• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2016-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "src/core/CL/kernels/CLChannelCombineKernel.h"
25 
26 #include "arm_compute/core/CL/CLKernelLibrary.h"
27 #include "arm_compute/core/CL/ICLMultiImage.h"
28 #include "arm_compute/core/CL/ICLTensor.h"
29 #include "arm_compute/core/CL/OpenCL.h"
30 #include "arm_compute/core/Helpers.h"
31 #include "arm_compute/core/MultiImageInfo.h"
32 #include "arm_compute/core/TensorInfo.h"
33 #include "arm_compute/core/Utils.h"
34 #include "arm_compute/core/Validate.h"
35 #include "src/core/helpers/WindowHelpers.h"
36 
37 #include <set>
38 #include <string>
39 
40 namespace arm_compute
41 {
42 namespace
43 {
44 constexpr unsigned int num_elems_processed_per_iteration = 16;
45 } // namespace
46 
CLChannelCombineKernel()47 CLChannelCombineKernel::CLChannelCombineKernel()
48     : _planes{ { nullptr } }, _output(nullptr), _output_multi(nullptr), _x_subsampling{ { 1, 1, 1 } }, _y_subsampling{ { 1, 1, 1 } }
49 {
50 }
51 
configure(const ICLTensor * plane0,const ICLTensor * plane1,const ICLTensor * plane2,const ICLTensor * plane3,ICLTensor * output)52 void CLChannelCombineKernel::configure(const ICLTensor *plane0, const ICLTensor *plane1, const ICLTensor *plane2, const ICLTensor *plane3, ICLTensor *output)
53 {
54     configure(CLKernelLibrary::get().get_compile_context(), plane0, plane1, plane2, plane3, output);
55 }
56 
configure(const CLCompileContext & compile_context,const ICLTensor * plane0,const ICLTensor * plane1,const ICLTensor * plane2,const ICLTensor * plane3,ICLTensor * output)57 void CLChannelCombineKernel::configure(const CLCompileContext &compile_context, const ICLTensor *plane0, const ICLTensor *plane1, const ICLTensor *plane2, const ICLTensor *plane3, ICLTensor *output)
58 {
59     ARM_COMPUTE_ERROR_ON_NULLPTR(plane0, plane1, plane2, output);
60     ARM_COMPUTE_ERROR_ON_TENSOR_NOT_2D(plane0);
61     ARM_COMPUTE_ERROR_ON_TENSOR_NOT_2D(plane1);
62     ARM_COMPUTE_ERROR_ON_TENSOR_NOT_2D(plane2);
63     ARM_COMPUTE_ERROR_ON_TENSOR_NOT_2D(output);
64 
65     ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(plane0, Format::U8);
66     ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(plane1, Format::U8);
67     ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(plane2, Format::U8);
68     ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(output, Format::RGB888, Format::RGBA8888, Format::YUYV422, Format::UYVY422);
69 
70     ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(plane0, 1, DataType::U8);
71     ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(plane1, 1, DataType::U8);
72     ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(plane2, 1, DataType::U8);
73 
74     const Format output_format = output->info()->format();
75 
76     // Check if horizontal dimension of Y plane is even and validate horizontal sub-sampling dimensions for U and V planes
77     if(Format::YUYV422 == output_format || Format::UYVY422 == output_format)
78     {
79         // Validate Y plane of input and output
80         ARM_COMPUTE_ERROR_ON_TENSORS_NOT_EVEN(output_format, plane0, output);
81 
82         // Validate U and V plane of the input
83         ARM_COMPUTE_ERROR_ON_TENSORS_NOT_SUBSAMPLED(output_format, plane0->info()->tensor_shape(), plane1, plane2);
84     }
85 
86     _planes[0] = plane0;
87     _planes[1] = plane1;
88     _planes[2] = plane2;
89     _planes[3] = nullptr;
90 
91     // Validate the last input tensor only for RGBA format
92     if(Format::RGBA8888 == output_format)
93     {
94         ARM_COMPUTE_ERROR_ON_NULLPTR(plane3);
95         ARM_COMPUTE_ERROR_ON_TENSOR_NOT_2D(plane3);
96 
97         ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(plane3, Format::U8);
98         ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(plane3, 1, DataType::U8);
99 
100         _planes[3] = plane3;
101     }
102 
103     _output       = output;
104     _output_multi = nullptr;
105 
106     // Half the processed elements for U and V channels due to horizontal sub-sampling of 2
107     if(Format::YUYV422 == output_format || Format::UYVY422 == output_format)
108     {
109         _x_subsampling[1] = 2;
110         _x_subsampling[2] = 2;
111     }
112 
113     // Create kernel
114     std::string kernel_name = "channel_combine_" + string_from_format(output_format);
115     _kernel                 = create_kernel(compile_context, kernel_name);
116 
117     // Configure window
118     Window win = calculate_max_window(*output->info(), Steps(num_elems_processed_per_iteration));
119 
120     AccessWindowHorizontal plane0_access(plane0->info(), 0, num_elems_processed_per_iteration);
121     AccessWindowRectangle  plane1_access(plane1->info(), 0, 0, num_elems_processed_per_iteration, 1, 1.f / _x_subsampling[1], 1.f / _y_subsampling[1]);
122     AccessWindowRectangle  plane2_access(plane2->info(), 0, 0, num_elems_processed_per_iteration, 1, 1.f / _x_subsampling[2], 1.f / _y_subsampling[2]);
123     AccessWindowHorizontal plane3_access(plane3 == nullptr ? nullptr : plane3->info(), 0, num_elems_processed_per_iteration);
124     AccessWindowHorizontal output_access(output->info(), 0, num_elems_processed_per_iteration);
125 
126     update_window_and_padding(win, plane0_access, plane1_access, plane2_access, plane3_access, output_access);
127 
128     ValidRegion valid_region = intersect_valid_regions(plane0->info()->valid_region(),
129                                                        plane1->info()->valid_region(),
130                                                        plane2->info()->valid_region());
131     if(plane3 != nullptr)
132     {
133         valid_region = intersect_valid_regions(plane3->info()->valid_region(), valid_region);
134     }
135     output_access.set_valid_region(win, ValidRegion(valid_region.anchor, output->info()->tensor_shape()));
136 
137     ICLKernel::configure_internal(win);
138 }
139 
configure(const ICLImage * plane0,const ICLImage * plane1,const ICLImage * plane2,ICLMultiImage * output)140 void CLChannelCombineKernel::configure(const ICLImage *plane0, const ICLImage *plane1, const ICLImage *plane2, ICLMultiImage *output)
141 {
142     configure(CLKernelLibrary::get().get_compile_context(), plane0, plane1, plane2, output);
143 }
144 
configure(const CLCompileContext & compile_context,const ICLImage * plane0,const ICLImage * plane1,const ICLImage * plane2,ICLMultiImage * output)145 void CLChannelCombineKernel::configure(const CLCompileContext &compile_context, const ICLImage *plane0, const ICLImage *plane1, const ICLImage *plane2, ICLMultiImage *output)
146 {
147     ARM_COMPUTE_ERROR_ON_NULLPTR(plane0, plane1, plane2, output);
148     ARM_COMPUTE_ERROR_ON_TENSOR_NOT_2D(plane0);
149     ARM_COMPUTE_ERROR_ON_TENSOR_NOT_2D(plane1);
150     ARM_COMPUTE_ERROR_ON_TENSOR_NOT_2D(plane2);
151 
152     ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(plane0, Format::U8);
153     ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(plane1, Format::U8);
154     ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(plane2, Format::U8);
155     ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(output, Format::NV12, Format::NV21, Format::IYUV, Format::YUV444);
156 
157     ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(plane0, 1, DataType::U8);
158     ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(plane1, 1, DataType::U8);
159     ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(plane2, 1, DataType::U8);
160 
161     const Format output_format = output->info()->format();
162 
163     // Validate shape of Y plane to be even and shape of sub-sampling dimensions for U and V planes
164     // Perform validation only for formats which require sub-sampling.
165     if(Format::YUV444 != output_format)
166     {
167         // Validate Y plane of input and output
168         ARM_COMPUTE_ERROR_ON_TENSORS_NOT_EVEN(output_format, plane0, output->plane(0));
169 
170         // Validate U and V plane of the input
171         ARM_COMPUTE_ERROR_ON_TENSORS_NOT_SUBSAMPLED(output_format, plane0->info()->tensor_shape(), plane1, plane2);
172 
173         // Validate second plane U (NV12 and NV21 have a UV88 combined plane while IYUV has only the U plane)
174         // MultiImage generates the correct tensor shape but also check in case the tensor shape of planes was changed to a wrong size
175         ARM_COMPUTE_ERROR_ON_TENSORS_NOT_SUBSAMPLED(output_format, plane0->info()->tensor_shape(), output->plane(1));
176 
177         // Validate the last plane V of format IYUV
178         if(Format::IYUV == output_format)
179         {
180             // Validate Y plane of the output
181             ARM_COMPUTE_ERROR_ON_TENSORS_NOT_SUBSAMPLED(output_format, plane0->info()->tensor_shape(), output->plane(2));
182         }
183     }
184 
185     // Set input tensors
186     _planes[0] = plane0;
187     _planes[1] = plane1;
188     _planes[2] = plane2;
189     _planes[3] = nullptr;
190 
191     // Set output tensor
192     _output       = nullptr;
193     _output_multi = output;
194 
195     bool has_two_planars = false;
196 
197     // Set sub-sampling parameters for each plane
198     std::string           kernel_name;
199     std::set<std::string> build_opts;
200 
201     if(Format::NV12 == output_format || Format::NV21 == output_format)
202     {
203         _x_subsampling = { { 1, 2, 2 } };
204         _y_subsampling = { { 1, 2, 2 } };
205         kernel_name    = "channel_combine_NV";
206         build_opts.emplace(Format::NV12 == output_format ? "-DNV12" : "-DNV21");
207         has_two_planars = true;
208     }
209     else
210     {
211         if(Format::IYUV == output_format)
212         {
213             _x_subsampling = { { 1, 2, 2 } };
214             _y_subsampling = { { 1, 2, 2 } };
215         }
216 
217         kernel_name = "copy_planes_3p";
218         build_opts.emplace(Format::IYUV == output_format ? "-DIYUV" : "-DYUV444");
219     }
220 
221     // Create kernel
222     _kernel = create_kernel(compile_context, kernel_name, build_opts);
223 
224     // Configure window
225     Window win = calculate_max_window(*plane0->info(), Steps(num_elems_processed_per_iteration));
226 
227     AccessWindowRectangle input_plane0_access(plane0->info(), 0, 0, num_elems_processed_per_iteration, 1.f);
228     AccessWindowRectangle input_plane1_access(plane1->info(), 0, 0, num_elems_processed_per_iteration, 1.f, 1.f / _x_subsampling[1], 1.f / _y_subsampling[1]);
229     AccessWindowRectangle input_plane2_access(plane2->info(), 0, 0, num_elems_processed_per_iteration, 1.f, 1.f / _x_subsampling[2], 1.f / _y_subsampling[2]);
230     AccessWindowRectangle output_plane0_access(output->plane(0)->info(), 0, 0, num_elems_processed_per_iteration, 1.f, 1.f, 1.f / _y_subsampling[1]);
231     AccessWindowRectangle output_plane1_access(output->plane(1)->info(), 0, 0, num_elems_processed_per_iteration, 1.f, 1.f / _x_subsampling[1], 1.f / _y_subsampling[1]);
232     AccessWindowRectangle output_plane2_access(has_two_planars ? nullptr : output->plane(2)->info(), 0, 0, num_elems_processed_per_iteration, 1.f, 1.f / _x_subsampling[2], 1.f / _y_subsampling[2]);
233 
234     update_window_and_padding(win,
235                               input_plane0_access, input_plane1_access, input_plane2_access,
236                               output_plane0_access, output_plane1_access, output_plane2_access);
237 
238     ValidRegion plane0_valid_region  = plane0->info()->valid_region();
239     ValidRegion output_plane1_region = has_two_planars ? intersect_valid_regions(plane1->info()->valid_region(), plane2->info()->valid_region()) : plane2->info()->valid_region();
240     output_plane0_access.set_valid_region(win, ValidRegion(plane0_valid_region.anchor, output->plane(0)->info()->tensor_shape()));
241     output_plane1_access.set_valid_region(win, ValidRegion(output_plane1_region.anchor, output->plane(1)->info()->tensor_shape()));
242     output_plane2_access.set_valid_region(win, ValidRegion(plane2->info()->valid_region().anchor, output->plane(2)->info()->tensor_shape()));
243 
244     ICLKernel::configure_internal(win);
245 }
246 
run(const Window & window,cl::CommandQueue & queue)247 void CLChannelCombineKernel::run(const Window &window, cl::CommandQueue &queue)
248 {
249     ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
250     ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window);
251 
252     Window slice = window.first_slice_window_2D();
253     slice.set_dimension_step(Window::DimY, 1);
254 
255     do
256     {
257         // Subsampling in plane 1
258         Window win_sub_plane1(slice);
259         win_sub_plane1.set(Window::DimX, Window::Dimension(win_sub_plane1.x().start() / _x_subsampling[1], win_sub_plane1.x().end() / _x_subsampling[1], win_sub_plane1.x().step() / _x_subsampling[1]));
260         win_sub_plane1.set(Window::DimY, Window::Dimension(win_sub_plane1.y().start() / _y_subsampling[1], win_sub_plane1.y().end() / _y_subsampling[1], 1));
261 
262         // Subsampling in plane 2
263         Window win_sub_plane2(slice);
264         win_sub_plane2.set(Window::DimX, Window::Dimension(win_sub_plane2.x().start() / _x_subsampling[2], win_sub_plane2.x().end() / _x_subsampling[2], win_sub_plane2.x().step() / _x_subsampling[2]));
265         win_sub_plane2.set(Window::DimY, Window::Dimension(win_sub_plane2.y().start() / _y_subsampling[2], win_sub_plane2.y().end() / _y_subsampling[2], 1));
266 
267         unsigned int idx = 0;
268 
269         // Set inputs
270         add_2D_tensor_argument(idx, _planes[0], slice);
271         add_2D_tensor_argument(idx, _planes[1], win_sub_plane1);
272         add_2D_tensor_argument(idx, _planes[2], win_sub_plane2);
273         add_2D_tensor_argument_if((nullptr != _planes[3]), idx, _planes[3], slice);
274 
275         // Set outputs
276         if(nullptr != _output) // Single planar output
277         {
278             add_2D_tensor_argument(idx, _output, slice);
279         }
280         else // Multi-planar output
281         {
282             // Reduce slice in case of subsampling to avoid out-of bounds access
283             slice.set(Window::DimY, Window::Dimension(slice.y().start() / _y_subsampling[1], slice.y().end() / _y_subsampling[1], 1));
284 
285             add_2D_tensor_argument(idx, _output_multi->cl_plane(0), slice);
286             add_2D_tensor_argument(idx, _output_multi->cl_plane(1), win_sub_plane1);
287             add_2D_tensor_argument_if((3 == num_planes_from_format(_output_multi->info()->format())), idx, _output_multi->cl_plane(2), win_sub_plane2);
288 
289             _kernel.setArg(idx++, slice.y().end());
290         }
291 
292         enqueue(queue, *this, slice, lws_hint());
293     }
294     while(window.slide_window_slice_2D(slice));
295 }
296 } // namespace arm_compute
297