * This operation has memory semantics of a {@code volatile} write. 594 * @param newState the new state value 595 */ setState(int newState)596 protected final void setState(int newState) { 597 state = newState; 598 } 599 600 /** 601 * Atomically sets synchronization state to the given updated 602 * value if the current state value equals the expected value. 603 * This operation has memory semantics of a {@code volatile} read 604 * and write. 605 * 606 * @param expect the expected value 607 * @param update the new value 608 * @return {@code true} if successful. False return indicates that the actual 609 * value was not equal to the expected value. 610 */ compareAndSetState(int expect, int update)611 protected final boolean compareAndSetState(int expect, int update) { 612 return STATE.compareAndSet(this, expect, update); 613 } 614 615 // Queuing utilities 616 617 /** 618 * The number of nanoseconds for which it is faster to spin 619 * rather than to use timed park. A rough estimate suffices 620 * to improve responsiveness with very short timeouts. 621 */ 622 static final long SPIN_FOR_TIMEOUT_THRESHOLD = 1000L; 623 624 /** 625 * Inserts node into queue, initializing if necessary. See picture above. 626 * @param node the node to insert 627 * @return node's predecessor 628 */ enq(Node node)629 private Node enq(Node node) { 630 for (;;) { 631 Node oldTail = tail; 632 if (oldTail != null) { 633 node.setPrevRelaxed(oldTail); 634 if (compareAndSetTail(oldTail, node)) { 635 oldTail.next = node; 636 return oldTail; 637 } 638 } else { 639 initializeSyncQueue(); 640 } 641 } 642 } 643 644 /** 645 * Creates and enqueues node for current thread and given mode. 646 * 647 * @param mode Node.EXCLUSIVE for exclusive, Node.SHARED for shared 648 * @return the new node 649 */ addWaiter(Node mode)650 private Node addWaiter(Node mode) { 651 Node node = new Node(mode); 652 653 for (;;) { 654 Node oldTail = tail; 655 if (oldTail != null) { 656 node.setPrevRelaxed(oldTail); 657 if (compareAndSetTail(oldTail, node)) { 658 oldTail.next = node; 659 return node; 660 } 661 } else { 662 initializeSyncQueue(); 663 } 664 } 665 } 666 667 /** 668 * Sets head of queue to be node, thus dequeuing. Called only by 669 * acquire methods. Also nulls out unused fields for sake of GC 670 * and to suppress unnecessary signals and traversals. 671 * 672 * @param node the node 673 */ setHead(Node node)674 private void setHead(Node node) { 675 head = node; 676 node.thread = null; 677 node.prev = null; 678 } 679 680 /** 681 * Wakes up node's successor, if one exists. 682 * 683 * @param node the node 684 */ unparkSuccessor(Node node)685 private void unparkSuccessor(Node node) { 686 /* 687 * If status is negative (i.e., possibly needing signal) try 688 * to clear in anticipation of signalling. It is OK if this 689 * fails or if status is changed by waiting thread. 690 */ 691 int ws = node.waitStatus; 692 if (ws < 0) 693 node.compareAndSetWaitStatus(ws, 0); 694 695 /* 696 * Thread to unpark is held in successor, which is normally 697 * just the next node. But if cancelled or apparently null, 698 * traverse backwards from tail to find the actual 699 * non-cancelled successor. 700 */ 701 Node s = node.next; 702 if (s == null || s.waitStatus > 0) { 703 s = null; 704 for (Node p = tail; p != node && p != null; p = p.prev) 705 if (p.waitStatus <= 0) 706 s = p; 707 } 708 if (s != null) 709 LockSupport.unpark(s.thread); 710 } 711 712 /** 713 * Release action for shared mode -- signals successor and ensures 714 * propagation. (Note: For exclusive mode, release just amounts 715 * to calling unparkSuccessor of head if it needs signal.) 716 */ doReleaseShared()717 private void doReleaseShared() { 718 /* 719 * Ensure that a release propagates, even if there are other 720 * in-progress acquires/releases. This proceeds in the usual 721 * way of trying to unparkSuccessor of head if it needs 722 * signal. But if it does not, status is set to PROPAGATE to 723 * ensure that upon release, propagation continues. 724 * Additionally, we must loop in case a new node is added 725 * while we are doing this. Also, unlike other uses of 726 * unparkSuccessor, we need to know if CAS to reset status 727 * fails, if so rechecking. 728 */ 729 for (;;) { 730 Node h = head; 731 if (h != null && h != tail) { 732 int ws = h.waitStatus; 733 if (ws == Node.SIGNAL) { 734 if (!h.compareAndSetWaitStatus(Node.SIGNAL, 0)) 735 continue; // loop to recheck cases 736 unparkSuccessor(h); 737 } 738 else if (ws == 0 && 739 !h.compareAndSetWaitStatus(0, Node.PROPAGATE)) 740 continue; // loop on failed CAS 741 } 742 if (h == head) // loop if head changed 743 break; 744 } 745 } 746 747 /** 748 * Sets head of queue, and checks if successor may be waiting 749 * in shared mode, if so propagating if either propagate > 0 or 750 * PROPAGATE status was set. 751 * 752 * @param node the node 753 * @param propagate the return value from a tryAcquireShared 754 */ setHeadAndPropagate(Node node, int propagate)755 private void setHeadAndPropagate(Node node, int propagate) { 756 Node h = head; // Record old head for check below 757 setHead(node); 758 /* 759 * Try to signal next queued node if: 760 * Propagation was indicated by caller, 761 * or was recorded (as h.waitStatus either before 762 * or after setHead) by a previous operation 763 * (note: this uses sign-check of waitStatus because 764 * PROPAGATE status may transition to SIGNAL.) 765 * and 766 * The next node is waiting in shared mode, 767 * or we don't know, because it appears null 768 * 769 * The conservatism in both of these checks may cause 770 * unnecessary wake-ups, but only when there are multiple 771 * racing acquires/releases, so most need signals now or soon 772 * anyway. 773 */ 774 if (propagate > 0 || h == null || h.waitStatus < 0 || 775 (h = head) == null || h.waitStatus < 0) { 776 Node s = node.next; 777 if (s == null || s.isShared()) 778 doReleaseShared(); 779 } 780 } 781 782 // Utilities for various versions of acquire 783 784 /** 785 * Cancels an ongoing attempt to acquire. 786 * 787 * @param node the node 788 */ cancelAcquire(Node node)789 private void cancelAcquire(Node node) { 790 // Ignore if node doesn't exist 791 if (node == null) 792 return; 793 794 node.thread = null; 795 796 // Skip cancelled predecessors 797 Node pred = node.prev; 798 while (pred.waitStatus > 0) 799 node.prev = pred = pred.prev; 800 801 // predNext is the apparent node to unsplice. CASes below will 802 // fail if not, in which case, we lost race vs another cancel 803 // or signal, so no further action is necessary, although with 804 // a possibility that a cancelled node may transiently remain 805 // reachable. 806 Node predNext = pred.next; 807 808 // Can use unconditional write instead of CAS here. 809 // After this atomic step, other Nodes can skip past us. 810 // Before, we are free of interference from other threads. 811 node.waitStatus = Node.CANCELLED; 812 813 // If we are the tail, remove ourselves. 814 if (node == tail && compareAndSetTail(node, pred)) { 815 pred.compareAndSetNext(predNext, null); 816 } else { 817 // If successor needs signal, try to set pred's next-link 818 // so it will get one. Otherwise wake it up to propagate. 819 int ws; 820 if (pred != head && 821 ((ws = pred.waitStatus) == Node.SIGNAL || 822 (ws <= 0 && pred.compareAndSetWaitStatus(ws, Node.SIGNAL))) && 823 pred.thread != null) { 824 Node next = node.next; 825 if (next != null && next.waitStatus <= 0) 826 pred.compareAndSetNext(predNext, next); 827 } else { 828 unparkSuccessor(node); 829 } 830 831 node.next = node; // help GC 832 } 833 } 834 835 /** 836 * Checks and updates status for a node that failed to acquire. 837 * Returns true if thread should block. This is the main signal 838 * control in all acquire loops. Requires that pred == node.prev. 839 * 840 * @param pred node's predecessor holding status 841 * @param node the node 842 * @return {@code true} if thread should block 843 */ shouldParkAfterFailedAcquire(Node pred, Node node)844 private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) { 845 int ws = pred.waitStatus; 846 if (ws == Node.SIGNAL) 847 /* 848 * This node has already set status asking a release 849 * to signal it, so it can safely park. 850 */ 851 return true; 852 if (ws > 0) { 853 /* 854 * Predecessor was cancelled. Skip over predecessors and 855 * indicate retry. 856 */ 857 do { 858 node.prev = pred = pred.prev; 859 } while (pred.waitStatus > 0); 860 pred.next = node; 861 } else { 862 /* 863 * waitStatus must be 0 or PROPAGATE. Indicate that we 864 * need a signal, but don't park yet. Caller will need to 865 * retry to make sure it cannot acquire before parking. 866 */ 867 pred.compareAndSetWaitStatus(ws, Node.SIGNAL); 868 } 869 return false; 870 } 871 872 /** 873 * Convenience method to interrupt current thread. 874 */ selfInterrupt()875 static void selfInterrupt() { 876 Thread.currentThread().interrupt(); 877 } 878 879 /** 880 * Convenience method to park and then check if interrupted. 881 * 882 * @return {@code true} if interrupted 883 */ parkAndCheckInterrupt()884 private final boolean parkAndCheckInterrupt() { 885 LockSupport.park(this); 886 return Thread.interrupted(); 887 } 888 889 /* 890 * Various flavors of acquire, varying in exclusive/shared and 891 * control modes. Each is mostly the same, but annoyingly 892 * different. Only a little bit of factoring is possible due to 893 * interactions of exception mechanics (including ensuring that we 894 * cancel if tryAcquire throws exception) and other control, at 895 * least not without hurting performance too much. 896 */ 897 898 /** 899 * Acquires in exclusive uninterruptible mode for thread already in 900 * queue. Used by condition wait methods as well as acquire. 901 * 902 * @param node the node 903 * @param arg the acquire argument 904 * @return {@code true} if interrupted while waiting 905 */ acquireQueued(final Node node, int arg)906 final boolean acquireQueued(final Node node, int arg) { 907 boolean interrupted = false; 908 try { 909 for (;;) { 910 final Node p = node.predecessor(); 911 if (p == head && tryAcquire(arg)) { 912 setHead(node); 913 p.next = null; // help GC 914 return interrupted; 915 } 916 if (shouldParkAfterFailedAcquire(p, node)) 917 interrupted |= parkAndCheckInterrupt(); 918 } 919 } catch (Throwable t) { 920 cancelAcquire(node); 921 if (interrupted) 922 selfInterrupt(); 923 throw t; 924 } 925 } 926 927 /** 928 * Acquires in exclusive interruptible mode. 929 * @param arg the acquire argument 930 */ doAcquireInterruptibly(int arg)931 private void doAcquireInterruptibly(int arg) 932 throws InterruptedException { 933 final Node node = addWaiter(Node.EXCLUSIVE); 934 try { 935 for (;;) { 936 final Node p = node.predecessor(); 937 if (p == head && tryAcquire(arg)) { 938 setHead(node); 939 p.next = null; // help GC 940 return; 941 } 942 if (shouldParkAfterFailedAcquire(p, node) && 943 parkAndCheckInterrupt()) 944 throw new InterruptedException(); 945 } 946 } catch (Throwable t) { 947 cancelAcquire(node); 948 throw t; 949 } 950 } 951 952 /** 953 * Acquires in exclusive timed mode. 954 * 955 * @param arg the acquire argument 956 * @param nanosTimeout max wait time 957 * @return {@code true} if acquired 958 */ doAcquireNanos(int arg, long nanosTimeout)959 private boolean doAcquireNanos(int arg, long nanosTimeout) 960 throws InterruptedException { 961 if (nanosTimeout <= 0L) 962 return false; 963 final long deadline = System.nanoTime() + nanosTimeout; 964 final Node node = addWaiter(Node.EXCLUSIVE); 965 try { 966 for (;;) { 967 final Node p = node.predecessor(); 968 if (p == head && tryAcquire(arg)) { 969 setHead(node); 970 p.next = null; // help GC 971 return true; 972 } 973 nanosTimeout = deadline - System.nanoTime(); 974 if (nanosTimeout <= 0L) { 975 cancelAcquire(node); 976 return false; 977 } 978 if (shouldParkAfterFailedAcquire(p, node) && 979 nanosTimeout > SPIN_FOR_TIMEOUT_THRESHOLD) 980 LockSupport.parkNanos(this, nanosTimeout); 981 if (Thread.interrupted()) 982 throw new InterruptedException(); 983 } 984 } catch (Throwable t) { 985 cancelAcquire(node); 986 throw t; 987 } 988 } 989 990 /** 991 * Acquires in shared uninterruptible mode. 992 * @param arg the acquire argument 993 */ doAcquireShared(int arg)994 private void doAcquireShared(int arg) { 995 final Node node = addWaiter(Node.SHARED); 996 boolean interrupted = false; 997 try { 998 for (;;) { 999 final Node p = node.predecessor(); 1000 if (p == head) { 1001 int r = tryAcquireShared(arg); 1002 if (r >= 0) { 1003 setHeadAndPropagate(node, r); 1004 p.next = null; // help GC 1005 return; 1006 } 1007 } 1008 if (shouldParkAfterFailedAcquire(p, node)) 1009 interrupted |= parkAndCheckInterrupt(); 1010 } 1011 } catch (Throwable t) { 1012 cancelAcquire(node); 1013 throw t; 1014 } finally { 1015 if (interrupted) 1016 selfInterrupt(); 1017 } 1018 } 1019 1020 /** 1021 * Acquires in shared interruptible mode. 1022 * @param arg the acquire argument 1023 */ doAcquireSharedInterruptibly(int arg)1024 private void doAcquireSharedInterruptibly(int arg) 1025 throws InterruptedException { 1026 final Node node = addWaiter(Node.SHARED); 1027 try { 1028 for (;;) { 1029 final Node p = node.predecessor(); 1030 if (p == head) { 1031 int r = tryAcquireShared(arg); 1032 if (r >= 0) { 1033 setHeadAndPropagate(node, r); 1034 p.next = null; // help GC 1035 return; 1036 } 1037 } 1038 if (shouldParkAfterFailedAcquire(p, node) && 1039 parkAndCheckInterrupt()) 1040 throw new InterruptedException(); 1041 } 1042 } catch (Throwable t) { 1043 cancelAcquire(node); 1044 throw t; 1045 } 1046 } 1047 1048 /** 1049 * Acquires in shared timed mode. 1050 * 1051 * @param arg the acquire argument 1052 * @param nanosTimeout max wait time 1053 * @return {@code true} if acquired 1054 */ doAcquireSharedNanos(int arg, long nanosTimeout)1055 private boolean doAcquireSharedNanos(int arg, long nanosTimeout) 1056 throws InterruptedException { 1057 if (nanosTimeout <= 0L) 1058 return false; 1059 final long deadline = System.nanoTime() + nanosTimeout; 1060 final Node node = addWaiter(Node.SHARED); 1061 try { 1062 for (;;) { 1063 final Node p = node.predecessor(); 1064 if (p == head) { 1065 int r = tryAcquireShared(arg); 1066 if (r >= 0) { 1067 setHeadAndPropagate(node, r); 1068 p.next = null; // help GC 1069 return true; 1070 } 1071 } 1072 nanosTimeout = deadline - System.nanoTime(); 1073 if (nanosTimeout <= 0L) { 1074 cancelAcquire(node); 1075 return false; 1076 } 1077 if (shouldParkAfterFailedAcquire(p, node) && 1078 nanosTimeout > SPIN_FOR_TIMEOUT_THRESHOLD) 1079 LockSupport.parkNanos(this, nanosTimeout); 1080 if (Thread.interrupted()) 1081 throw new InterruptedException(); 1082 } 1083 } catch (Throwable t) { 1084 cancelAcquire(node); 1085 throw t; 1086 } 1087 } 1088 1089 // Main exported methods 1090 1091 /** 1092 * Attempts to acquire in exclusive mode. This method should query 1093 * if the state of the object permits it to be acquired in the 1094 * exclusive mode, and if so to acquire it. 1095 * 1096 * <p>This method is always invoked by the thread performing 1097 * acquire. If this method reports failure, the acquire method 1098 * may queue the thread, if it is not already queued, until it is 1099 * signalled by a release from some other thread. This can be used 1100 * to implement method {@link Lock#tryLock()}. 1101 * 1102 * <p>The default 1103 * implementation throws {@link UnsupportedOperationException}. 1104 * 1105 * @param arg the acquire argument. This value is always the one 1106 * passed to an acquire method, or is the value saved on entry 1107 * to a condition wait. The value is otherwise uninterpreted 1108 * and can represent anything you like. 1109 * @return {@code true} if successful. Upon success, this object has 1110 * been acquired. 1111 * @throws IllegalMonitorStateException if acquiring would place this 1112 * synchronizer in an illegal state. This exception must be 1113 * thrown in a consistent fashion for synchronization to work 1114 * correctly. 1115 * @throws UnsupportedOperationException if exclusive mode is not supported 1116 */ tryAcquire(int arg)1117 protected boolean tryAcquire(int arg) { 1118 throw new UnsupportedOperationException(); 1119 } 1120 1121 /** 1122 * Attempts to set the state to reflect a release in exclusive 1123 * mode. 1124 * 1125 * <p>This method is always invoked by the thread performing release. 1126 * 1127 * <p>The default implementation throws 1128 * {@link UnsupportedOperationException}. 1129 * 1130 * @param arg the release argument. This value is always the one 1131 * passed to a release method, or the current state value upon 1132 * entry to a condition wait. The value is otherwise 1133 * uninterpreted and can represent anything you like. 1134 * @return {@code true} if this object is now in a fully released 1135 * state, so that any waiting threads may attempt to acquire; 1136 * and {@code false} otherwise. 1137 * @throws IllegalMonitorStateException if releasing would place this 1138 * synchronizer in an illegal state. This exception must be 1139 * thrown in a consistent fashion for synchronization to work 1140 * correctly. 1141 * @throws UnsupportedOperationException if exclusive mode is not supported 1142 */ tryRelease(int arg)1143 protected boolean tryRelease(int arg) { 1144 throw new UnsupportedOperationException(); 1145 } 1146 1147 /** 1148 * Attempts to acquire in shared mode. This method should query if 1149 * the state of the object permits it to be acquired in the shared 1150 * mode, and if so to acquire it. 1151 * 1152 * <p>This method is always invoked by the thread performing 1153 * acquire. If this method reports failure, the acquire method 1154 * may queue the thread, if it is not already queued, until it is 1155 * signalled by a release from some other thread. 1156 * 1157 * <p>The default implementation throws {@link 1158 * UnsupportedOperationException}. 1159 * 1160 * @param arg the acquire argument. This value is always the one 1161 * passed to an acquire method, or is the value saved on entry 1162 * to a condition wait. The value is otherwise uninterpreted 1163 * and can represent anything you like. 1164 * @return a negative value on failure; zero if acquisition in shared 1165 * mode succeeded but no subsequent shared-mode acquire can 1166 * succeed; and a positive value if acquisition in shared 1167 * mode succeeded and subsequent shared-mode acquires might 1168 * also succeed, in which case a subsequent waiting thread 1169 * must check availability. (Support for three different 1170 * return values enables this method to be used in contexts 1171 * where acquires only sometimes act exclusively.) Upon 1172 * success, this object has been acquired. 1173 * @throws IllegalMonitorStateException if acquiring would place this 1174 * synchronizer in an illegal state. This exception must be 1175 * thrown in a consistent fashion for synchronization to work 1176 * correctly. 1177 * @throws UnsupportedOperationException if shared mode is not supported 1178 */ tryAcquireShared(int arg)1179 protected int tryAcquireShared(int arg) { 1180 throw new UnsupportedOperationException(); 1181 } 1182 1183 /** 1184 * Attempts to set the state to reflect a release in shared mode. 1185 * 1186 * <p>This method is always invoked by the thread performing release. 1187 * 1188 * <p>The default implementation throws 1189 * {@link UnsupportedOperationException}. 1190 * 1191 * @param arg the release argument. This value is always the one 1192 * passed to a release method, or the current state value upon 1193 * entry to a condition wait. The value is otherwise 1194 * uninterpreted and can represent anything you like. 1195 * @return {@code true} if this release of shared mode may permit a 1196 * waiting acquire (shared or exclusive) to succeed; and 1197 * {@code false} otherwise 1198 * @throws IllegalMonitorStateException if releasing would place this 1199 * synchronizer in an illegal state. This exception must be 1200 * thrown in a consistent fashion for synchronization to work 1201 * correctly. 1202 * @throws UnsupportedOperationException if shared mode is not supported 1203 */ tryReleaseShared(int arg)1204 protected boolean tryReleaseShared(int arg) { 1205 throw new UnsupportedOperationException(); 1206 } 1207 1208 /** 1209 * Returns {@code true} if synchronization is held exclusively with 1210 * respect to the current (calling) thread. This method is invoked 1211 * upon each call to a {@link ConditionObject} method. 1212 * 1213 * <p>The default implementation throws {@link 1214 * UnsupportedOperationException}. This method is invoked 1215 * internally only within {@link ConditionObject} methods, so need 1216 * not be defined if conditions are not used. 1217 * 1218 * @return {@code true} if synchronization is held exclusively; 1219 * {@code false} otherwise 1220 * @throws UnsupportedOperationException if conditions are not supported 1221 */ isHeldExclusively()1222 protected boolean isHeldExclusively() { 1223 throw new UnsupportedOperationException(); 1224 } 1225 1226 /** 1227 * Acquires in exclusive mode, ignoring interrupts. Implemented 1228 * by invoking at least once {@link #tryAcquire}, 1229 * returning on success. Otherwise the thread is queued, possibly 1230 * repeatedly blocking and unblocking, invoking {@link 1231 * #tryAcquire} until success. This method can be used 1232 * to implement method {@link Lock#lock}. 1233 * 1234 * @param arg the acquire argument. This value is conveyed to 1235 * {@link #tryAcquire} but is otherwise uninterpreted and 1236 * can represent anything you like. 1237 */ acquire(int arg)1238 public final void acquire(int arg) { 1239 if (!tryAcquire(arg) && 1240 acquireQueued(addWaiter(Node.EXCLUSIVE), arg)) 1241 selfInterrupt(); 1242 } 1243 1244 /** 1245 * Acquires in exclusive mode, aborting if interrupted. 1246 * Implemented by first checking interrupt status, then invoking 1247 * at least once {@link #tryAcquire}, returning on 1248 * success. Otherwise the thread is queued, possibly repeatedly 1249 * blocking and unblocking, invoking {@link #tryAcquire} 1250 * until success or the thread is interrupted. This method can be 1251 * used to implement method {@link Lock#lockInterruptibly}. 1252 * 1253 * @param arg the acquire argument. This value is conveyed to 1254 * {@link #tryAcquire} but is otherwise uninterpreted and 1255 * can represent anything you like. 1256 * @throws InterruptedException if the current thread is interrupted 1257 */ acquireInterruptibly(int arg)1258 public final void acquireInterruptibly(int arg) 1259 throws InterruptedException { 1260 if (Thread.interrupted()) 1261 throw new InterruptedException(); 1262 if (!tryAcquire(arg)) 1263 doAcquireInterruptibly(arg); 1264 } 1265 1266 /** 1267 * Attempts to acquire in exclusive mode, aborting if interrupted, 1268 * and failing if the given timeout elapses. Implemented by first 1269 * checking interrupt status, then invoking at least once {@link 1270 * #tryAcquire}, returning on success. Otherwise, the thread is 1271 * queued, possibly repeatedly blocking and unblocking, invoking 1272 * {@link #tryAcquire} until success or the thread is interrupted 1273 * or the timeout elapses. This method can be used to implement 1274 * method {@link Lock#tryLock(long, TimeUnit)}. 1275 * 1276 * @param arg the acquire argument. This value is conveyed to 1277 * {@link #tryAcquire} but is otherwise uninterpreted and 1278 * can represent anything you like. 1279 * @param nanosTimeout the maximum number of nanoseconds to wait 1280 * @return {@code true} if acquired; {@code false} if timed out 1281 * @throws InterruptedException if the current thread is interrupted 1282 */ tryAcquireNanos(int arg, long nanosTimeout)1283 public final boolean tryAcquireNanos(int arg, long nanosTimeout) 1284 throws InterruptedException { 1285 if (Thread.interrupted()) 1286 throw new InterruptedException(); 1287 return tryAcquire(arg) || 1288 doAcquireNanos(arg, nanosTimeout); 1289 } 1290 1291 /** 1292 * Releases in exclusive mode. Implemented by unblocking one or 1293 * more threads if {@link #tryRelease} returns true. 1294 * This method can be used to implement method {@link Lock#unlock}. 1295 * 1296 * @param arg the release argument. This value is conveyed to 1297 * {@link #tryRelease} but is otherwise uninterpreted and 1298 * can represent anything you like. 1299 * @return the value returned from {@link #tryRelease} 1300 */ release(int arg)1301 public final boolean release(int arg) { 1302 if (tryRelease(arg)) { 1303 Node h = head; 1304 if (h != null && h.waitStatus != 0) 1305 unparkSuccessor(h); 1306 return true; 1307 } 1308 return false; 1309 } 1310 1311 /** 1312 * Acquires in shared mode, ignoring interrupts. Implemented by 1313 * first invoking at least once {@link #tryAcquireShared}, 1314 * returning on success. Otherwise the thread is queued, possibly 1315 * repeatedly blocking and unblocking, invoking {@link 1316 * #tryAcquireShared} until success. 1317 * 1318 * @param arg the acquire argument. This value is conveyed to 1319 * {@link #tryAcquireShared} but is otherwise uninterpreted 1320 * and can represent anything you like. 1321 */ acquireShared(int arg)1322 public final void acquireShared(int arg) { 1323 if (tryAcquireShared(arg) < 0) 1324 doAcquireShared(arg); 1325 } 1326 1327 /** 1328 * Acquires in shared mode, aborting if interrupted. Implemented 1329 * by first checking interrupt status, then invoking at least once 1330 * {@link #tryAcquireShared}, returning on success. Otherwise the 1331 * thread is queued, possibly repeatedly blocking and unblocking, 1332 * invoking {@link #tryAcquireShared} until success or the thread 1333 * is interrupted. 1334 * @param arg the acquire argument. 1335 * This value is conveyed to {@link #tryAcquireShared} but is 1336 * otherwise uninterpreted and can represent anything 1337 * you like. 1338 * @throws InterruptedException if the current thread is interrupted 1339 */ acquireSharedInterruptibly(int arg)1340 public final void acquireSharedInterruptibly(int arg) 1341 throws InterruptedException { 1342 if (Thread.interrupted()) 1343 throw new InterruptedException(); 1344 if (tryAcquireShared(arg) < 0) 1345 doAcquireSharedInterruptibly(arg); 1346 } 1347 1348 /** 1349 * Attempts to acquire in shared mode, aborting if interrupted, and 1350 * failing if the given timeout elapses. Implemented by first 1351 * checking interrupt status, then invoking at least once {@link 1352 * #tryAcquireShared}, returning on success. Otherwise, the 1353 * thread is queued, possibly repeatedly blocking and unblocking, 1354 * invoking {@link #tryAcquireShared} until success or the thread 1355 * is interrupted or the timeout elapses. 1356 * 1357 * @param arg the acquire argument. This value is conveyed to 1358 * {@link #tryAcquireShared} but is otherwise uninterpreted 1359 * and can represent anything you like. 1360 * @param nanosTimeout the maximum number of nanoseconds to wait 1361 * @return {@code true} if acquired; {@code false} if timed out 1362 * @throws InterruptedException if the current thread is interrupted 1363 */ tryAcquireSharedNanos(int arg, long nanosTimeout)1364 public final boolean tryAcquireSharedNanos(int arg, long nanosTimeout) 1365 throws InterruptedException { 1366 if (Thread.interrupted()) 1367 throw new InterruptedException(); 1368 return tryAcquireShared(arg) >= 0 || 1369 doAcquireSharedNanos(arg, nanosTimeout); 1370 } 1371 1372 /** 1373 * Releases in shared mode. Implemented by unblocking one or more 1374 * threads if {@link #tryReleaseShared} returns true. 1375 * 1376 * @param arg the release argument. This value is conveyed to 1377 * {@link #tryReleaseShared} but is otherwise uninterpreted 1378 * and can represent anything you like. 1379 * @return the value returned from {@link #tryReleaseShared} 1380 */ releaseShared(int arg)1381 public final boolean releaseShared(int arg) { 1382 if (tryReleaseShared(arg)) { 1383 doReleaseShared(); 1384 return true; 1385 } 1386 return false; 1387 } 1388 1389 // Queue inspection methods 1390 1391 /** 1392 * Queries whether any threads are waiting to acquire. Note that 1393 * because cancellations due to interrupts and timeouts may occur 1394 * at any time, a {@code true} return does not guarantee that any 1395 * other thread will ever acquire. 1396 * 1397 * @return {@code true} if there may be other threads waiting to acquire 1398 */ hasQueuedThreads()1399 public final boolean hasQueuedThreads() { 1400 for (Node p = tail, h = head; p != h && p != null; p = p.prev) 1401 if (p.waitStatus <= 0) 1402 return true; 1403 return false; 1404 } 1405 1406 /** 1407 * Queries whether any threads have ever contended to acquire this 1408 * synchronizer; that is, if an acquire method has ever blocked. 1409 * 1410 * <p>In this implementation, this operation returns in 1411 * constant time. 1412 * 1413 * @return {@code true} if there has ever been contention 1414 */ hasContended()1415 public final boolean hasContended() { 1416 return head != null; 1417 } 1418 1419 /** 1420 * Returns the first (longest-waiting) thread in the queue, or 1421 * {@code null} if no threads are currently queued. 1422 * 1423 * <p>In this implementation, this operation normally returns in 1424 * constant time, but may iterate upon contention if other threads are 1425 * concurrently modifying the queue. 1426 * 1427 * @return the first (longest-waiting) thread in the queue, or 1428 * {@code null} if no threads are currently queued 1429 */ getFirstQueuedThread()1430 public final Thread getFirstQueuedThread() { 1431 // handle only fast path, else relay 1432 return (head == tail) ? null : fullGetFirstQueuedThread(); 1433 } 1434 1435 /** 1436 * Version of getFirstQueuedThread called when fastpath fails. 1437 */ fullGetFirstQueuedThread()1438 private Thread fullGetFirstQueuedThread() { 1439 /* 1440 * The first node is normally head.next. Try to get its 1441 * thread field, ensuring consistent reads: If thread 1442 * field is nulled out or s.prev is no longer head, then 1443 * some other thread(s) concurrently performed setHead in 1444 * between some of our reads. We try this twice before 1445 * resorting to traversal. 1446 */ 1447 Node h, s; 1448 Thread st; 1449 if (((h = head) != null && (s = h.next) != null && 1450 s.prev == head && (st = s.thread) != null) || 1451 ((h = head) != null && (s = h.next) != null && 1452 s.prev == head && (st = s.thread) != null)) 1453 return st; 1454 1455 /* 1456 * Head's next field might not have been set yet, or may have 1457 * been unset after setHead. So we must check to see if tail 1458 * is actually first node. If not, we continue on, safely 1459 * traversing from tail back to head to find first, 1460 * guaranteeing termination. 1461 */ 1462 1463 Thread firstThread = null; 1464 for (Node p = tail; p != null && p != head; p = p.prev) { 1465 Thread t = p.thread; 1466 if (t != null) 1467 firstThread = t; 1468 } 1469 return firstThread; 1470 } 1471 1472 /** 1473 * Returns true if the given thread is currently queued. 1474 * 1475 * <p>This implementation traverses the queue to determine 1476 * presence of the given thread. 1477 * 1478 * @param thread the thread 1479 * @return {@code true} if the given thread is on the queue 1480 * @throws NullPointerException if the thread is null 1481 */ isQueued(Thread thread)1482 public final boolean isQueued(Thread thread) { 1483 if (thread == null) 1484 throw new NullPointerException(); 1485 for (Node p = tail; p != null; p = p.prev) 1486 if (p.thread == thread) 1487 return true; 1488 return false; 1489 } 1490 1491 /** 1492 * Returns {@code true} if the apparent first queued thread, if one 1493 * exists, is waiting in exclusive mode. If this method returns 1494 * {@code true}, and the current thread is attempting to acquire in 1495 * shared mode (that is, this method is invoked from {@link 1496 * #tryAcquireShared}) then it is guaranteed that the current thread 1497 * is not the first queued thread. Used only as a heuristic in 1498 * ReentrantReadWriteLock. 1499 */ apparentlyFirstQueuedIsExclusive()1500 final boolean apparentlyFirstQueuedIsExclusive() { 1501 Node h, s; 1502 return (h = head) != null && 1503 (s = h.next) != null && 1504 !s.isShared() && 1505 s.thread != null; 1506 } 1507 1508 /** 1509 * Queries whether any threads have been waiting to acquire longer 1510 * than the current thread. 1511 * 1512 * <p>An invocation of this method is equivalent to (but may be 1513 * more efficient than): 1514 * <pre> {@code 1515 * getFirstQueuedThread() != Thread.currentThread() 1516 * && hasQueuedThreads()}</pre> 1517 * 1518 * <p>Note that because cancellations due to interrupts and 1519 * timeouts may occur at any time, a {@code true} return does not 1520 * guarantee that some other thread will acquire before the current 1521 * thread. Likewise, it is possible for another thread to win a 1522 * race to enqueue after this method has returned {@code false}, 1523 * due to the queue being empty. 1524 * 1525 * <p>This method is designed to be used by a fair synchronizer to 1526 * avoid <a href="AbstractQueuedSynchronizer.html#barging">barging</a>. 1527 * Such a synchronizer's {@link #tryAcquire} method should return 1528 * {@code false}, and its {@link #tryAcquireShared} method should 1529 * return a negative value, if this method returns {@code true} 1530 * (unless this is a reentrant acquire). For example, the {@code 1531 * tryAcquire} method for a fair, reentrant, exclusive mode 1532 * synchronizer might look like this: 1533 * 1534 * <pre> {@code 1535 * protected boolean tryAcquire(int arg) { 1536 * if (isHeldExclusively()) { 1537 * // A reentrant acquire; increment hold count 1538 * return true; 1539 * } else if (hasQueuedPredecessors()) { 1540 * return false; 1541 * } else { 1542 * // try to acquire normally 1543 * } 1544 * }}</pre> 1545 * 1546 * @return {@code true} if there is a queued thread preceding the 1547 * current thread, and {@code false} if the current thread 1548 * is at the head of the queue or the queue is empty 1549 * @since 1.7 1550 */ hasQueuedPredecessors()1551 public final boolean hasQueuedPredecessors() { 1552 Node h, s; 1553 if ((h = head) != null) { 1554 if ((s = h.next) == null || s.waitStatus > 0) { 1555 s = null; // traverse in case of concurrent cancellation 1556 for (Node p = tail; p != h && p != null; p = p.prev) { 1557 if (p.waitStatus <= 0) 1558 s = p; 1559 } 1560 } 1561 if (s != null && s.thread != Thread.currentThread()) 1562 return true; 1563 } 1564 return false; 1565 } 1566 1567 // Instrumentation and monitoring methods 1568 1569 /** 1570 * Returns an estimate of the number of threads waiting to 1571 * acquire. The value is only an estimate because the number of 1572 * threads may change dynamically while this method traverses 1573 * internal data structures. This method is designed for use in 1574 * monitoring system state, not for synchronization control. 1575 * 1576 * @return the estimated number of threads waiting to acquire 1577 */ getQueueLength()1578 public final int getQueueLength() { 1579 int n = 0; 1580 for (Node p = tail; p != null; p = p.prev) { 1581 if (p.thread != null) 1582 ++n; 1583 } 1584 return n; 1585 } 1586 1587 /** 1588 * Returns a collection containing threads that may be waiting to 1589 * acquire. Because the actual set of threads may change 1590 * dynamically while constructing this result, the returned 1591 * collection is only a best-effort estimate. The elements of the 1592 * returned collection are in no particular order. This method is 1593 * designed to facilitate construction of subclasses that provide 1594 * more extensive monitoring facilities. 1595 * 1596 * @return the collection of threads 1597 */ getQueuedThreads()1598 public final Collection<Thread> getQueuedThreads() { 1599 ArrayList<Thread> list = new ArrayList<>(); 1600 for (Node p = tail; p != null; p = p.prev) { 1601 Thread t = p.thread; 1602 if (t != null) 1603 list.add(t); 1604 } 1605 return list; 1606 } 1607 1608 /** 1609 * Returns a collection containing threads that may be waiting to 1610 * acquire in exclusive mode. This has the same properties 1611 * as {@link #getQueuedThreads} except that it only returns 1612 * those threads waiting due to an exclusive acquire. 1613 * 1614 * @return the collection of threads 1615 */ getExclusiveQueuedThreads()1616 public final Collection<Thread> getExclusiveQueuedThreads() { 1617 ArrayList<Thread> list = new ArrayList<>(); 1618 for (Node p = tail; p != null; p = p.prev) { 1619 if (!p.isShared()) { 1620 Thread t = p.thread; 1621 if (t != null) 1622 list.add(t); 1623 } 1624 } 1625 return list; 1626 } 1627 1628 /** 1629 * Returns a collection containing threads that may be waiting to 1630 * acquire in shared mode. This has the same properties 1631 * as {@link #getQueuedThreads} except that it only returns 1632 * those threads waiting due to a shared acquire. 1633 * 1634 * @return the collection of threads 1635 */ getSharedQueuedThreads()1636 public final Collection<Thread> getSharedQueuedThreads() { 1637 ArrayList<Thread> list = new ArrayList<>(); 1638 for (Node p = tail; p != null; p = p.prev) { 1639 if (p.isShared()) { 1640 Thread t = p.thread; 1641 if (t != null) 1642 list.add(t); 1643 } 1644 } 1645 return list; 1646 } 1647 1648 /** 1649 * Returns a string identifying this synchronizer, as well as its state. 1650 * The state, in brackets, includes the String {@code "State ="} 1651 * followed by the current value of {@link #getState}, and either 1652 * {@code "nonempty"} or {@code "empty"} depending on whether the 1653 * queue is empty. 1654 * 1655 * @return a string identifying this synchronizer, as well as its state 1656 */ toString()1657 public String toString() { 1658 return super.toString() 1659 + "[State = " + getState() + ", " 1660 + (hasQueuedThreads() ? "non" : "") + "empty queue]"; 1661 } 1662 1663 1664 // Internal support methods for Conditions 1665 1666 /** 1667 * Returns true if a node, always one that was initially placed on 1668 * a condition queue, is now waiting to reacquire on sync queue. 1669 * @param node the node 1670 * @return true if is reacquiring 1671 */ isOnSyncQueue(Node node)1672 final boolean isOnSyncQueue(Node node) { 1673 if (node.waitStatus == Node.CONDITION || node.prev == null) 1674 return false; 1675 if (node.next != null) // If has successor, it must be on queue 1676 return true; 1677 /* 1678 * node.prev can be non-null, but not yet on queue because 1679 * the CAS to place it on queue can fail. So we have to 1680 * traverse from tail to make sure it actually made it. It 1681 * will always be near the tail in calls to this method, and 1682 * unless the CAS failed (which is unlikely), it will be 1683 * there, so we hardly ever traverse much. 1684 */ 1685 return findNodeFromTail(node); 1686 } 1687 1688 /** 1689 * Returns true if node is on sync queue by searching backwards from tail. 1690 * Called only when needed by isOnSyncQueue. 1691 * @return true if present 1692 */ findNodeFromTail(Node node)1693 private boolean findNodeFromTail(Node node) { 1694 // We check for node first, since it's likely to be at or near tail. 1695 // tail is known to be non-null, so we could re-order to "save" 1696 // one null check, but we leave it this way to help the VM. 1697 for (Node p = tail;;) { 1698 if (p == node) 1699 return true; 1700 if (p == null) 1701 return false; 1702 p = p.prev; 1703 } 1704 } 1705 1706 /** 1707 * Transfers a node from a condition queue onto sync queue. 1708 * Returns true if successful. 1709 * @param node the node 1710 * @return true if successfully transferred (else the node was 1711 * cancelled before signal) 1712 */ transferForSignal(Node node)1713 final boolean transferForSignal(Node node) { 1714 /* 1715 * If cannot change waitStatus, the node has been cancelled. 1716 */ 1717 if (!node.compareAndSetWaitStatus(Node.CONDITION, 0)) 1718 return false; 1719 1720 /* 1721 * Splice onto queue and try to set waitStatus of predecessor to 1722 * indicate that thread is (probably) waiting. If cancelled or 1723 * attempt to set waitStatus fails, wake up to resync (in which 1724 * case the waitStatus can be transiently and harmlessly wrong). 1725 */ 1726 Node p = enq(node); 1727 int ws = p.waitStatus; 1728 if (ws > 0 || !p.compareAndSetWaitStatus(ws, Node.SIGNAL)) 1729 LockSupport.unpark(node.thread); 1730 return true; 1731 } 1732 1733 /** 1734 * Transfers node, if necessary, to sync queue after a cancelled wait. 1735 * Returns true if thread was cancelled before being signalled. 1736 * 1737 * @param node the node 1738 * @return true if cancelled before the node was signalled 1739 */ transferAfterCancelledWait(Node node)1740 final boolean transferAfterCancelledWait(Node node) { 1741 if (node.compareAndSetWaitStatus(Node.CONDITION, 0)) { 1742 enq(node); 1743 return true; 1744 } 1745 /* 1746 * If we lost out to a signal(), then we can't proceed 1747 * until it finishes its enq(). Cancelling during an 1748 * incomplete transfer is both rare and transient, so just 1749 * spin. 1750 */ 1751 while (!isOnSyncQueue(node)) 1752 Thread.yield(); 1753 return false; 1754 } 1755 1756 /** 1757 * Invokes release with current state value; returns saved state. 1758 * Cancels node and throws exception on failure. 1759 * @param node the condition node for this wait 1760 * @return previous sync state 1761 */ fullyRelease(Node node)1762 final int fullyRelease(Node node) { 1763 try { 1764 int savedState = getState(); 1765 if (release(savedState)) 1766 return savedState; 1767 throw new IllegalMonitorStateException(); 1768 } catch (Throwable t) { 1769 node.waitStatus = Node.CANCELLED; 1770 throw t; 1771 } 1772 } 1773 1774 // Instrumentation methods for conditions 1775 1776 /** 1777 * Queries whether the given ConditionObject 1778 * uses this synchronizer as its lock. 1779 * 1780 * @param condition the condition 1781 * @return {@code true} if owned 1782 * @throws NullPointerException if the condition is null 1783 */ owns(ConditionObject condition)1784 public final boolean owns(ConditionObject condition) { 1785 return condition.isOwnedBy(this); 1786 } 1787 1788 /** 1789 * Queries whether any threads are waiting on the given condition 1790 * associated with this synchronizer. Note that because timeouts 1791 * and interrupts may occur at any time, a {@code true} return 1792 * does not guarantee that a future {@code signal} will awaken 1793 * any threads. This method is designed primarily for use in 1794 * monitoring of the system state. 1795 * 1796 * @param condition the condition 1797 * @return {@code true} if there are any waiting threads 1798 * @throws IllegalMonitorStateException if exclusive synchronization 1799 * is not held 1800 * @throws IllegalArgumentException if the given condition is 1801 * not associated with this synchronizer 1802 * @throws NullPointerException if the condition is null 1803 */ hasWaiters(ConditionObject condition)1804 public final boolean hasWaiters(ConditionObject condition) { 1805 if (!owns(condition)) 1806 throw new IllegalArgumentException("Not owner"); 1807 return condition.hasWaiters(); 1808 } 1809 1810 /** 1811 * Returns an estimate of the number of threads waiting on the 1812 * given condition associated with this synchronizer. Note that 1813 * because timeouts and interrupts may occur at any time, the 1814 * estimate serves only as an upper bound on the actual number of 1815 * waiters. This method is designed for use in monitoring system 1816 * state, not for synchronization control. 1817 * 1818 * @param condition the condition 1819 * @return the estimated number of waiting threads 1820 * @throws IllegalMonitorStateException if exclusive synchronization 1821 * is not held 1822 * @throws IllegalArgumentException if the given condition is 1823 * not associated with this synchronizer 1824 * @throws NullPointerException if the condition is null 1825 */ getWaitQueueLength(ConditionObject condition)1826 public final int getWaitQueueLength(ConditionObject condition) { 1827 if (!owns(condition)) 1828 throw new IllegalArgumentException("Not owner"); 1829 return condition.getWaitQueueLength(); 1830 } 1831 1832 /** 1833 * Returns a collection containing those threads that may be 1834 * waiting on the given condition associated with this 1835 * synchronizer. Because the actual set of threads may change 1836 * dynamically while constructing this result, the returned 1837 * collection is only a best-effort estimate. The elements of the 1838 * returned collection are in no particular order. 1839 * 1840 * @param condition the condition 1841 * @return the collection of threads 1842 * @throws IllegalMonitorStateException if exclusive synchronization 1843 * is not held 1844 * @throws IllegalArgumentException if the given condition is 1845 * not associated with this synchronizer 1846 * @throws NullPointerException if the condition is null 1847 */ getWaitingThreads(ConditionObject condition)1848 public final Collection<Thread> getWaitingThreads(ConditionObject condition) { 1849 if (!owns(condition)) 1850 throw new IllegalArgumentException("Not owner"); 1851 return condition.getWaitingThreads(); 1852 } 1853 1854 /** 1855 * Condition implementation for a {@link AbstractQueuedSynchronizer} 1856 * serving as the basis of a {@link Lock} implementation. 1857 * 1858 * <p>Method documentation for this class describes mechanics, 1859 * not behavioral specifications from the point of view of Lock 1860 * and Condition users. Exported versions of this class will in 1861 * general need to be accompanied by documentation describing 1862 * condition semantics that rely on those of the associated 1863 * {@code AbstractQueuedSynchronizer}. 1864 * 1865 * <p>This class is Serializable, but all fields are transient, 1866 * so deserialized conditions have no waiters. 1867 */ 1868 public class ConditionObject implements Condition, java.io.Serializable { 1869 private static final long serialVersionUID = 1173984872572414699L; 1870 /** First node of condition queue. */ 1871 private transient Node firstWaiter; 1872 /** Last node of condition queue. */ 1873 private transient Node lastWaiter; 1874 1875 /** 1876 * Creates a new {@code ConditionObject} instance. 1877 */ ConditionObject()1878 public ConditionObject() { } 1879 1880 // Internal methods 1881 1882 /** 1883 * Adds a new waiter to wait queue. 1884 * @return its new wait node 1885 */ addConditionWaiter()1886 private Node addConditionWaiter() { 1887 if (!isHeldExclusively()) 1888 throw new IllegalMonitorStateException(); 1889 Node t = lastWaiter; 1890 // If lastWaiter is cancelled, clean out. 1891 if (t != null && t.waitStatus != Node.CONDITION) { 1892 unlinkCancelledWaiters(); 1893 t = lastWaiter; 1894 } 1895 1896 Node node = new Node(Node.CONDITION); 1897 1898 if (t == null) 1899 firstWaiter = node; 1900 else 1901 t.nextWaiter = node; 1902 lastWaiter = node; 1903 return node; 1904 } 1905 1906 /** 1907 * Removes and transfers nodes until hit non-cancelled one or 1908 * null. Split out from signal in part to encourage compilers 1909 * to inline the case of no waiters. 1910 * @param first (non-null) the first node on condition queue 1911 */ doSignal(Node first)1912 private void doSignal(Node first) { 1913 do { 1914 if ( (firstWaiter = first.nextWaiter) == null) 1915 lastWaiter = null; 1916 first.nextWaiter = null; 1917 } while (!transferForSignal(first) && 1918 (first = firstWaiter) != null); 1919 } 1920 1921 /** 1922 * Removes and transfers all nodes. 1923 * @param first (non-null) the first node on condition queue 1924 */ doSignalAll(Node first)1925 private void doSignalAll(Node first) { 1926 lastWaiter = firstWaiter = null; 1927 do { 1928 Node next = first.nextWaiter; 1929 first.nextWaiter = null; 1930 transferForSignal(first); 1931 first = next; 1932 } while (first != null); 1933 } 1934 1935 /** 1936 * Unlinks cancelled waiter nodes from condition queue. 1937 * Called only while holding lock. This is called when 1938 * cancellation occurred during condition wait, and upon 1939 * insertion of a new waiter when lastWaiter is seen to have 1940 * been cancelled. This method is needed to avoid garbage 1941 * retention in the absence of signals. So even though it may 1942 * require a full traversal, it comes into play only when 1943 * timeouts or cancellations occur in the absence of 1944 * signals. It traverses all nodes rather than stopping at a 1945 * particular target to unlink all pointers to garbage nodes 1946 * without requiring many re-traversals during cancellation 1947 * storms. 1948 */ unlinkCancelledWaiters()1949 private void unlinkCancelledWaiters() { 1950 Node t = firstWaiter; 1951 Node trail = null; 1952 while (t != null) { 1953 Node next = t.nextWaiter; 1954 if (t.waitStatus != Node.CONDITION) { 1955 t.nextWaiter = null; 1956 if (trail == null) 1957 firstWaiter = next; 1958 else 1959 trail.nextWaiter = next; 1960 if (next == null) 1961 lastWaiter = trail; 1962 } 1963 else 1964 trail = t; 1965 t = next; 1966 } 1967 } 1968 1969 // public methods 1970 1971 /** 1972 * Moves the longest-waiting thread, if one exists, from the 1973 * wait queue for this condition to the wait queue for the 1974 * owning lock. 1975 * 1976 * @throws IllegalMonitorStateException if {@link #isHeldExclusively} 1977 * returns {@code false} 1978 */ signal()1979 public final void signal() { 1980 if (!isHeldExclusively()) 1981 throw new IllegalMonitorStateException(); 1982 Node first = firstWaiter; 1983 if (first != null) 1984 doSignal(first); 1985 } 1986 1987 /** 1988 * Moves all threads from the wait queue for this condition to 1989 * the wait queue for the owning lock. 1990 * 1991 * @throws IllegalMonitorStateException if {@link #isHeldExclusively} 1992 * returns {@code false} 1993 */ signalAll()1994 public final void signalAll() { 1995 if (!isHeldExclusively()) 1996 throw new IllegalMonitorStateException(); 1997 Node first = firstWaiter; 1998 if (first != null) 1999 doSignalAll(first); 2000 } 2001 2002 /** 2003 * Implements uninterruptible condition wait. 2004 * <ol> 2005 * <li>Save lock state returned by {@link #getState}. 2006 * <li>Invoke {@link #release} with saved state as argument, 2007 * throwing IllegalMonitorStateException if it fails. 2008 * <li>Block until signalled. 2009 * <li>Reacquire by invoking specialized version of 2010 * {@link #acquire} with saved state as argument. 2011 * </ol> 2012 */ awaitUninterruptibly()2013 public final void awaitUninterruptibly() { 2014 Node node = addConditionWaiter(); 2015 int savedState = fullyRelease(node); 2016 boolean interrupted = false; 2017 while (!isOnSyncQueue(node)) { 2018 LockSupport.park(this); 2019 if (Thread.interrupted()) 2020 interrupted = true; 2021 } 2022 if (acquireQueued(node, savedState) || interrupted) 2023 selfInterrupt(); 2024 } 2025 2026 /* 2027 * For interruptible waits, we need to track whether to throw 2028 * InterruptedException, if interrupted while blocked on 2029 * condition, versus reinterrupt current thread, if 2030 * interrupted while blocked waiting to re-acquire. 2031 */ 2032 2033 /** Mode meaning to reinterrupt on exit from wait */ 2034 private static final int REINTERRUPT = 1; 2035 /** Mode meaning to throw InterruptedException on exit from wait */ 2036 private static final int THROW_IE = -1; 2037 2038 /** 2039 * Checks for interrupt, returning THROW_IE if interrupted 2040 * before signalled, REINTERRUPT if after signalled, or 2041 * 0 if not interrupted. 2042 */ checkInterruptWhileWaiting(Node node)2043 private int checkInterruptWhileWaiting(Node node) { 2044 return Thread.interrupted() ? 2045 (transferAfterCancelledWait(node) ? THROW_IE : REINTERRUPT) : 2046 0; 2047 } 2048 2049 /** 2050 * Throws InterruptedException, reinterrupts current thread, or 2051 * does nothing, depending on mode. 2052 */ reportInterruptAfterWait(int interruptMode)2053 private void reportInterruptAfterWait(int interruptMode) 2054 throws InterruptedException { 2055 if (interruptMode == THROW_IE) 2056 throw new InterruptedException(); 2057 else if (interruptMode == REINTERRUPT) 2058 selfInterrupt(); 2059 } 2060 2061 /** 2062 * Implements interruptible condition wait. 2063 * <ol> 2064 * <li>If current thread is interrupted, throw InterruptedException. 2065 * <li>Save lock state returned by {@link #getState}. 2066 * <li>Invoke {@link #release} with saved state as argument, 2067 * throwing IllegalMonitorStateException if it fails. 2068 * <li>Block until signalled or interrupted. 2069 * <li>Reacquire by invoking specialized version of 2070 * {@link #acquire} with saved state as argument. 2071 * <li>If interrupted while blocked in step 4, throw InterruptedException. 2072 * </ol> 2073 */ await()2074 public final void await() throws InterruptedException { 2075 if (Thread.interrupted()) 2076 throw new InterruptedException(); 2077 Node node = addConditionWaiter(); 2078 int savedState = fullyRelease(node); 2079 int interruptMode = 0; 2080 while (!isOnSyncQueue(node)) { 2081 LockSupport.park(this); 2082 if ((interruptMode = checkInterruptWhileWaiting(node)) != 0) 2083 break; 2084 } 2085 if (acquireQueued(node, savedState) && interruptMode != THROW_IE) 2086 interruptMode = REINTERRUPT; 2087 if (node.nextWaiter != null) // clean up if cancelled 2088 unlinkCancelledWaiters(); 2089 if (interruptMode != 0) 2090 reportInterruptAfterWait(interruptMode); 2091 } 2092 2093 /** 2094 * Implements timed condition wait. 2095 * <ol> 2096 * <li>If current thread is interrupted, throw InterruptedException. 2097 * <li>Save lock state returned by {@link #getState}. 2098 * <li>Invoke {@link #release} with saved state as argument, 2099 * throwing IllegalMonitorStateException if it fails. 2100 * <li>Block until signalled, interrupted, or timed out. 2101 * <li>Reacquire by invoking specialized version of 2102 * {@link #acquire} with saved state as argument. 2103 * <li>If interrupted while blocked in step 4, throw InterruptedException. 2104 * </ol> 2105 */ awaitNanos(long nanosTimeout)2106 public final long awaitNanos(long nanosTimeout) 2107 throws InterruptedException { 2108 if (Thread.interrupted()) 2109 throw new InterruptedException(); 2110 // We don't check for nanosTimeout <= 0L here, to allow 2111 // awaitNanos(0) as a way to "yield the lock". 2112 final long deadline = System.nanoTime() + nanosTimeout; 2113 long initialNanos = nanosTimeout; 2114 Node node = addConditionWaiter(); 2115 int savedState = fullyRelease(node); 2116 int interruptMode = 0; 2117 while (!isOnSyncQueue(node)) { 2118 if (nanosTimeout <= 0L) { 2119 transferAfterCancelledWait(node); 2120 break; 2121 } 2122 if (nanosTimeout > SPIN_FOR_TIMEOUT_THRESHOLD) 2123 LockSupport.parkNanos(this, nanosTimeout); 2124 if ((interruptMode = checkInterruptWhileWaiting(node)) != 0) 2125 break; 2126 nanosTimeout = deadline - System.nanoTime(); 2127 } 2128 if (acquireQueued(node, savedState) && interruptMode != THROW_IE) 2129 interruptMode = REINTERRUPT; 2130 if (node.nextWaiter != null) 2131 unlinkCancelledWaiters(); 2132 if (interruptMode != 0) 2133 reportInterruptAfterWait(interruptMode); 2134 long remaining = deadline - System.nanoTime(); // avoid overflow 2135 return (remaining <= initialNanos) ? remaining : Long.MIN_VALUE; 2136 } 2137 2138 /** 2139 * Implements absolute timed condition wait. 2140 * <ol> 2141 * <li>If current thread is interrupted, throw InterruptedException. 2142 * <li>Save lock state returned by {@link #getState}. 2143 * <li>Invoke {@link #release} with saved state as argument, 2144 * throwing IllegalMonitorStateException if it fails. 2145 * <li>Block until signalled, interrupted, or timed out. 2146 * <li>Reacquire by invoking specialized version of 2147 * {@link #acquire} with saved state as argument. 2148 * <li>If interrupted while blocked in step 4, throw InterruptedException. 2149 * <li>If timed out while blocked in step 4, return false, else true. 2150 * </ol> 2151 */ awaitUntil(Date deadline)2152 public final boolean awaitUntil(Date deadline) 2153 throws InterruptedException { 2154 long abstime = deadline.getTime(); 2155 if (Thread.interrupted()) 2156 throw new InterruptedException(); 2157 Node node = addConditionWaiter(); 2158 int savedState = fullyRelease(node); 2159 boolean timedout = false; 2160 int interruptMode = 0; 2161 while (!isOnSyncQueue(node)) { 2162 if (System.currentTimeMillis() >= abstime) { 2163 timedout = transferAfterCancelledWait(node); 2164 break; 2165 } 2166 LockSupport.parkUntil(this, abstime); 2167 if ((interruptMode = checkInterruptWhileWaiting(node)) != 0) 2168 break; 2169 } 2170 if (acquireQueued(node, savedState) && interruptMode != THROW_IE) 2171 interruptMode = REINTERRUPT; 2172 if (node.nextWaiter != null) 2173 unlinkCancelledWaiters(); 2174 if (interruptMode != 0) 2175 reportInterruptAfterWait(interruptMode); 2176 return !timedout; 2177 } 2178 2179 /** 2180 * Implements timed condition wait. 2181 * <ol> 2182 * <li>If current thread is interrupted, throw InterruptedException. 2183 * <li>Save lock state returned by {@link #getState}. 2184 * <li>Invoke {@link #release} with saved state as argument, 2185 * throwing IllegalMonitorStateException if it fails. 2186 * <li>Block until signalled, interrupted, or timed out. 2187 * <li>Reacquire by invoking specialized version of 2188 * {@link #acquire} with saved state as argument. 2189 * <li>If interrupted while blocked in step 4, throw InterruptedException. 2190 * <li>If timed out while blocked in step 4, return false, else true. 2191 * </ol> 2192 */ await(long time, TimeUnit unit)2193 public final boolean await(long time, TimeUnit unit) 2194 throws InterruptedException { 2195 long nanosTimeout = unit.toNanos(time); 2196 if (Thread.interrupted()) 2197 throw new InterruptedException(); 2198 // We don't check for nanosTimeout <= 0L here, to allow 2199 // await(0, unit) as a way to "yield the lock". 2200 final long deadline = System.nanoTime() + nanosTimeout; 2201 Node node = addConditionWaiter(); 2202 int savedState = fullyRelease(node); 2203 boolean timedout = false; 2204 int interruptMode = 0; 2205 while (!isOnSyncQueue(node)) { 2206 if (nanosTimeout <= 0L) { 2207 timedout = transferAfterCancelledWait(node); 2208 break; 2209 } 2210 if (nanosTimeout > SPIN_FOR_TIMEOUT_THRESHOLD) 2211 LockSupport.parkNanos(this, nanosTimeout); 2212 if ((interruptMode = checkInterruptWhileWaiting(node)) != 0) 2213 break; 2214 nanosTimeout = deadline - System.nanoTime(); 2215 } 2216 if (acquireQueued(node, savedState) && interruptMode != THROW_IE) 2217 interruptMode = REINTERRUPT; 2218 if (node.nextWaiter != null) 2219 unlinkCancelledWaiters(); 2220 if (interruptMode != 0) 2221 reportInterruptAfterWait(interruptMode); 2222 return !timedout; 2223 } 2224 2225 // support for instrumentation 2226 2227 /** 2228 * Returns true if this condition was created by the given 2229 * synchronization object. 2230 * 2231 * @return {@code true} if owned 2232 */ isOwnedBy(AbstractQueuedSynchronizer sync)2233 final boolean isOwnedBy(AbstractQueuedSynchronizer sync) { 2234 return sync == AbstractQueuedSynchronizer.this; 2235 } 2236 2237 /** 2238 * Queries whether any threads are waiting on this condition. 2239 * Implements {@link AbstractQueuedSynchronizer#hasWaiters(ConditionObject)}. 2240 * 2241 * @return {@code true} if there are any waiting threads 2242 * @throws IllegalMonitorStateException if {@link #isHeldExclusively} 2243 * returns {@code false} 2244 */ hasWaiters()2245 protected final boolean hasWaiters() { 2246 if (!isHeldExclusively()) 2247 throw new IllegalMonitorStateException(); 2248 for (Node w = firstWaiter; w != null; w = w.nextWaiter) { 2249 if (w.waitStatus == Node.CONDITION) 2250 return true; 2251 } 2252 return false; 2253 } 2254 2255 /** 2256 * Returns an estimate of the number of threads waiting on 2257 * this condition. 2258 * Implements {@link AbstractQueuedSynchronizer#getWaitQueueLength(ConditionObject)}. 2259 * 2260 * @return the estimated number of waiting threads 2261 * @throws IllegalMonitorStateException if {@link #isHeldExclusively} 2262 * returns {@code false} 2263 */ getWaitQueueLength()2264 protected final int getWaitQueueLength() { 2265 if (!isHeldExclusively()) 2266 throw new IllegalMonitorStateException(); 2267 int n = 0; 2268 for (Node w = firstWaiter; w != null; w = w.nextWaiter) { 2269 if (w.waitStatus == Node.CONDITION) 2270 ++n; 2271 } 2272 return n; 2273 } 2274 2275 /** 2276 * Returns a collection containing those threads that may be 2277 * waiting on this Condition. 2278 * Implements {@link AbstractQueuedSynchronizer#getWaitingThreads(ConditionObject)}. 2279 * 2280 * @return the collection of threads 2281 * @throws IllegalMonitorStateException if {@link #isHeldExclusively} 2282 * returns {@code false} 2283 */ getWaitingThreads()2284 protected final Collection<Thread> getWaitingThreads() { 2285 if (!isHeldExclusively()) 2286 throw new IllegalMonitorStateException(); 2287 ArrayList<Thread> list = new ArrayList<>(); 2288 for (Node w = firstWaiter; w != null; w = w.nextWaiter) { 2289 if (w.waitStatus == Node.CONDITION) { 2290 Thread t = w.thread; 2291 if (t != null) 2292 list.add(t); 2293 } 2294 } 2295 return list; 2296 } 2297 } 2298 2299 // VarHandle mechanics 2300 private static final VarHandle STATE; 2301 private static final VarHandle HEAD; 2302 private static final VarHandle TAIL; 2303 2304 static { 2305 try { 2306 MethodHandles.Lookup l = MethodHandles.lookup(); 2307 STATE = l.findVarHandle(AbstractQueuedSynchronizer.class, "state", int.class); 2308 HEAD = l.findVarHandle(AbstractQueuedSynchronizer.class, "head", Node.class); 2309 TAIL = l.findVarHandle(AbstractQueuedSynchronizer.class, "tail", Node.class); 2310 } catch (ReflectiveOperationException e) { 2311 throw new ExceptionInInitializerError(e); 2312 } 2313 2314 // Reduce the risk of rare disastrous classloading in first call to 2315 // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773 2316 Class<?> ensureLoaded = LockSupport.class; 2317 } 2318 2319 /** 2320 * Initializes head and tail fields on first contention. 2321 */ initializeSyncQueue()2322 private final void initializeSyncQueue() { 2323 Node h; 2324 if (HEAD.compareAndSet(this, null, (h = new Node()))) 2325 tail = h; 2326 } 2327 2328 /** 2329 * CASes tail field. 2330 */ compareAndSetTail(Node expect, Node update)2331 private final boolean compareAndSetTail(Node expect, Node update) { 2332 return TAIL.compareAndSet(this, expect, update); 2333 } 2334 } 2335