• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //
2 // Copyright © 2017 Arm Ltd and Contributors. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 
6 #include "MeanLayer.hpp"
7 #include "LayerCloneBase.hpp"
8 
9 #include <armnn/utility/NumericCast.hpp>
10 
11 #include <backendsCommon/CpuTensorHandle.hpp>
12 #include <backendsCommon/WorkloadData.hpp>
13 #include <backendsCommon/WorkloadFactory.hpp>
14 
15 #include <cstring>
16 
17 namespace armnn
18 {
19 
MeanLayer(const armnn::MeanDescriptor & param,const char * name)20 MeanLayer::MeanLayer(const armnn::MeanDescriptor& param, const char* name)
21     : LayerWithParameters(1, 1, LayerType::Mean, param, name)
22 {}
23 
CreateWorkload(const armnn::IWorkloadFactory & factory) const24 std::unique_ptr<IWorkload> MeanLayer::CreateWorkload(const armnn::IWorkloadFactory& factory) const
25 {
26     MeanQueueDescriptor descriptor;
27     descriptor.m_Parameters.m_Axis = m_Param.m_Axis;
28     descriptor.m_Parameters.m_KeepDims = m_Param.m_KeepDims;
29     SetAdditionalInfo(descriptor);
30 
31     return factory.CreateMean(descriptor, PrepInfoAndDesc(descriptor));
32 }
33 
Clone(Graph & graph) const34 MeanLayer* MeanLayer::Clone(Graph& graph) const
35 {
36     auto layer = CloneBase<MeanLayer>(graph, m_Param, GetName());
37 
38     layer->m_Param.m_Axis = m_Param.m_Axis;
39     layer->m_Param.m_KeepDims = m_Param.m_KeepDims;
40 
41     return std::move(layer);
42 }
43 
ValidateTensorShapesFromInputs()44 void MeanLayer::ValidateTensorShapesFromInputs()
45 {
46     VerifyLayerConnections(1, CHECK_LOCATION());
47 
48     const TensorShape& outputShape = GetOutputSlot(0).GetTensorInfo().GetShape();
49 
50     VerifyShapeInferenceType(outputShape, m_ShapeInferenceMethod);
51 
52     const TensorInfo& input = GetInputSlot(0).GetConnection()->GetTensorInfo();
53 
54     ARMNN_ASSERT_MSG(input.GetNumDimensions() > 0 && input.GetNumDimensions() <= 4,
55                      "MeanLayer: Mean supports up to 4D input.");
56 
57     unsigned int rank = input.GetNumDimensions();
58     unsigned int outputRank = 0;
59 
60     // Calculate output dimension
61     if (m_Param.m_KeepDims)
62     {
63         outputRank = rank;
64     }
65     else if (m_Param.m_Axis.empty())
66     {
67         outputRank = 1;
68     }
69     else if (m_Param.m_Axis.size() > input.GetNumDimensions())
70     {
71         throw LayerValidationException("MeanLayer: Dimensions to reduce can not be bigger than input dimensions");
72     }
73     else
74     {
75         outputRank = input.GetNumDimensions() - armnn::numeric_cast<unsigned int>(m_Param.m_Axis.size());
76         if (outputRank == 0)
77         {
78             outputRank = 1;
79         }
80     }
81 
82     std::vector<unsigned int> dimSizes(outputRank, 1);
83     if (!m_Param.m_Axis.empty())
84     {
85         // Skip the dimension that has been reduced unless keepDims is true.
86         unsigned int outputIndex = 0;
87         for (unsigned int i = 0; i < input.GetNumDimensions(); ++i)
88         {
89             if (std::find(m_Param.m_Axis.begin(), m_Param.m_Axis.end(), i) == m_Param.m_Axis.end())
90             {
91                 dimSizes[outputIndex] = armnn::numeric_cast<unsigned int>(input.GetShape()[i]);
92                 ++outputIndex;
93             }
94             else if (m_Param.m_KeepDims)
95             {
96                 dimSizes[outputIndex] = 1;
97                 ++outputIndex;
98             }
99         }
100     }
101     const TensorShape& inferredShape = TensorShape(outputRank, dimSizes.data());
102 
103     ValidateAndCopyShape(outputShape, inferredShape, m_ShapeInferenceMethod, "MeanLayer");
104 }
105 
Accept(ILayerVisitor & visitor) const106 void MeanLayer::Accept(ILayerVisitor& visitor) const
107 {
108     visitor.VisitMeanLayer(this, GetParameters(), GetName());
109 }
110 
111 } // namespace armnn
112