• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2019-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "src/core/CL/kernels/CLGEMMLowpMatrixMultiplyReshapedKernel.h"
25 
26 #include "arm_compute/core/CL/CLHelpers.h"
27 #include "arm_compute/core/CL/CLKernelLibrary.h"
28 #include "arm_compute/core/CL/ICLTensor.h"
29 #include "arm_compute/core/CL/OpenCL.h"
30 #include "arm_compute/core/Helpers.h"
31 #include "arm_compute/core/TensorInfo.h"
32 #include "arm_compute/core/Utils.h"
33 #include "arm_compute/core/Validate.h"
34 #include "arm_compute/core/utils/misc/ShapeCalculator.h"
35 #include "src/core/helpers/AutoConfiguration.h"
36 #include "src/core/helpers/WindowHelpers.h"
37 #include "support/StringSupport.h"
38 
39 namespace arm_compute
40 {
41 using namespace misc::shape_calculator;
42 
43 namespace
44 {
45 using ElementsProcessed = Steps;
46 
validate_arguments(const ITensorInfo * input0,const ITensorInfo * input1,const ITensorInfo * output,const GEMMLHSMatrixInfo & lhs_info,const GEMMRHSMatrixInfo & rhs_info,const GEMMReshapeInfo & gemm_info)47 Status validate_arguments(const ITensorInfo *input0, const ITensorInfo *input1, const ITensorInfo *output, const GEMMLHSMatrixInfo &lhs_info, const GEMMRHSMatrixInfo &rhs_info,
48                           const GEMMReshapeInfo &gemm_info)
49 {
50     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input0, input1, output);
51     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input0, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED);
52     ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input0, input1);
53     ARM_COMPUTE_RETURN_ERROR_ON_MSG(input0->num_dimensions() > 4, "The number of dimensions for the LHS matrix must be <= 4");
54     ARM_COMPUTE_RETURN_ERROR_ON_MSG(input1->num_dimensions() > 3, "The number of dimensions for the RHS matrix must be <= 3");
55     ARM_COMPUTE_RETURN_ERROR_ON(lhs_info.transpose);
56     ARM_COMPUTE_RETURN_ERROR_ON(!rhs_info.transpose);
57     ARM_COMPUTE_RETURN_ERROR_ON(lhs_info.k0 != rhs_info.k0);
58     ARM_COMPUTE_RETURN_ERROR_ON_MSG(((lhs_info.k0 & (lhs_info.k0 - 1)) && lhs_info.k0 != 3), "Only 2,3,4,8,16 are supported for k0");
59     ARM_COMPUTE_RETURN_ERROR_ON(lhs_info.k0 > 16);
60     ARM_COMPUTE_RETURN_ERROR_ON(lhs_info.m0 < 2 || lhs_info.m0 > 8);
61     ARM_COMPUTE_RETURN_ERROR_ON_MSG(((rhs_info.n0 & (rhs_info.n0 - 1)) && rhs_info.n0 != 3), "Only 2,3,4,8,16 are supported for n0");
62     ARM_COMPUTE_RETURN_ERROR_ON_MSG(rhs_info.export_to_cl_image, "Export to CLImage not supported for quantized GEMM");
63 
64     const int m = gemm_info.m();
65     const int n = gemm_info.n();
66     const int k = gemm_info.k();
67 
68     TensorShape tensor_shape0{ input0->tensor_shape() };
69     tensor_shape0.set(0, k);
70     tensor_shape0.set(1, m);
71 
72     TensorShape tensor_shape1{ input1->tensor_shape() };
73     tensor_shape1.set(0, n);
74     tensor_shape1.set(1, k);
75 
76     const TensorInfo tensor_info0 = input0->clone()->set_tensor_shape(tensor_shape0);
77     const TensorInfo tensor_info1 = input1->clone()->set_tensor_shape(tensor_shape1);
78 
79     const TensorInfo tensor_info_reshaped0 = input0->clone()->set_tensor_shape(compute_lhs_reshaped_shape(tensor_info0, lhs_info));
80     const TensorInfo tensor_info_reshaped1 = input1->clone()->set_tensor_shape(compute_rhs_reshaped_shape(tensor_info1, rhs_info));
81 
82     ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input0, &tensor_info_reshaped0);
83     ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input1, &tensor_info_reshaped1);
84 
85     if(output->total_size() != 0)
86     {
87         const TensorInfo tensor_info_output = output->clone()->set_tensor_shape(compute_mm_shape(*input0, *input1, gemm_info));
88         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(output, &tensor_info_output);
89         ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::S32);
90     }
91 
92     return Status{};
93 }
94 
validate_and_configure_window(ITensorInfo * input0,ITensorInfo * input1,ITensorInfo * output,const GEMMLHSMatrixInfo & lhs_info,const GEMMRHSMatrixInfo & rhs_info,const GEMMReshapeInfo & gemm_info,ElementsProcessed & num_elements_processed)95 std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input0, ITensorInfo *input1, ITensorInfo *output, const GEMMLHSMatrixInfo &lhs_info, const GEMMRHSMatrixInfo &rhs_info,
96                                                         const GEMMReshapeInfo &gemm_info, ElementsProcessed &num_elements_processed)
97 {
98     unsigned int &num_elems_processed_per_iteration_x = num_elements_processed[0];
99     unsigned int &num_elems_processed_per_iteration_y = num_elements_processed[1];
100     bool          reinterpret_output_as_3d            = (gemm_info.depth_output_gemm3d() != 0);
101 
102     // Output tensor auto initialization if not yet initialized
103     auto_init_if_empty(*output, input0->clone()->set_tensor_shape(compute_mm_shape(*input0, *input1, gemm_info)).set_data_type(DataType::S32));
104 
105     TensorInfo tmp_info(*output);
106     if(reinterpret_output_as_3d)
107     {
108         // Since the output tensor has to be reinterpreted as 3D and the execute window is based on a 2D GEMM,
109         // the window needs to be constructed on the 2D collapsed version of the tensor
110         TensorShape tmp_shape(output->tensor_shape());
111         tmp_shape.collapse(2U, 1U);
112         tmp_info.set_tensor_shape(tmp_shape);
113     }
114 
115     // Configure kernel window
116     num_elems_processed_per_iteration_x = rhs_info.n0;
117     num_elems_processed_per_iteration_y = lhs_info.m0;
118     Window win                          = calculate_max_window(tmp_info, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
119 
120     // Collapse along the Z direction
121     // This collapse needs to be here in order to tune the Z dimension of LWS
122     Window             collapsed             = win;
123     const unsigned int dimension_to_collapse = std::min(static_cast<unsigned int>(output->num_dimensions()), 2u);
124     collapsed                                = win.collapse(win, dimension_to_collapse);
125 
126     return std::make_pair(Status{}, collapsed);
127 }
128 } // namespace
129 
CLGEMMLowpMatrixMultiplyReshapedKernel()130 CLGEMMLowpMatrixMultiplyReshapedKernel::CLGEMMLowpMatrixMultiplyReshapedKernel()
131     : _input0(nullptr), _input1(nullptr), _output(nullptr), _slide_matrix_b(true), _reinterpret_output_as_3d(false), _k(1), _use_dummy_work_items(false)
132 {
133 }
134 
configure(const ICLTensor * input0,const ICLTensor * input1,ICLTensor * output,const GEMMLHSMatrixInfo & lhs_info,const GEMMRHSMatrixInfo & rhs_info,const GEMMReshapeInfo & gemm_info)135 void CLGEMMLowpMatrixMultiplyReshapedKernel::configure(const ICLTensor *input0, const ICLTensor *input1, ICLTensor *output, const GEMMLHSMatrixInfo &lhs_info, const GEMMRHSMatrixInfo &rhs_info,
136                                                        const GEMMReshapeInfo &gemm_info)
137 {
138     configure(CLKernelLibrary::get().get_compile_context(), input0, input1, output, lhs_info, rhs_info, gemm_info);
139 }
140 
configure(const CLCompileContext & compile_context,const ICLTensor * input0,const ICLTensor * input1,ICLTensor * output,const GEMMLHSMatrixInfo & lhs_info,const GEMMRHSMatrixInfo & rhs_info,const GEMMReshapeInfo & gemm_info)141 void CLGEMMLowpMatrixMultiplyReshapedKernel::configure(const CLCompileContext &compile_context, const ICLTensor *input0, const ICLTensor *input1, ICLTensor *output, const GEMMLHSMatrixInfo &lhs_info,
142                                                        const GEMMRHSMatrixInfo &rhs_info,
143                                                        const GEMMReshapeInfo   &gemm_info)
144 {
145     ARM_COMPUTE_ERROR_ON_NULLPTR(input0, input1, output);
146 
147     ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input0->info(), input1->info(), output->info(), lhs_info, rhs_info, gemm_info));
148 
149     _input0                   = input0;
150     _input1                   = input1;
151     _output                   = output;
152     _reinterpret_output_as_3d = (gemm_info.depth_output_gemm3d() != 0);
153     _k                        = gemm_info.k();
154     _use_dummy_work_items     = preferred_dummy_work_items_support(CLKernelLibrary::get().get_device());
155 
156     // Check if we need to slide the matrix B
157     const unsigned int num_dimensions_input0 = _input0->info()->num_dimensions();
158     _slide_matrix_b                          = (_input1->info()->num_dimensions() >= num_dimensions_input0);
159 
160     auto              padding_info = get_padding_info({ input0, input1, output });
161     ElementsProcessed num_elements_processed{};
162 
163     // Configure kernel window
164     auto win_config = validate_and_configure_window(input0->info(), input1->info(), output->info(), lhs_info, rhs_info, gemm_info, num_elements_processed);
165     ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
166     ICLKernel::configure_internal(win_config.second);
167 
168     // Calculate partial (store instead of load) M0 and partial N0 for the partial blocks at the end of a row/column if any. This is to avoid padding.
169     const unsigned int internal_m = _reinterpret_output_as_3d ? gemm_info.m() : output->info()->dimension(1);
170 
171     const unsigned int partial_store_m0 = internal_m % lhs_info.m0;
172     const unsigned int partial_store_n0 = gemm_info.n() % rhs_info.n0;
173 
174     // Create build options
175     CLBuildOptions build_opts;
176     build_opts.add_option_if(_reinterpret_output_as_3d, "-DREINTERPRET_OUTPUT_AS_3D");
177     build_opts.add_option_if(_reinterpret_output_as_3d, "-DHEIGHT_GEMM3D=" + support::cpp11::to_string(output->info()->dimension(1)));
178     build_opts.add_option_if(_reinterpret_output_as_3d, "-DDEPTH_GEMM3D=" + support::cpp11::to_string(output->info()->dimension(2)));
179     build_opts.add_option_if(!_slide_matrix_b, "-DMATRIX_B_DEPTH=" + support::cpp11::to_string(input1->info()->dimension(2)));
180     build_opts.add_option_if(lhs_info.interleave, "-DLHS_INTERLEAVE");
181     build_opts.add_option_if(rhs_info.interleave, "-DRHS_INTERLEAVE");
182     build_opts.add_option_if(_use_dummy_work_items, "-DDUMMY_WORK_ITEMS");
183     build_opts.add_option("-DM=" + support::cpp11::to_string(gemm_info.m()));
184     build_opts.add_option("-DN=" + support::cpp11::to_string(gemm_info.n()));
185     build_opts.add_option("-DM0=" + support::cpp11::to_string(lhs_info.m0));
186     build_opts.add_option("-DN0=" + support::cpp11::to_string(rhs_info.n0));
187     build_opts.add_option("-DK0=" + support::cpp11::to_string(lhs_info.k0));
188     build_opts.add_option("-DV0=" + support::cpp11::to_string(lhs_info.v0));
189     build_opts.add_option("-DH0=" + support::cpp11::to_string(rhs_info.h0));
190     build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(input0->info()->data_type()));
191     build_opts.add_option("-DACC_DATA_TYPE=" + get_cl_dot8_acc_type_from_data_type(input0->info()->data_type()));
192     build_opts.add_option("-DPARTIAL_STORE_M0=" + support::cpp11::to_string(partial_store_m0));
193     build_opts.add_option("-DPARTIAL_STORE_N0=" + support::cpp11::to_string(partial_store_n0));
194 
195     std::string kernel_name("gemmlowp_mm_reshaped_");
196     kernel_name += lhs_info.transpose ? "lhs_t_" : "lhs_nt_";
197     kernel_name += rhs_info.transpose ? "rhs_t" : "rhs_nt";
198 
199     // Create kernel
200     _kernel = create_kernel(compile_context, kernel_name, build_opts.options());
201 
202     // Set config_id for enabling LWS tuning
203     _config_id = kernel_name;
204     _config_id += "_";
205     _config_id += dot8_supported(CLKernelLibrary::get().get_device()) ? "_dot8" : "";
206     _config_id += "_";
207     _config_id += (_reinterpret_output_as_3d ? "3do_" : "");
208     _config_id += support::cpp11::to_string(output->info()->dimension(1));
209     _config_id += "_";
210     _config_id += support::cpp11::to_string(output->info()->dimension(0));
211     _config_id += "_";
212     _config_id += support::cpp11::to_string(gemm_info.k());
213     _config_id += "_";
214     _config_id += support::cpp11::to_string(output->info()->dimension(2));
215     _config_id += "_";
216     _config_id += support::cpp11::to_string(lhs_info.m0);
217     _config_id += "_";
218     _config_id += support::cpp11::to_string(rhs_info.n0);
219     _config_id += "_";
220     _config_id += support::cpp11::to_string(lhs_info.k0);
221     _config_id += "_";
222     _config_id += support::cpp11::to_string(lhs_info.v0);
223     _config_id += "_";
224     _config_id += support::cpp11::to_string(rhs_info.h0);
225     _config_id += "_";
226     _config_id += support::cpp11::to_string(lhs_info.interleave);
227     _config_id += "_";
228     _config_id += support::cpp11::to_string(rhs_info.interleave);
229 
230     ARM_COMPUTE_ERROR_ON(has_padding_changed(padding_info));
231 }
232 
validate(const ITensorInfo * input0,const ITensorInfo * input1,const ITensorInfo * output,const GEMMLHSMatrixInfo & lhs_info,const GEMMRHSMatrixInfo & rhs_info,const GEMMReshapeInfo & gemm_info)233 Status CLGEMMLowpMatrixMultiplyReshapedKernel::validate(const ITensorInfo *input0, const ITensorInfo *input1, const ITensorInfo *output, const GEMMLHSMatrixInfo &lhs_info,
234                                                         const GEMMRHSMatrixInfo &rhs_info, const GEMMReshapeInfo &gemm_info)
235 {
236     ElementsProcessed num_elements_processed{};
237     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input0, input1, output, lhs_info, rhs_info, gemm_info));
238     ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input0->clone().get(),
239                                                               input1->clone().get(),
240                                                               output->clone().get(),
241                                                               lhs_info,
242                                                               rhs_info,
243                                                               gemm_info,
244                                                               num_elements_processed)
245                                 .first);
246 
247     return Status{};
248 }
249 
run(const Window & window,cl::CommandQueue & queue)250 void CLGEMMLowpMatrixMultiplyReshapedKernel::run(const Window &window, cl::CommandQueue &queue)
251 {
252     ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
253     ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window);
254 
255     if(_input1->info()->num_dimensions() < 3)
256     {
257         // The stride_z for matrix B must be zero if we do not slice
258         ARM_COMPUTE_ERROR_ON(_input1->info()->strides_in_bytes()[3] != 0);
259     }
260 
261     Window slice          = window.first_slice_window_3D();
262     Window slice_matrix_b = slice;
263 
264     slice_matrix_b.set(Window::DimX, Window::Dimension(0, 1, 1));
265     slice_matrix_b.set(Window::DimY, Window::Dimension(0, 1, 1));
266 
267     if(_reinterpret_output_as_3d)
268     {
269         // Pass bottom paddings to the kernel if the output has to be reinterpreted as 3D tensor
270         const unsigned int idx0                  = 3 * num_arguments_per_2D_tensor() + 4;
271         const unsigned int total_cross_plane_pad = _output->info()->padding().top + _output->info()->padding().bottom;
272         _kernel.setArg<cl_uint>(idx0, static_cast<unsigned int>(total_cross_plane_pad));
273     }
274 
275     do
276     {
277         Window slice_b = slice;
278         // Don't slice matrix B along the z dimension if matrix B has just 2 dimensions and matrix A more than 2
279         // This scenario can happen when the matrix multiplication is used to perform a convolution operation
280         if(!_slide_matrix_b)
281         {
282             slice_b = slice_matrix_b;
283         }
284 
285         unsigned int idx = 0;
286         add_2D_tensor_argument(idx, _input0, slice);
287         add_2D_tensor_argument(idx, _input1, slice_b);
288         add_2D_tensor_argument(idx, _output, slice);
289         _kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(_k));
290         _kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(_input0->info()->strides_in_bytes()[2]));
291         _kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(_input1->info()->strides_in_bytes()[2]));
292         _kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(_output->info()->strides_in_bytes()[2]));
293         enqueue(queue, *this, slice, lws_hint(), _use_dummy_work_items);
294     }
295     while(window.slide_window_slice_3D(slice));
296 }
297 } // namespace arm_compute
298