• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright 2015 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 #define EIGEN_USE_THREADS
17 
18 #include <vector>
19 
20 #include "tensorflow/cc/client/client_session.h"
21 #include "tensorflow/cc/ops/array_ops.h"
22 #include "tensorflow/core/framework/tensor_testutil.h"
23 
24 namespace tensorflow {
25 namespace ops {
26 namespace {
27 
ReferenceImpl(const quint8 * inp,float inp_min,float inp_max,const TensorShape & shape,float var_eps,float * out)28 void ReferenceImpl(const quint8* inp, float inp_min, float inp_max,
29                    const TensorShape& shape, float var_eps, float* out) {
30   int N = shape.dim_size(0);
31   int H = shape.dim_size(1);
32   int W = shape.dim_size(2);
33   int C = shape.dim_size(3);
34 
35   int total = N * H * W * C;
36   float inp_scale = (inp_max - inp_min) / 255.0f;
37   std::unique_ptr<float[]> dequantized(new float[total]);
38 
39   for (int i = 0; i < total; ++i) {
40     dequantized[i] = inp_min + inp_scale * static_cast<float>(inp[i]);
41   }
42 
43   std::unique_ptr<float[]> inp_mean(new float[N * C]);
44   std::unique_ptr<float[]> inp_var(new float[N * C]);
45 
46   float img_size = static_cast<float>(H) * static_cast<float>(W);
47 
48   // Compute mean
49   for (int n = 0; n < N; ++n) {
50     for (int c = 0; c < C; ++c) {
51       float sum = 0.0;
52       for (int i = 0; i < H * W; ++i) {
53         sum += dequantized[n * H * W * C + i * C + c];
54       }
55       inp_mean[n * C + c] = sum / img_size;
56     }
57   }
58 
59   // Compute var
60   for (int n = 0; n < N; ++n) {
61     for (int c = 0; c < C; ++c) {
62       float sum = 0.0;
63       for (int i = 0; i < H * W; ++i) {
64         float tmp =
65             dequantized[n * H * W * C + i * C + c] - inp_mean[n * C + c];
66         sum += tmp * tmp;
67       }
68       inp_var[n * C + c] = sum / img_size;
69     }
70   }
71 
72   for (int n = 0; n < N; ++n) {
73     for (int c = 0; c < C; ++c) {
74       for (int i = 0; i < H * W; ++i) {
75         out[n * H * W * C + i * C + c] =
76             (dequantized[n * H * W * C + i * C + c] - inp_mean[n * C + c]) /
77             std::sqrt(inp_var[n * C + c] + var_eps);
78       }
79     }
80   }
81 }
82 
Expect(const Tensor & input,float x_min,float x_max,bool output_range_given,float give_y_min,float given_y_max)83 void Expect(const Tensor& input, float x_min, float x_max,
84             bool output_range_given, float give_y_min, float given_y_max) {
85   Scope root = Scope::NewRootScope();
86 
87   auto input_ph = Placeholder(root, DT_QUINT8);
88 
89   const float variance_eps = 1e-5;
90   auto instance_norm = QuantizedInstanceNorm(
91       root, input_ph, x_min, x_max,
92       QuantizedInstanceNorm::Attrs().VarianceEpsilon(variance_eps));
93 
94   Status s = root.status();
95   EXPECT_TRUE(s.ok());
96 
97   ClientSession session(root);
98   std::vector<Tensor> outputs;
99 
100   s = session.Run({{input_ph, input}},
101                   {instance_norm.y, instance_norm.y_min, instance_norm.y_max},
102                   &outputs);
103 
104   EXPECT_TRUE(s.ok());
105   Tensor expected(DT_FLOAT, input.shape());
106 
107   ReferenceImpl(input.flat<quint8>().data(), x_min, x_max, input.shape(),
108                 variance_eps, expected.flat<float>().data());
109 
110   auto out = outputs[0].flat<quint8>();
111 
112   float out_min = outputs[1].flat<float>()(0);
113   float out_max = outputs[2].flat<float>()(0);
114   float out_scale = (out_max - out_min) / 255.0f;
115 
116   Eigen::Tensor<float, 0, Eigen::RowMajor> max_diff =
117       (expected.flat<float>() - (out_min + out_scale * out.cast<float>()))
118           .abs()
119           .maximum();
120   EXPECT_LE(max_diff(), 0.1);
121   LOG(INFO) << "max diff " << max_diff();
122 }
123 
TestBasic()124 void TestBasic() {
125   Tensor input_tensor(DT_QUINT8, {1, 4, 4, 32});
126   auto input = input_tensor.flat<quint8>();
127   // Random input
128   input = input.random(Eigen::internal::UniformRandomGenerator<quint8>());
129 
130   Expect(input_tensor, 0.0f, 1.0f, false, 0.0f, 0.0f);
131 }
132 
TestZeroInput()133 void TestZeroInput() {
134   Tensor input_tensor(DT_QUINT8, {1, 4, 4, 32});
135   auto input = input_tensor.flat<quint8>();
136   // Zero input, but input min > 0. Tests that output min and max should be
137   // properly separated.
138   input = input.setConstant(0);
139 
140   Expect(input_tensor, 2.0f, 3.0f, false, 0.0f, 0.0f);
141 }
142 
TestMaxInput()143 void TestMaxInput() {
144   Tensor input_tensor(DT_QUINT8, {1, 1, 2, 16});
145   auto input = input_tensor.flat<quint8>();
146   // Inputs are all FLT_MAX / (number of inputs).
147   input = input.setConstant(255);
148 
149   Expect(input_tensor, 0.0f,
150          std::numeric_limits<float>::max() / static_cast<float>(2 * 16), false,
151          0.0f, 0.0f);
152 }
153 
TestOutputRangeGiven()154 void TestOutputRangeGiven() {
155   Tensor input_tensor(DT_QUINT8, {1, 4, 4, 32});
156   auto input = input_tensor.flat<quint8>();
157   input = input.random(Eigen::internal::UniformRandomGenerator<quint8>());
158 
159   Expect(input_tensor, -10.0f, 10.0f, true, -1.0f, 1.0f);
160 }
161 
TestClamp()162 void TestClamp() {
163   Tensor input_tensor(DT_QUINT8, {1, 4, 4, 32});
164   auto input = input_tensor.flat<quint8>();
165   input = input.random(Eigen::internal::UniformRandomGenerator<quint8>());
166 
167   // Tests that negative outputs are clamped at 0.0, as the output range is
168   // given to be (0.0, 1.0).
169   Expect(input_tensor, -10.0f, 10.0f, true, 0.0f, 1.0f);
170 }
171 
172 }  // namespace
173 }  // namespace ops
174 }  // namespace tensorflow
175 
176 #define RUN_TEST(t) \
177   TEST(QuantizedInstanceNormTest, t) { tensorflow::ops::t(); }
178 
179 RUN_TEST(TestBasic);
180 RUN_TEST(TestZeroInput);
181 RUN_TEST(TestMaxInput);
182 RUN_TEST(TestOutputRangeGiven);
183 RUN_TEST(TestClamp);
184 
main(int argc,char ** argv)185 int main(int argc, char** argv) {
186   // On Linux, add: absl::SetFlag(&FLAGS_logtostderr, true);
187   ::testing::InitGoogleTest(&argc, argv);
188   return RUN_ALL_TESTS();
189 }
190