• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //
2 // Copyright © 2017 Arm Ltd and Contributors. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 
6 #include "DepthwiseConvolution2dLayer.hpp"
7 #include "LayerCloneBase.hpp"
8 
9 #include <armnn/TypesUtils.hpp>
10 
11 #include <armnnUtils/DataLayoutIndexed.hpp>
12 
13 #include <backendsCommon/CpuTensorHandle.hpp>
14 #include <backendsCommon/WorkloadFactory.hpp>
15 
16 #include <string>
17 
18 using namespace armnnUtils;
19 
20 namespace armnn
21 {
22 
DepthwiseConvolution2dLayer(const DepthwiseConvolution2dDescriptor & param,const char * name)23 DepthwiseConvolution2dLayer::DepthwiseConvolution2dLayer(const DepthwiseConvolution2dDescriptor& param,
24                                                          const char* name)
25     : LayerWithParameters(1, 1, LayerType::DepthwiseConvolution2d, param, name)
26 {
27 }
28 
SerializeLayerParameters(ParameterStringifyFunction & fn) const29 void DepthwiseConvolution2dLayer::SerializeLayerParameters(ParameterStringifyFunction& fn) const
30 {
31     const std::vector<TensorShape>& inputShapes =
32     {
33         GetInputSlot(0).GetConnection()->GetTensorInfo().GetShape(),
34         m_Weight->GetTensorInfo().GetShape()
35     };
36     const TensorShape filterShape = inputShapes[1];
37     DataLayoutIndexed dataLayoutIndex(m_Param.m_DataLayout);
38     unsigned int inputChannels = filterShape[1];
39     unsigned int filterWidth = filterShape[3];
40     unsigned int filterHeight = filterShape[2];
41     unsigned int depthMultiplier = filterShape[0];
42 
43     fn("FilterWidth",std::to_string(filterWidth));
44     fn("FilterHeight",std::to_string(filterHeight));
45     fn("DepthMultiplier",std::to_string(depthMultiplier));
46     fn("InputChannels",std::to_string(inputChannels));
47 
48     LayerWithParameters<DepthwiseConvolution2dDescriptor>::SerializeLayerParameters(fn);
49 }
50 
CreateWorkload(const IWorkloadFactory & factory) const51 std::unique_ptr<IWorkload> DepthwiseConvolution2dLayer::CreateWorkload(const IWorkloadFactory& factory) const
52 {
53     // on this level constant data should not be released..
54     ARMNN_ASSERT_MSG(m_Weight != nullptr, "DepthwiseConvolution2dLayer: Weights data should not be null.");
55 
56     DepthwiseConvolution2dQueueDescriptor descriptor;
57 
58     descriptor.m_Weight = m_Weight.get();
59 
60     if (m_Param.m_BiasEnabled)
61     {
62         ARMNN_ASSERT_MSG(m_Bias != nullptr, "DepthwiseConvolution2dLayer: Bias data should not be null.");
63         descriptor.m_Bias = m_Bias.get();
64     }
65 
66     SetAdditionalInfo(descriptor);
67 
68     return factory.CreateDepthwiseConvolution2d(descriptor, PrepInfoAndDesc(descriptor));
69 }
70 
Clone(Graph & graph) const71 DepthwiseConvolution2dLayer* DepthwiseConvolution2dLayer::Clone(Graph& graph) const
72 {
73     auto layer      = CloneBase<DepthwiseConvolution2dLayer>(graph, m_Param, GetName());
74     layer->m_Weight = m_Weight ? std::make_unique<ScopedCpuTensorHandle>(*m_Weight) : nullptr;
75 
76     if (layer->m_Param.m_BiasEnabled)
77     {
78         layer->m_Bias = m_Bias ? std::make_unique<ScopedCpuTensorHandle>(*m_Bias) : nullptr;
79     }
80 
81     return std::move(layer);
82 }
83 
84 std::vector<TensorShape>
InferOutputShapes(const std::vector<TensorShape> & inputShapes) const85 DepthwiseConvolution2dLayer::InferOutputShapes(const std::vector<TensorShape>& inputShapes) const
86 {
87     ARMNN_ASSERT(inputShapes.size() == 2);
88     const TensorShape& inputShape  = inputShapes[0];
89     const TensorShape& filterShape = inputShapes[1];
90 
91     ARMNN_ASSERT_MSG(inputShape.GetNumDimensions() == 4, "Convolutions will always have 4D input.");
92 
93     DataLayoutIndexed dataLayoutIndex(m_Param.m_DataLayout);
94 
95     unsigned int inputBatchSize = inputShape[0];
96     unsigned int inputHeight    = inputShape[dataLayoutIndex.GetHeightIndex()];
97     unsigned int inputWidth     = inputShape[dataLayoutIndex.GetWidthIndex()];
98     unsigned int inputChannels  = inputShape[dataLayoutIndex.GetChannelsIndex()];
99 
100     // Expected filter shape: [ M, I, H, W ] - This shape does NOT depend on the data layout
101     // Namely: [ depth multiplier, input channels, filter height, filter width ]
102     // Output channels = input channels * depthMultiplier
103     unsigned int depthMultiplier = filterShape[0];
104 
105     unsigned int filterHeight = filterShape[2];
106     unsigned int dilatedFilterHeight = filterHeight + (m_Param.m_DilationY - 1) * (filterHeight - 1);
107     unsigned int readHeight   = (inputHeight + m_Param.m_PadTop + m_Param.m_PadBottom) - dilatedFilterHeight;
108     unsigned int outputHeight = 1 + (readHeight / m_Param.m_StrideY);
109 
110     unsigned int filterWidth = filterShape[3];
111     unsigned int dilatedFilterWidth = filterWidth + (m_Param.m_DilationX - 1) * (filterWidth - 1);
112     unsigned int readWidth   = (inputWidth + m_Param.m_PadLeft + m_Param.m_PadRight) - dilatedFilterWidth;
113     unsigned int outputWidth = 1 + (readWidth / m_Param.m_StrideX);
114 
115     unsigned int outputChannels  = inputChannels * depthMultiplier;
116     unsigned int outputBatchSize = inputBatchSize;
117 
118     TensorShape tensorShape = m_Param.m_DataLayout == armnn::DataLayout::NHWC ?
119                               TensorShape{ outputBatchSize, outputHeight, outputWidth, outputChannels } :
120                               TensorShape{ outputBatchSize, outputChannels, outputHeight, outputWidth };
121 
122     return std::vector<TensorShape>{ tensorShape };
123 }
124 
ValidateTensorShapesFromInputs()125 void DepthwiseConvolution2dLayer::ValidateTensorShapesFromInputs()
126 {
127     VerifyLayerConnections(1, CHECK_LOCATION());
128 
129     const TensorShape& outputShape = GetOutputSlot(0).GetTensorInfo().GetShape();
130 
131     VerifyShapeInferenceType(outputShape, m_ShapeInferenceMethod);
132 
133     // on this level constant data should not be released..
134     ARMNN_ASSERT_MSG(m_Weight != nullptr, "DepthwiseConvolution2dLayer: Weights data should not be null.");
135 
136     auto inferredShapes = InferOutputShapes({
137         GetInputSlot(0).GetConnection()->GetTensorInfo().GetShape(),
138         m_Weight->GetTensorInfo().GetShape()
139      });
140 
141     ARMNN_ASSERT(inferredShapes.size() == 1);
142 
143     ValidateAndCopyShape(outputShape, inferredShapes[0], m_ShapeInferenceMethod, "DepthwiseConvolution2dLayer");
144 }
145 
GetConstantTensorsByRef()146 Layer::ConstantTensors DepthwiseConvolution2dLayer::GetConstantTensorsByRef()
147 {
148     return {m_Weight, m_Bias};
149 }
150 
Accept(ILayerVisitor & visitor) const151 void DepthwiseConvolution2dLayer::Accept(ILayerVisitor& visitor) const
152 {
153     ConstTensor weightsTensor(m_Weight->GetTensorInfo(), m_Weight->Map(true));
154     Optional<ConstTensor> optionalBiasTensor = EmptyOptional();
155 
156     if (GetParameters().m_BiasEnabled)
157     {
158         ConstTensor biasTensor(m_Bias->GetTensorInfo(), m_Bias->Map(true));
159         optionalBiasTensor = Optional<ConstTensor>(biasTensor);
160     }
161 
162     visitor.VisitDepthwiseConvolution2dLayer(this, GetParameters(), weightsTensor, optionalBiasTensor, GetName());
163 }
164 
165 } // namespace armnn
166