• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2017-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "src/core/CL/kernels/CLGEMMLowpReductionKernel.h"
25 
26 #include "arm_compute/core/CL/CLHelpers.h"
27 #include "arm_compute/core/CL/ICLTensor.h"
28 #include "arm_compute/core/KernelDescriptors.h"
29 #include "src/core/AccessWindowStatic.h"
30 #include "src/core/helpers/AutoConfiguration.h"
31 #include "src/core/helpers/WindowHelpers.h"
32 #include "support/StringSupport.h"
33 
34 namespace arm_compute
35 {
36 namespace
37 {
validate_arguments_matrix_a_reduction(const ITensorInfo * input,const ITensorInfo * output)38 Status validate_arguments_matrix_a_reduction(const ITensorInfo *input, const ITensorInfo *output)
39 {
40     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output);
41     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::QSYMM8);
42 
43     if(output->total_size() > 0)
44     {
45         ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::S32);
46         ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->dimension(0) != input->dimension(1), "Output vector must have length equal to the number of rows of the input matrix");
47     }
48     return Status{};
49 }
50 
validate_arguments_matrix_b_reduction(const ITensorInfo * input,const ITensorInfo * output)51 Status validate_arguments_matrix_b_reduction(const ITensorInfo *input, const ITensorInfo *output)
52 {
53     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output);
54     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::QSYMM8, DataType::QSYMM8_PER_CHANNEL);
55 
56     if(output->total_size() > 0)
57     {
58         ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::S32);
59         ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->dimension(0) != input->dimension(0), "Output vector must have length equal to the number of columns of the input matrix");
60     }
61     return Status{};
62 }
63 } // namespace
64 
ICLGEMMLowpReductionKernel()65 ICLGEMMLowpReductionKernel::ICLGEMMLowpReductionKernel()
66     : _input(), _output()
67 {
68 }
69 
configure(const ICLTensor * mtx_a,ICLTensor * vector_sum_row,const GEMMLowpReductionKernelInfo & info)70 void CLGEMMLowpMatrixAReductionKernel::configure(const ICLTensor *mtx_a, ICLTensor *vector_sum_row, const GEMMLowpReductionKernelInfo &info)
71 {
72     configure(CLKernelLibrary::get().get_compile_context(), mtx_a, vector_sum_row, info);
73 }
74 
configure(const CLCompileContext & compile_context,const ICLTensor * mtx_a,ICLTensor * vector_sum_row,const GEMMLowpReductionKernelInfo & info)75 void CLGEMMLowpMatrixAReductionKernel::configure(const CLCompileContext &compile_context, const ICLTensor *mtx_a, ICLTensor *vector_sum_row, const GEMMLowpReductionKernelInfo &info)
76 {
77     // Perform validate step
78     ARM_COMPUTE_ERROR_ON_NULLPTR(mtx_a, vector_sum_row);
79     ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_matrix_a_reduction(mtx_a->info(), vector_sum_row->info()));
80 
81     // Output auto initialization if not yet initialized
82     auto_init_if_empty(*vector_sum_row->info(), TensorShape(mtx_a->info()->dimension(1)), 1, DataType::S32);
83 
84     auto padding_info = get_padding_info({ mtx_a, vector_sum_row });
85 
86     _input  = mtx_a;
87     _output = vector_sum_row;
88 
89     // Set the arguments to pass at compile time
90     CLBuildOptions build_opts;
91     build_opts.add_option("-DCOLS_A=" + support::cpp11::to_string(mtx_a->info()->dimension(0)));
92     build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(mtx_a->info()->data_type()));
93     build_opts.add_option("-DACC_DATA_TYPE=" + get_cl_dot8_acc_type_from_data_type(mtx_a->info()->data_type()));
94     build_opts.add_option_if(info.mul_by_scalar, "-DSCALAR=" + support::cpp11::to_string(info.scalar));
95 
96     const bool is_dot8_supported = dot8_supported(CLKernelLibrary::get().get_device());
97 
98     std::string kernel_name = "gemmlowp_matrix_a_reduction" + std::string(is_dot8_supported ? "_dot8" : "");
99 
100     // Create kernel
101     _kernel = create_kernel(compile_context, kernel_name, build_opts.options());
102 
103     // Configure kernel window
104     // This kernel does not need padding
105     Window win = calculate_max_window(*vector_sum_row->info(), Steps());
106     ICLKernel::configure_internal(win);
107 
108     _config_id = kernel_name;
109     _config_id += "_";
110     _config_id += support::cpp11::to_string(_input->info()->dimension(0));
111     _config_id += "_";
112     _config_id += support::cpp11::to_string(_input->info()->dimension(1));
113     _config_id += "_";
114     _config_id += support::cpp11::to_string(_input->info()->dimension(2));
115 
116     ARM_COMPUTE_ERROR_ON(has_padding_changed(padding_info));
117 }
118 
validate(const ITensorInfo * mtx_a,const ITensorInfo * vector_sum_row,const GEMMLowpReductionKernelInfo & info)119 Status CLGEMMLowpMatrixAReductionKernel::validate(const ITensorInfo *mtx_a, const ITensorInfo *vector_sum_row, const GEMMLowpReductionKernelInfo &info)
120 {
121     ARM_COMPUTE_UNUSED(info);
122     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_matrix_a_reduction(mtx_a, vector_sum_row));
123 
124     return Status{};
125 }
126 
run(const Window & window,cl::CommandQueue & queue)127 void CLGEMMLowpMatrixAReductionKernel::run(const Window &window, cl::CommandQueue &queue)
128 {
129     ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
130     ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window);
131 
132     Window collapsed = window.collapse_if_possible(ICLKernel::window(), Window::DimY);
133     Window slice_in  = collapsed.first_slice_window_2D();
134     Window slice_out = collapsed.first_slice_window_2D();
135 
136     // Setup input slice. Its dimensions are increased in the cl kernel.
137     slice_in.set(Window::DimX, Window::Dimension(0, 0, 0));
138     slice_in.set(Window::DimY, Window::Dimension(0, 0, 0));
139     slice_in.set(Window::DimZ, Window::Dimension(0, 0, 0));
140 
141     do
142     {
143         unsigned int idx = 0;
144         add_3D_tensor_argument(idx, _input, slice_in);
145         add_2D_tensor_argument(idx, _output, slice_out);
146         enqueue(queue, *this, slice_out, lws_hint());
147     }
148     while(collapsed.slide_window_slice_2D(slice_out));
149 }
150 
configure(const ICLTensor * mtx_b,ICLTensor * vector_sum_col,const GEMMLowpReductionKernelInfo & info)151 void CLGEMMLowpMatrixBReductionKernel::configure(const ICLTensor *mtx_b, ICLTensor *vector_sum_col, const GEMMLowpReductionKernelInfo &info)
152 {
153     configure(CLKernelLibrary::get().get_compile_context(), mtx_b, vector_sum_col, info);
154 }
155 
configure(const CLCompileContext & compile_context,const ICLTensor * mtx_b,ICLTensor * vector_sum_col,const GEMMLowpReductionKernelInfo & info)156 void CLGEMMLowpMatrixBReductionKernel::configure(const CLCompileContext &compile_context, const ICLTensor *mtx_b, ICLTensor *vector_sum_col, const GEMMLowpReductionKernelInfo &info)
157 {
158     ARM_COMPUTE_ERROR_ON_NULLPTR(mtx_b, vector_sum_col);
159     ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_matrix_b_reduction(mtx_b->info(), vector_sum_col->info()));
160 
161     _input  = mtx_b;
162     _output = vector_sum_col;
163 
164     // Output auto initialization if not yet initialized
165     auto_init_if_empty(*_output->info(), TensorShape(mtx_b->info()->dimension(0)), 1, DataType::S32);
166 
167     auto padding_info = get_padding_info({ mtx_b, vector_sum_col });
168 
169     const unsigned int num_elems_processed_per_iteration = adjust_vec_size(16, mtx_b->info()->dimension(0));
170 
171     // Set the arguments to pass at compile time
172     CLBuildOptions build_opts;
173     build_opts.add_option("-DVEC_SIZE=" + support::cpp11::to_string(num_elems_processed_per_iteration));
174     build_opts.add_option("-DVEC_SIZE_LEFTOVER=" + support::cpp11::to_string(mtx_b->info()->dimension(0) % num_elems_processed_per_iteration));
175     build_opts.add_option("-DCOLS_B=" + support::cpp11::to_string(mtx_b->info()->dimension(0)));
176     build_opts.add_option("-DROWS_B=" + support::cpp11::to_string(mtx_b->info()->dimension(1)));
177     build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(mtx_b->info()->data_type()));
178     build_opts.add_option("-DACC_DATA_TYPE=" + get_cl_dot8_acc_type_from_data_type(mtx_b->info()->data_type()));
179     build_opts.add_option_if(info.mul_by_scalar, "-DSCALAR=" + support::cpp11::to_string(info.scalar));
180 
181     // Create kernel
182     _kernel = create_kernel(compile_context, "gemmlowp_matrix_b_reduction", build_opts.options());
183 
184     // Configure kernel window
185     Window win = calculate_max_window(*_output->info(), Steps(num_elems_processed_per_iteration));
186     ICLKernel::configure_internal(win);
187 
188     ARM_COMPUTE_ERROR_ON(has_padding_changed(padding_info));
189 }
190 
validate(const ITensorInfo * mtx_b,const ITensorInfo * vector_sum_col,const GEMMLowpReductionKernelInfo & info)191 Status CLGEMMLowpMatrixBReductionKernel::validate(const ITensorInfo *mtx_b, const ITensorInfo *vector_sum_col, const GEMMLowpReductionKernelInfo &info)
192 {
193     ARM_COMPUTE_UNUSED(info);
194     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_matrix_b_reduction(mtx_b, vector_sum_col));
195 
196     return Status{};
197 }
198 
run(const Window & window,cl::CommandQueue & queue)199 void CLGEMMLowpMatrixBReductionKernel::run(const Window &window, cl::CommandQueue &queue)
200 {
201     ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
202     ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window);
203 
204     Window collapsed = window.collapse_if_possible(IKernel::window(), Window::DimY);
205 
206     Window slice_out = collapsed.first_slice_window_2D();
207     Window slice_in  = slice_out;
208 
209     slice_in.set(Window::DimY, Window::Dimension(0, 0, 0));
210     slice_in.set(Window::DimZ, Window::Dimension(0, 0, 0));
211 
212     do
213     {
214         unsigned int idx = 0;
215         add_3D_tensor_argument(idx, _input, slice_in);
216         add_2D_tensor_argument(idx, _output, slice_out);
217         enqueue(queue, *this, slice_out, lws_hint());
218     }
219     while(collapsed.slide_window_slice_2D(slice_out));
220 }
221 } // namespace arm_compute
222