• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //
2 // Copyright © 2020 Arm Ltd. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 
6 #include "../TestUtils.hpp"
7 
8 #include <BFloat16.hpp>
9 #include <Optimizer.hpp>
10 
11 #include <boost/test/unit_test.hpp>
12 
13 using namespace armnn;
14 
15 BOOST_AUTO_TEST_SUITE(Optimizer)
16 using namespace armnn::optimizations;
17 
BOOST_AUTO_TEST_CASE(ConvertConstantsFloatToBFloatTest)18 BOOST_AUTO_TEST_CASE(ConvertConstantsFloatToBFloatTest)
19 {
20     armnn::Graph graph;
21 
22     const armnn::TensorInfo info({ 1, 1, 1, 2 }, armnn::DataType::BFloat16);
23 
24     // Create const tensor from fp32 data
25     unsigned int dims[] = { 4, 2, 1, 1 };
26     std::vector<float> floatWeights{ 0.0f, -1.0f,
27                                      3.8f, // 0x40733333 Round down
28                                      3.1055E+29f, // 0x707ADC3C Round up
29                                      9.149516E-10f, // 0x307B7FFF Round down
30                                     -3.8f, // 0xC0733333 Round down
31                                     -3.1055E+29f, // 0xF07ADC3C Round up
32                                     -9.149516E-10f // 0xB07B7FFF Round down
33                                    };
34     armnn::ConstTensor weights(armnn::TensorInfo(4, dims, armnn::DataType::Float32), floatWeights);
35 
36     // Create simple test network
37     auto input = graph.AddLayer<armnn::InputLayer>(0, "input");
38     input->GetOutputSlot().SetTensorInfo(info);
39 
40     auto fc      = graph.AddLayer<armnn::FullyConnectedLayer>(armnn::FullyConnectedDescriptor(), "fc");
41     fc->m_Weight = std::make_unique<armnn::ScopedCpuTensorHandle>(weights);
42     fc->GetOutputSlot().SetTensorInfo(info);
43 
44     auto output = graph.AddLayer<armnn::OutputLayer>(1, "output");
45 
46     // Connect up the layers
47     input->GetOutputSlot().Connect(fc->GetInputSlot(0));
48     fc->GetOutputSlot().Connect(output->GetInputSlot(0));
49 
50     // Check tensor data type before conversion
51     BOOST_CHECK(fc->m_Weight->GetTensorInfo().GetDataType() == armnn::DataType::Float32);
52 
53     // Run the optimizer
54     armnn::Optimizer::Pass(graph, armnn::MakeOptimizations(ConvertConstantsFloatToBFloat()));
55 
56     // Check tensor data type after conversion
57     BOOST_CHECK(fc->m_Weight->GetTensorInfo().GetDataType() == armnn::DataType::BFloat16);
58 
59     // Check whether data matches expected Bf16 data
60     BFloat16* data = fc->m_Weight->GetTensor<BFloat16>();
61     BOOST_CHECK(data[0] == BFloat16(0.0f));
62     BOOST_CHECK(data[1] == BFloat16(-1.0f));
63     BOOST_CHECK(data[2] == BFloat16(3.796875f)); // 0x4073
64     BOOST_CHECK(data[3] == BFloat16(3.1072295E29f)); // 0x707B
65     BOOST_CHECK(data[4] == BFloat16(9.131327E-10f)); // 0x307B
66     BOOST_CHECK(data[5] == BFloat16(-3.796875f)); // 0xC073
67     BOOST_CHECK(data[6] == BFloat16(-3.1072295E29f)); // 0xF07B
68     BOOST_CHECK(data[7] == BFloat16(-9.131327E-10f)); // 0xB07B
69 }
70 
BOOST_AUTO_TEST_CASE(ConvertConstantsBFloatToFloatTest)71 BOOST_AUTO_TEST_CASE(ConvertConstantsBFloatToFloatTest)
72 {
73     armnn::Graph graph;
74 
75     const armnn::TensorInfo info({ 1, 1, 1, 2 }, armnn::DataType::Float32);
76 
77     // Create the BFloat16 precision input data
78     unsigned int dims[] = { 4, 2, 1, 1 };
79     std::vector<float> convWeightsData{ 0.f, -1.f,
80                                         3.796875f, // 0x4073
81                                         3.1072295E29f, // 0x707B
82                                         9.131327E-10f, // 0x307B
83                                        -3.796875f, // 0xC073
84                                        -3.1072295E29f, // 0xF07B
85                                        -9.131327E-10f // 0xB07B
86                                        };
87     std::vector<uint16_t> bfWeights(8);
88     armnnUtils::FloatingPointConverter::ConvertFloat32ToBFloat16(convWeightsData.data(), convWeightsData.size(),
89                                                                  bfWeights.data());
90     armnn::ConstTensor weights(armnn::TensorInfo(4, dims, armnn::DataType::BFloat16), bfWeights);
91 
92     //Create the simple test network
93     auto input = graph.AddLayer<armnn::InputLayer>(0, "input");
94     input->GetOutputSlot().SetTensorInfo(info);
95 
96     auto fc      = graph.AddLayer<armnn::FullyConnectedLayer>(armnn::FullyConnectedDescriptor(), "fc");
97     fc->m_Weight = std::make_unique<armnn::ScopedCpuTensorHandle>(weights);
98     fc->GetOutputSlot().SetTensorInfo(info);
99 
100     auto output = graph.AddLayer<armnn::OutputLayer>(1, "output");
101 
102     //Connect up the layers
103     input->GetOutputSlot().Connect(fc->GetInputSlot(0));
104     fc->GetOutputSlot().Connect(output->GetInputSlot(0));
105 
106     //Test the tensor info is correct.
107     BOOST_CHECK(fc->m_Weight->GetTensorInfo().GetDataType() == armnn::DataType::BFloat16);
108 
109     // Run the optimizer
110     armnn::Optimizer::Pass(graph, armnn::MakeOptimizations(ConvertConstantsBFloatToFloat()));
111 
112     //Test the tensor info is correct.
113     BOOST_CHECK(fc->m_Weight->GetTensorInfo().GetDataType() == armnn::DataType::Float32);
114 
115     // Now test the data matches float32 data
116     float* data = fc->m_Weight->GetTensor<float>();
117     BOOST_CHECK(data[0] == 0.0f);
118     BOOST_CHECK(data[1] == -1.0f);
119     BOOST_CHECK(data[2] == 3.796875f);
120     BOOST_CHECK(data[3] == 3.1072295E29f);
121     BOOST_CHECK(data[4] == 9.131327E-10f);
122     BOOST_CHECK(data[5] == -3.796875f);
123     BOOST_CHECK(data[6] == -3.1072295E29f);
124     BOOST_CHECK(data[7] == -9.131327E-10f);
125 }
126 
127 BOOST_AUTO_TEST_SUITE_END()