• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //
2 // Copyright © 2017 Arm Ltd and Contributors. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 
6 #include "TransposeConvolution2dLayer.hpp"
7 #include "LayerCloneBase.hpp"
8 
9 #include <armnnUtils/DataLayoutIndexed.hpp>
10 
11 #include <backendsCommon/CpuTensorHandle.hpp>
12 #include <backendsCommon/WorkloadFactory.hpp>
13 
14 using namespace armnnUtils;
15 
16 namespace armnn
17 {
18 
TransposeConvolution2dLayer(const TransposeConvolution2dDescriptor & param,const char * name)19 TransposeConvolution2dLayer::TransposeConvolution2dLayer(const TransposeConvolution2dDescriptor& param,
20                                                          const char* name)
21     : LayerWithParameters(1, 1, LayerType::TransposeConvolution2d, param, name)
22 {
23 }
24 
CreateWorkload(const IWorkloadFactory & factory) const25 std::unique_ptr<IWorkload> TransposeConvolution2dLayer::CreateWorkload(const IWorkloadFactory& factory) const
26 {
27     ARMNN_ASSERT_MSG(m_Weight != nullptr, "TransposeConvolution2dLayer: Weights data should not be null.");
28 
29     TransposeConvolution2dQueueDescriptor descriptor;
30     descriptor.m_Weight = m_Weight.get();
31 
32     if (m_Param.m_BiasEnabled)
33     {
34         ARMNN_ASSERT_MSG(m_Bias != nullptr, "TransposeConvolution2dLayer: Bias data should not be null.");
35         descriptor.m_Bias = m_Bias.get();
36     }
37 
38     SetAdditionalInfo(descriptor);
39 
40     return factory.CreateTransposeConvolution2d(descriptor, PrepInfoAndDesc(descriptor));
41 }
42 
Clone(Graph & graph) const43 TransposeConvolution2dLayer* TransposeConvolution2dLayer::Clone(Graph& graph) const
44 {
45     auto layer = CloneBase<TransposeConvolution2dLayer>(graph, m_Param, GetName());
46 
47     layer->m_Weight = m_Weight ? std::make_unique<ScopedCpuTensorHandle>(*m_Weight) : nullptr;
48 
49     if (layer->m_Param.m_BiasEnabled)
50     {
51         layer->m_Bias = m_Bias ? std::make_unique<ScopedCpuTensorHandle>(*m_Bias) : nullptr;
52     }
53 
54     return std::move(layer);
55 }
56 
InferOutputShapes(const std::vector<TensorShape> & inputShapes) const57 std::vector<TensorShape> TransposeConvolution2dLayer::InferOutputShapes(
58     const std::vector<TensorShape>& inputShapes) const
59 {
60     ARMNN_ASSERT(inputShapes.size() == 2);
61     const TensorShape& inputShape  = inputShapes[0];
62     const TensorShape& kernelShape = inputShapes[1];
63 
64     ARMNN_ASSERT_MSG(inputShape.GetNumDimensions() == 4, "Transpose convolutions will always have 4D input");
65 
66     DataLayoutIndexed dataLayoutIndex(m_Param.m_DataLayout);
67 
68     const unsigned int batches = inputShape[0];
69 
70     const unsigned int wInput = inputShape[dataLayoutIndex.GetWidthIndex()];
71     const unsigned int hInput = inputShape[dataLayoutIndex.GetHeightIndex()];
72 
73     const unsigned int wKernel = kernelShape[dataLayoutIndex.GetWidthIndex()];
74     const unsigned int hKernel = kernelShape[dataLayoutIndex.GetHeightIndex()];
75 
76     unsigned int wPadding = m_Param.m_PadLeft + m_Param.m_PadRight;
77     unsigned int hPadding = m_Param.m_PadTop + m_Param.m_PadBottom;
78 
79     unsigned int wOutput = (wInput - 1) * m_Param.m_StrideX + wKernel - wPadding;
80     unsigned int hOutput = (hInput - 1) * m_Param.m_StrideY + hKernel - hPadding;
81 
82     unsigned int kernelElements = kernelShape[0] * kernelShape[dataLayoutIndex.GetChannelsIndex()];
83     unsigned int inputElements  = batches * inputShape[dataLayoutIndex.GetChannelsIndex()];
84 
85     ARMNN_ASSERT_MSG(inputElements != 0, "Invalid number of input elements");
86 
87     unsigned int channels;
88     if (kernelElements >= inputElements)
89     {
90         ARMNN_ASSERT_MSG(kernelElements % inputElements == 0 , "Invalid number of elements");
91         channels = kernelElements / inputElements;
92     }
93     else
94     {
95         ARMNN_ASSERT_MSG(inputElements % kernelElements == 0 , "Invalid number of elements");
96         channels = kernelShape[0];
97     }
98 
99     TensorShape tensorShape = m_Param.m_DataLayout == armnn::DataLayout::NHWC ?
100          TensorShape( { batches, hOutput, wOutput, channels } ) :
101          TensorShape( { batches, channels, hOutput, wOutput });
102 
103     return std::vector<TensorShape>({ tensorShape });
104 }
105 
ValidateTensorShapesFromInputs()106 void TransposeConvolution2dLayer::ValidateTensorShapesFromInputs()
107 {
108     VerifyLayerConnections(1, CHECK_LOCATION());
109 
110     const TensorShape& outputShape = GetOutputSlot(0).GetTensorInfo().GetShape();
111 
112     VerifyShapeInferenceType(outputShape, m_ShapeInferenceMethod);
113 
114     ARMNN_ASSERT_MSG(m_Weight != nullptr, "TransposeConvolution2dLayer: Weight data cannot be null.");
115 
116     std::vector<TensorShape> expectedOutputShape;
117     // If output_shape was specified then use it rather than calculate an inferred output shape.
118     if (m_Param.m_OutputShapeEnabled)
119     {
120         TensorShape shapeAsTensorShape(static_cast<unsigned int>(m_Param.m_OutputShape.size()),
121             m_Param.m_OutputShape.data());
122         expectedOutputShape.push_back(shapeAsTensorShape);
123     }
124     else
125     {
126         expectedOutputShape = InferOutputShapes({GetInputSlot(0).GetConnection()->GetTensorInfo().GetShape(),
127                                                  m_Weight->GetTensorInfo().GetShape() });
128     }
129 
130     ARMNN_ASSERT(expectedOutputShape.size() == 1);
131 
132     ValidateAndCopyShape(outputShape, expectedOutputShape[0], m_ShapeInferenceMethod, "TransposeConvolution2dLayer");
133 }
134 
GetConstantTensorsByRef()135 Layer::ConstantTensors TransposeConvolution2dLayer::GetConstantTensorsByRef()
136 {
137     return {m_Weight, m_Bias};
138 }
139 
Accept(ILayerVisitor & visitor) const140 void TransposeConvolution2dLayer::Accept(ILayerVisitor& visitor) const
141 {
142     ConstTensor weightsTensor(m_Weight->GetTensorInfo(), m_Weight->Map(true)) ;
143     Optional<ConstTensor> optionalBiasTensor = EmptyOptional();
144 
145     if (GetParameters().m_BiasEnabled)
146     {
147         ConstTensor biasTensor(m_Bias->GetTensorInfo(), m_Bias->Map(true));
148         optionalBiasTensor = Optional<ConstTensor>(biasTensor);
149     }
150 
151     visitor.VisitTransposeConvolution2dLayer(this, GetParameters(), weightsTensor, optionalBiasTensor, GetName());
152 }
153 
154 } // namespace armnn
155