• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2019-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "src/core/CL/kernels/CLGEMMLowpMatrixMultiplyNativeKernel.h"
25 
26 #include "arm_compute/core/CL/CLHelpers.h"
27 #include "arm_compute/core/CL/CLKernelLibrary.h"
28 #include "arm_compute/core/CL/ICLTensor.h"
29 #include "arm_compute/core/CL/OpenCL.h"
30 #include "arm_compute/core/Helpers.h"
31 #include "arm_compute/core/TensorInfo.h"
32 #include "arm_compute/core/Utils.h"
33 #include "arm_compute/core/Validate.h"
34 #include "arm_compute/core/utils/misc/ShapeCalculator.h"
35 #include "src/core/AccessWindowStatic.h"
36 #include "src/core/helpers/AutoConfiguration.h"
37 #include "src/core/helpers/WindowHelpers.h"
38 #include "support/StringSupport.h"
39 
40 namespace arm_compute
41 {
42 using namespace misc::shape_calculator;
43 
44 namespace
45 {
46 using ElementsProcessed = Steps;
47 
validate_arguments(const ITensorInfo * input0,const ITensorInfo * input1,const ITensorInfo * output,const GEMMLHSMatrixInfo & lhs_info,const GEMMRHSMatrixInfo & rhs_info,const GEMMReshapeInfo & gemm_info)48 Status validate_arguments(const ITensorInfo *input0, const ITensorInfo *input1, const ITensorInfo *output, const GEMMLHSMatrixInfo &lhs_info, const GEMMRHSMatrixInfo &rhs_info,
49                           const GEMMReshapeInfo &gemm_info)
50 {
51     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input0, input1, output);
52     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input0, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED);
53     if(input0->data_type() == DataType::QASYMM8)
54     {
55         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input0, input1);
56     }
57     else
58     {
59         ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input1, 1, DataType::QASYMM8, DataType::QSYMM8, DataType::QASYMM8_SIGNED, DataType::QSYMM8_PER_CHANNEL);
60     }
61     ARM_COMPUTE_RETURN_ERROR_ON_MSG(input0->num_dimensions() > 4, "The number of dimensions for the LHS matrix must be <= 4");
62     ARM_COMPUTE_RETURN_ERROR_ON_MSG(input1->num_dimensions() > 3, "The number of dimensions for the RHS matrix must be <= 3");
63     ARM_COMPUTE_RETURN_ERROR_ON(lhs_info.k0 != rhs_info.k0);
64     ARM_COMPUTE_RETURN_ERROR_ON_MSG(((lhs_info.k0 & (lhs_info.k0 - 1)) && lhs_info.k0 != 3), "Only 2,3,4,8,16 are supported for k0");
65     ARM_COMPUTE_RETURN_ERROR_ON(lhs_info.k0 > 16);
66     ARM_COMPUTE_RETURN_ERROR_ON(lhs_info.m0 < 1 || lhs_info.m0 > 8);
67     ARM_COMPUTE_RETURN_ERROR_ON_MSG(((rhs_info.n0 & (rhs_info.n0 - 1)) && rhs_info.n0 != 3), "Only 2,3,4,8,16 are supported for n0");
68     ARM_COMPUTE_RETURN_ERROR_ON_MSG(rhs_info.export_to_cl_image, "Export to CLImage not supported for quantized GEMM");
69 
70     const int m = gemm_info.m();
71     const int n = gemm_info.n();
72     const int k = gemm_info.k();
73 
74     ARM_COMPUTE_UNUSED(m);
75     ARM_COMPUTE_UNUSED(n);
76     ARM_COMPUTE_UNUSED(k);
77 
78     ARM_COMPUTE_RETURN_ERROR_ON(input0->dimension(0) != static_cast<unsigned int>(k));
79     ARM_COMPUTE_RETURN_ERROR_ON(input1->dimension(0) != static_cast<unsigned int>(n));
80     ARM_COMPUTE_RETURN_ERROR_ON(input1->dimension(1) != static_cast<unsigned int>(k));
81     if(gemm_info.reinterpret_input_as_3d())
82     {
83         ARM_COMPUTE_RETURN_ERROR_ON(input0->dimension(1) * input0->dimension(2) != static_cast<unsigned int>(m));
84     }
85     else
86     {
87         ARM_COMPUTE_RETURN_ERROR_ON(input0->dimension(1) != static_cast<unsigned int>(m));
88     }
89 
90     if(output->total_size() != 0)
91     {
92         const TensorInfo tensor_info_output = output->clone()->set_tensor_shape(compute_mm_shape(*input0, *input1, gemm_info));
93         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(output, &tensor_info_output);
94         ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::S32);
95     }
96 
97     return Status{};
98 }
99 
validate_and_configure_window(ITensorInfo * input0,ITensorInfo * input1,ITensorInfo * output,const GEMMLHSMatrixInfo & lhs_info,const GEMMRHSMatrixInfo & rhs_info,const GEMMReshapeInfo & gemm_info,ElementsProcessed & num_elements_processed)100 std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input0, ITensorInfo *input1, ITensorInfo *output, const GEMMLHSMatrixInfo &lhs_info, const GEMMRHSMatrixInfo &rhs_info,
101                                                         const GEMMReshapeInfo &gemm_info, ElementsProcessed &num_elements_processed)
102 {
103     unsigned int &num_elems_processed_per_iteration_x = num_elements_processed[0];
104     unsigned int &num_elems_processed_per_iteration_y = num_elements_processed[1];
105     bool          reinterpret_input_as_3d             = gemm_info.reinterpret_input_as_3d();
106     bool          reinterpret_output_as_3d            = (gemm_info.depth_output_gemm3d() != 0);
107 
108     Window win{};
109     bool   window_changed = false;
110 
111     // In case both input and output have to be reinterpreted as 3D tensors,
112     // force reinterpret_output_as_3d to be false.
113     if(reinterpret_input_as_3d == reinterpret_output_as_3d)
114     {
115         reinterpret_output_as_3d = false;
116     }
117 
118     // Output tensor auto initialization if not yet initialized
119     auto_init_if_empty(*output, input0->clone()->set_tensor_shape(compute_mm_shape(*input0, *input1, gemm_info)).set_data_type(DataType::S32));
120 
121     TensorInfo tmp_info(*output);
122 
123     if(reinterpret_output_as_3d)
124     {
125         // Since the output tensor has to be reinterpreted as 3D and the execute window is based on a 2D GEMM,
126         // the window needs to be constructed on the 2D collapsed version of the tensor
127         TensorShape tmp_shape(output->tensor_shape());
128         tmp_shape.collapse(2U, 1U);
129         tmp_info.set_tensor_shape(tmp_shape);
130     }
131 
132     // Configure kernel window
133     num_elems_processed_per_iteration_x = rhs_info.n0;
134     num_elems_processed_per_iteration_y = lhs_info.m0;
135 
136     win = calculate_max_window(tmp_info, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
137 
138     // RHS matrix still needs padding on the X
139     AccessWindowStatic input1_access(input1, 0, 0,
140                                      ceil_to_multiple(input1->dimension(0), num_elems_processed_per_iteration_x),
141                                      input1->dimension(1));
142 
143     window_changed = update_window_and_padding(win, input1_access); // window used by the execute_window_loop
144 
145     // Collapse along the Z direction
146     // This collapse needs to be here in order to tune the Z dimension of LWS
147     Window             collapsed             = win;
148     const unsigned int dimension_to_collapse = std::min(static_cast<unsigned int>(output->num_dimensions()), 2u);
149     collapsed                                = win.collapse(win, dimension_to_collapse);
150 
151     Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
152     return std::make_pair(err, collapsed);
153 }
154 } // namespace
155 
CLGEMMLowpMatrixMultiplyNativeKernel()156 CLGEMMLowpMatrixMultiplyNativeKernel::CLGEMMLowpMatrixMultiplyNativeKernel()
157     : _input0(nullptr), _input1(nullptr), _output(nullptr), _slide_matrix_b(true), _reinterpret_input_as_3d(false), _reinterpret_output_as_3d(false), _use_dummy_work_items(false)
158 {
159 }
160 
configure(const ICLTensor * input0,const ICLTensor * input1,ICLTensor * output,const GEMMLHSMatrixInfo & lhs_info,const GEMMRHSMatrixInfo & rhs_info,const GEMMReshapeInfo & gemm_info)161 void CLGEMMLowpMatrixMultiplyNativeKernel::configure(const ICLTensor *input0, const ICLTensor *input1, ICLTensor *output, const GEMMLHSMatrixInfo &lhs_info, const GEMMRHSMatrixInfo &rhs_info,
162                                                      const GEMMReshapeInfo &gemm_info)
163 {
164     configure(CLKernelLibrary::get().get_compile_context(), input0, input1, output, lhs_info, rhs_info, gemm_info);
165 }
166 
configure(const CLCompileContext & compile_context,const ICLTensor * input0,const ICLTensor * input1,ICLTensor * output,const GEMMLHSMatrixInfo & lhs_info,const GEMMRHSMatrixInfo & rhs_info,const GEMMReshapeInfo & gemm_info)167 void CLGEMMLowpMatrixMultiplyNativeKernel::configure(const CLCompileContext &compile_context, const ICLTensor *input0, const ICLTensor *input1, ICLTensor *output, const GEMMLHSMatrixInfo &lhs_info,
168                                                      const GEMMRHSMatrixInfo &rhs_info,
169                                                      const GEMMReshapeInfo   &gemm_info)
170 {
171     ARM_COMPUTE_ERROR_ON_NULLPTR(input0, input1, output);
172 
173     ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input0->info(), input1->info(), output->info(), lhs_info, rhs_info, gemm_info));
174 
175     _input0                   = input0;
176     _input1                   = input1;
177     _output                   = output;
178     _reinterpret_input_as_3d  = gemm_info.reinterpret_input_as_3d();
179     _reinterpret_output_as_3d = (gemm_info.depth_output_gemm3d() != 0);
180     _use_dummy_work_items     = preferred_dummy_work_items_support(CLKernelLibrary::get().get_device());
181 
182     // We still need padding on the X dimension for the RHS matrix
183     auto padding_info = get_padding_info({ input0, output });
184 
185     // In case both input and output have to be reinterpreted as 3D tensors,
186     // force reinterpret_input_as_3d and reinterpret_output_as_3d to be false.
187     if(_reinterpret_input_as_3d == _reinterpret_output_as_3d)
188     {
189         _reinterpret_input_as_3d  = false;
190         _reinterpret_output_as_3d = false;
191     }
192 
193     // Check if we need to slide the matrix B
194     const unsigned int num_dimensions_input0 = _input0->info()->num_dimensions();
195     _slide_matrix_b                          = (_input1->info()->num_dimensions() >= num_dimensions_input0);
196 
197     ElementsProcessed num_elements_processed{};
198 
199     // Configure kernel window
200     auto win_config = validate_and_configure_window(input0->info(), input1->info(), output->info(), lhs_info, rhs_info, gemm_info, num_elements_processed);
201     ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
202     ICLKernel::configure_internal(win_config.second);
203 
204     // If _reinterpret_input_as_3d = _reinterpret_output_as_3d = true,
205     // we will dispatch a batched-GEMM to reduce the complexity of the address calculation within the OpenCL kernel.
206     // This means that the actual m used by the kernel is given by output->info()->dimension(1) and not by gemm_info.m
207     const unsigned int internal_m = _reinterpret_output_as_3d ? gemm_info.m() : output->info()->dimension(1);
208     // Calculate partial (store instead of load) M0 and partial N0 for the partial blocks at the end of a row/column if any. This is to avoid padding.
209     const unsigned int partial_store_m0 = internal_m % lhs_info.m0;
210     const unsigned int partial_store_n0 = gemm_info.n() % rhs_info.n0;
211 
212     // Shrink M0 to be always <= M (internal_m) to prevent out-of-bounds reads.
213     // NOTE: This might have implications on heuristics and performance
214     const unsigned int internal_m0 = std::min(internal_m, lhs_info.m0);
215 
216     // Create build options
217     CLBuildOptions build_opts;
218     build_opts.add_option_if(_reinterpret_input_as_3d, "-DREINTERPRET_INPUT_AS_3D");
219     build_opts.add_option_if(_reinterpret_output_as_3d, "-DREINTERPRET_OUTPUT_AS_3D");
220     build_opts.add_option_if(_reinterpret_input_as_3d || _reinterpret_output_as_3d, "-DHEIGHT_GEMM3D=" + support::cpp11::to_string(output->info()->dimension(1)));
221     build_opts.add_option_if(_reinterpret_input_as_3d || _reinterpret_output_as_3d, "-DDEPTH_GEMM3D=" + support::cpp11::to_string(output->info()->dimension(2)));
222     build_opts.add_option_if(!_slide_matrix_b, "-DMATRIX_B_DEPTH=" + support::cpp11::to_string(input1->info()->dimension(2)));
223     build_opts.add_option_if(_use_dummy_work_items, "-DDUMMY_WORK_ITEMS");
224     build_opts.add_option("-DM=" + support::cpp11::to_string(input0->info()->dimension(1)));
225     build_opts.add_option("-DN=" + support::cpp11::to_string(gemm_info.n()));
226     build_opts.add_option("-DK=" + support::cpp11::to_string(gemm_info.k()));
227     build_opts.add_option("-DM0=" + support::cpp11::to_string(internal_m0));
228     build_opts.add_option("-DN0=" + support::cpp11::to_string(rhs_info.n0));
229     build_opts.add_option("-DK0=" + support::cpp11::to_string(rhs_info.k0));
230     build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(input0->info()->data_type()));
231     build_opts.add_option("-DACC_DATA_TYPE=" + get_cl_dot8_acc_type_from_data_type(input0->info()->data_type()));
232     build_opts.add_option("-DPARTIAL_STORE_M0=" + support::cpp11::to_string(partial_store_m0));
233     build_opts.add_option("-DPARTIAL_STORE_N0=" + support::cpp11::to_string(partial_store_n0));
234     std::string kernel_name("gemmlowp_mm_native");
235 
236     // Create kernel
237     _kernel = create_kernel(compile_context, kernel_name, build_opts.options());
238 
239     // Set config_id for enabling LWS tuning
240     _config_id = kernel_name;
241     _config_id += "_";
242     _config_id += dot8_supported(CLKernelLibrary::get().get_device()) ? "_dot8" : "";
243     _config_id += "_";
244     _config_id += (_reinterpret_input_as_3d ? "3di_" : "");
245     _config_id += (_reinterpret_output_as_3d ? "3do_" : "");
246     _config_id += support::cpp11::to_string(output->info()->dimension(1));
247     _config_id += "_";
248     _config_id += support::cpp11::to_string(output->info()->dimension(0));
249     _config_id += "_";
250     _config_id += support::cpp11::to_string(gemm_info.k());
251     _config_id += "_";
252     _config_id += support::cpp11::to_string(output->info()->dimension(2));
253     _config_id += "_";
254     _config_id += support::cpp11::to_string(lhs_info.m0);
255     _config_id += "_";
256     _config_id += support::cpp11::to_string(rhs_info.n0);
257     _config_id += "_";
258     _config_id += support::cpp11::to_string(lhs_info.k0);
259 
260     ARM_COMPUTE_ERROR_ON(has_padding_changed(padding_info));
261 }
262 
validate(const ITensorInfo * input0,const ITensorInfo * input1,const ITensorInfo * output,const GEMMLHSMatrixInfo & lhs_info,const GEMMRHSMatrixInfo & rhs_info,const GEMMReshapeInfo & gemm_info)263 Status CLGEMMLowpMatrixMultiplyNativeKernel::validate(const ITensorInfo *input0, const ITensorInfo *input1, const ITensorInfo *output, const GEMMLHSMatrixInfo &lhs_info,
264                                                       const GEMMRHSMatrixInfo &rhs_info, const GEMMReshapeInfo &gemm_info)
265 {
266     ElementsProcessed num_elements_processed{};
267     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input0, input1, output, lhs_info, rhs_info, gemm_info));
268     ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input0->clone().get(),
269                                                               input1->clone().get(),
270                                                               output->clone().get(),
271                                                               lhs_info,
272                                                               rhs_info,
273                                                               gemm_info,
274                                                               num_elements_processed)
275                                 .first);
276 
277     return Status{};
278 }
279 
run(const Window & window,cl::CommandQueue & queue)280 void CLGEMMLowpMatrixMultiplyNativeKernel::run(const Window &window, cl::CommandQueue &queue)
281 {
282     ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
283     ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window);
284 
285     if(_input1->info()->num_dimensions() < 3)
286     {
287         // The stride_z for matrix B must be zero if we do not slice
288         ARM_COMPUTE_ERROR_ON(_input1->info()->strides_in_bytes()[3] != 0);
289     }
290 
291     Window slice          = window.first_slice_window_3D();
292     Window slice_matrix_b = slice;
293 
294     slice_matrix_b.set(Window::DimX, Window::Dimension(0, 1, 1));
295     slice_matrix_b.set(Window::DimY, Window::Dimension(0, 1, 1));
296 
297     if(_reinterpret_input_as_3d)
298     {
299         // Pass bottom paddings to the kernel if the input has to be reinterpreted as 3D tensor
300         const unsigned int idx0                  = 3 * num_arguments_per_2D_tensor() + 3;
301         const unsigned int total_cross_plane_pad = _input0->info()->padding().top + _input0->info()->padding().bottom;
302         _kernel.setArg<cl_uint>(idx0, static_cast<unsigned int>(total_cross_plane_pad));
303     }
304 
305     if(_reinterpret_output_as_3d)
306     {
307         // Pass bottom paddings to the kernel if the output has to be reinterpreted as 3D tensor
308         const unsigned int idx0                  = 3 * num_arguments_per_2D_tensor() + 3 + (_reinterpret_input_as_3d ? 1 : 0);
309         const unsigned int total_cross_plane_pad = _output->info()->padding().top + _output->info()->padding().bottom;
310         _kernel.setArg<cl_uint>(idx0, static_cast<unsigned int>(total_cross_plane_pad));
311     }
312 
313     do
314     {
315         Window slice_b = slice;
316         // Don't slice matrix B along the z dimension if matrix B has just 2 dimensions and matrix A more than 2
317         // This scenario can happen when the matrix multiplication is used to perform a convolution operation
318         if(!_slide_matrix_b)
319         {
320             slice_b = slice_matrix_b;
321         }
322 
323         unsigned int idx = 0;
324         add_2D_tensor_argument(idx, _input0, slice);
325         add_2D_tensor_argument(idx, _input1, slice_b);
326         add_2D_tensor_argument(idx, _output, slice);
327         _kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(_input0->info()->strides_in_bytes()[2]));
328         _kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(_input1->info()->strides_in_bytes()[2]));
329         _kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(_output->info()->strides_in_bytes()[2]));
330         enqueue(queue, *this, slice, lws_hint(), _use_dummy_work_items);
331     }
332     while(window.slide_window_slice_3D(slice));
333 }
334 } // namespace arm_compute
335