1 /*
2 * Copyright (c) 2017-2020 Arm Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24 #include "src/core/CL/kernels/CLGEMMMatrixMultiplyKernel.h"
25
26 #include "arm_compute/core/CL/CLHelpers.h"
27 #include "arm_compute/core/CL/CLKernelLibrary.h"
28 #include "arm_compute/core/CL/ICLTensor.h"
29 #include "arm_compute/core/CL/OpenCL.h"
30 #include "arm_compute/core/Helpers.h"
31 #include "arm_compute/core/TensorInfo.h"
32 #include "arm_compute/core/Utils.h"
33 #include "arm_compute/core/utils/misc/ShapeCalculator.h"
34 #include "src/core/AccessWindowStatic.h"
35 #include "src/core/CL/CLValidate.h"
36 #include "src/core/helpers/AutoConfiguration.h"
37 #include "src/core/helpers/WindowHelpers.h"
38 #include "src/core/utils/helpers/float_ops.h"
39 #include "support/StringSupport.h"
40
41 #include <set>
42 #include <string>
43
44 namespace arm_compute
45 {
46 using namespace arm_compute::misc::shape_calculator;
47
48 namespace
49 {
50 using ElementsProcessed = Steps;
51
validate_arguments(const ITensorInfo * input0,const ITensorInfo * input1,const ITensorInfo * input2,const ITensorInfo * output,float beta,bool is_interleaved_transposed,const GEMMReshapeInfo & reshape_info,bool fp_mixed_precision)52 inline Status validate_arguments(const ITensorInfo *input0, const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, float beta,
53 bool is_interleaved_transposed, const GEMMReshapeInfo &reshape_info, bool fp_mixed_precision)
54 {
55 ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input0, input1, output);
56 ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(input0);
57 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input0, 1, DataType::F16, DataType::F32);
58 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input0, input1);
59 ARM_COMPUTE_RETURN_ERROR_ON_MSG((fp_mixed_precision && (input0->data_type() != DataType::F16)), "Mixed precision floating point is supported only for F16 data");
60 ARM_COMPUTE_RETURN_ERROR_ON_MSG(input0->num_dimensions() > 4, "The number of dimensions for the matrix A must be <= 4");
61 ARM_COMPUTE_RETURN_ERROR_ON_MSG(input1->num_dimensions() > 3, "The number of dimensions for the matrix B must be <= 3");
62 ARM_COMPUTE_RETURN_ERROR_ON_MSG(is_interleaved_transposed && reshape_info.reinterpret_input_as_3d(), "The input tensor cannot be reinterpreted as 3D if is_interleaved_transposed is true");
63 ARM_COMPUTE_RETURN_ERROR_ON_MSG(input1->num_dimensions() > 2 && reshape_info.reinterpret_input_as_3d(), "The input1 tensor cannot have more than 2 dimensions if input0 has to be reinterpreted as 3D");
64 ARM_COMPUTE_RETURN_ERROR_ON_MSG((reshape_info.reinterpret_input_as_3d() || reshape_info.depth_output_gemm3d() != 0) && (input2 != nullptr)
65 && (!reshape_info.broadcast_bias()),
66 "Bias addition only supported with broadcast mode in case the input or output has to be reinterpreted as 3D");
67
68 if(!is_interleaved_transposed)
69 {
70 ARM_COMPUTE_RETURN_ERROR_ON(input0->dimension(0) != input1->dimension(1));
71
72 if(input2 != nullptr && !(helpers::float_ops::is_zero(beta)))
73 {
74 const unsigned int m = reshape_info.reinterpret_input_as_3d() ? input0->dimension(1) * input0->dimension(2) : input0->dimension(1);
75 const unsigned int n = input1->dimension(0);
76 const unsigned int input2_dim0 = input2->dimension(0);
77 const unsigned int input2_dim1 = input2->dimension(1);
78
79 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input2, input1);
80 if(reshape_info.broadcast_bias())
81 {
82 ARM_COMPUTE_RETURN_ERROR_ON_MSG((input2_dim1 != 1 || input2_dim0 != n), "Incorrect dimension of bias matrix which is to be broadcasted");
83 }
84 else
85 {
86 ARM_COMPUTE_RETURN_ERROR_ON_MSG((input2_dim0 != n || input2_dim1 != m), "Incorrect dimension of bias matrix");
87 }
88 }
89 }
90 else
91 {
92 GEMMRHSMatrixInfo rhs_info;
93 GEMMLHSMatrixInfo lhs_info;
94 const auto m = static_cast<unsigned int>(reshape_info.m());
95 const auto n = static_cast<unsigned int>(reshape_info.n());
96 const int k = reshape_info.k();
97 const int mult_transpose1xW_width = reshape_info.mult_transpose1xW_width();
98 const int mult_interleave4x4_height = reshape_info.mult_interleave4x4_height();
99 rhs_info.n0 = max_cl_vector_width / input1->element_size();
100 rhs_info.k0 = 1;
101 rhs_info.h0 = mult_transpose1xW_width;
102 rhs_info.interleave = false;
103 rhs_info.transpose = false;
104 lhs_info.m0 = 4;
105 lhs_info.k0 = 4;
106 lhs_info.v0 = mult_interleave4x4_height;
107 lhs_info.interleave = true;
108 lhs_info.transpose = true;
109
110 TensorShape tensor_shape0{ input0->tensor_shape() };
111 tensor_shape0.set(0, k);
112 tensor_shape0.set(1, m);
113
114 TensorShape tensor_shape1{ input1->tensor_shape() };
115 tensor_shape1.set(0, n);
116 tensor_shape1.set(1, k);
117
118 const TensorInfo tensor_info0 = input0->clone()->set_tensor_shape(tensor_shape0);
119 const TensorInfo tensor_info1 = input1->clone()->set_tensor_shape(tensor_shape1);
120
121 const TensorInfo tensor_info_reshaped0 = input0->clone()->set_tensor_shape(compute_lhs_reshaped_shape(tensor_info0, lhs_info));
122 const TensorInfo tensor_info_reshaped1 = input1->clone()->set_tensor_shape(compute_rhs_reshaped_shape(tensor_info1, rhs_info));
123
124 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input0, &tensor_info_reshaped0);
125 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input1, &tensor_info_reshaped1);
126
127 if(input2 != nullptr && !(helpers::float_ops::is_zero(beta)))
128 {
129 const unsigned int input2_dim0 = input2->dimension(0);
130 const unsigned int input2_dim1 = input2->dimension(1);
131
132 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input2, input1);
133 if(reshape_info.broadcast_bias())
134 {
135 ARM_COMPUTE_RETURN_ERROR_ON_MSG((input2_dim1 != 1 || input2_dim0 != n), "Incorrect dimension of bias matrix which is to be broadcasted");
136 }
137 else
138 {
139 ARM_COMPUTE_RETURN_ERROR_ON_MSG((input2_dim0 != n || input2_dim1 != m), "Incorrect dimension of bias matrix");
140 }
141 }
142 }
143
144 if(output->total_size() != 0)
145 {
146 const TensorInfo tensor_info_output = output->clone()->set_tensor_shape(compute_mm_shape(*input0, *input1, is_interleaved_transposed, reshape_info));
147 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(output, &tensor_info_output);
148 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input0, output);
149 }
150
151 return Status{};
152 }
153
validate_and_configure_window(ITensorInfo * input0,ITensorInfo * input1,ITensorInfo * input2,ITensorInfo * output,float beta,bool is_interleaved_transposed,const GEMMReshapeInfo & reshape_info,GPUTarget gpu_target,ElementsProcessed & num_elements_processed)154 inline std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input0, ITensorInfo *input1, ITensorInfo *input2, ITensorInfo *output,
155 float beta, bool is_interleaved_transposed, const GEMMReshapeInfo &reshape_info, GPUTarget gpu_target,
156 ElementsProcessed &num_elements_processed)
157 {
158 ARM_COMPUTE_UNUSED(beta);
159 bool window_changed = false;
160 Window win{};
161 Window win_out{};
162
163 const DataType data_type = input0->data_type();
164 unsigned int &num_elems_processed_per_iteration_x = num_elements_processed[0];
165 unsigned int &num_elems_processed_per_iteration_y = num_elements_processed[1];
166 bool reinterpret_input_as_3d = reshape_info.reinterpret_input_as_3d();
167 bool reinterpret_output_as_3d = (reshape_info.depth_output_gemm3d() != 0);
168
169 // In case both input and output have to be reinterpreted as 3D tensors,
170 // force reinterpret_input_as_3d and reinterpret_output_as_3d to be false.
171 if(reinterpret_input_as_3d == reinterpret_output_as_3d)
172 {
173 reinterpret_input_as_3d = false;
174 reinterpret_output_as_3d = false;
175 }
176
177 // Output tensor auto inizialitation if not yet initialized
178 auto_init_if_empty(*output, input0->clone()->set_tensor_shape(compute_mm_shape(*input0, *input1, is_interleaved_transposed, reshape_info)));
179
180 TensorInfo tmp_info(*output);
181
182 if(reinterpret_output_as_3d)
183 {
184 // Since the output tensor has to be reinterpreted as 3D and the execute window is based on a 2D GEMM,
185 // the window needs to be constructed on the 2D collapsed version of the tensor
186 TensorShape tmp_shape(output->tensor_shape());
187 tmp_shape.collapse(2U, 1U);
188 tmp_info.set_tensor_shape(tmp_shape);
189 }
190
191 if(is_interleaved_transposed)
192 {
193 // reinterpret_input_as_3d is not supported if is_interleaved_transposed is set
194 ARM_COMPUTE_ERROR_ON(reshape_info.reinterpret_input_as_3d());
195
196 // Configure kernel window
197 num_elems_processed_per_iteration_x = max_cl_vector_width / data_size_from_type(data_type);
198 num_elems_processed_per_iteration_y = 4;
199
200 win = calculate_max_window(tmp_info, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
201 if(input2 != nullptr)
202 {
203 const int bias_processed_per_iteration_x = num_elems_processed_per_iteration_x;
204
205 const int bias_processed_per_iteration_y = reshape_info.broadcast_bias() ? 1 : num_elems_processed_per_iteration_y;
206
207 AccessWindowStatic input2_access(input2, 0, 0,
208 ceil_to_multiple(input2->dimension(0), bias_processed_per_iteration_x),
209 ceil_to_multiple(input2->dimension(1), bias_processed_per_iteration_y));
210
211 window_changed = update_window_and_padding(win, input2_access); // window used by the execute_window_loop
212 }
213 }
214 else // The input tensors have not been reshaped
215 {
216 // Special case for 1xN, 2xN, 3xN and 4xN input0 tensor. num_elems_processed_per_iteration_x is set up for the default case.
217 num_elems_processed_per_iteration_x = max_cl_vector_width / data_size_from_type(data_type);
218 num_elems_processed_per_iteration_y = std::min(static_cast<int>(output->dimension(1)), 4);
219
220 // Create kernels according to the architecture, data type and input size.
221 GPUTarget arch_target = get_arch_from_target(gpu_target);
222 if(arch_target == GPUTarget::BIFROST && data_type == DataType::F32)
223 {
224 num_elems_processed_per_iteration_x = (input1->dimension(0) <= 1000 && input0->num_dimensions() == 1) ? 2 : 4;
225 }
226
227 // Configure window
228 win = calculate_max_window(tmp_info, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
229 win_out = calculate_max_window(*output, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
230 AccessWindowStatic input0_access(input0, 0, 0, input0->dimension(0), input0->dimension(1));
231 AccessWindowStatic input1_access(input1, 0, 0, ceil_to_multiple(input1->dimension(0), num_elems_processed_per_iteration_x), input1->dimension(1));
232 AccessWindowStatic output_access(output, 0, 0,
233 output->dimension(0),
234 output->dimension(1));
235
236 if(input2 != nullptr)
237 {
238 const int bias_processed_per_iteration_x = num_elems_processed_per_iteration_x;
239
240 AccessWindowStatic input2_access(input2, 0, 0,
241 ceil_to_multiple(input2->dimension(0), bias_processed_per_iteration_x),
242 input2->dimension(1));
243
244 window_changed = update_window_and_padding(win, input0_access, input1_access, input2_access) || // window used by the execute_window_loop
245 update_window_and_padding(win_out, output_access); // window used to update the padding requirements of output tensor
246 }
247 else
248 {
249 window_changed = update_window_and_padding(win, input0_access, input1_access) || // window used by the execute_window_loop
250 update_window_and_padding(win_out, output_access); // window used to update the padding requirements of output tensor
251 }
252
253 Coordinates coord;
254 coord.set_num_dimensions(output->num_dimensions());
255 output_access.set_valid_region(win_out, ValidRegion(coord, output->tensor_shape()));
256 }
257
258 // Collapse along the Z direction
259 // This collapse needs to be here in order to tune the Z dimension of LWS
260 Window collapsed = win;
261 const unsigned int dimension_to_collapse = std::min(static_cast<unsigned int>(output->num_dimensions()), 2u);
262 collapsed = win.collapse(win, dimension_to_collapse);
263
264 Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
265 return std::make_pair(err, collapsed);
266 }
267 } // namespace
268
CLGEMMMatrixMultiplyKernel()269 CLGEMMMatrixMultiplyKernel::CLGEMMMatrixMultiplyKernel()
270 : _input0(nullptr), _input1(nullptr), _input2(nullptr), _output(nullptr), _slide_matrix_b(true), _reinterpret_input_as_3d(false), _reinterpret_output_as_3d(false), _add_bias(false),
271 _broadcast_bias(false)
272 {
273 }
274
configure(const ICLTensor * input0,const ICLTensor * input1,const ICLTensor * input2,ICLTensor * output,float alpha,float beta,bool is_interleaved_transposed,const GEMMReshapeInfo & reshape_info,bool fp_mixed_precision,const ActivationLayerInfo & activation_info)275 void CLGEMMMatrixMultiplyKernel::configure(const ICLTensor *input0, const ICLTensor *input1, const ICLTensor *input2, ICLTensor *output, float alpha, float beta,
276 bool is_interleaved_transposed, const GEMMReshapeInfo &reshape_info, bool fp_mixed_precision, const ActivationLayerInfo &activation_info)
277 {
278 configure(CLKernelLibrary::get().get_compile_context(), input0, input1, input2, output, alpha, beta, is_interleaved_transposed, reshape_info, fp_mixed_precision, activation_info);
279 }
280
configure(const CLCompileContext & compile_context,const ICLTensor * input0,const ICLTensor * input1,const ICLTensor * input2,ICLTensor * output,float alpha,float beta,bool is_interleaved_transposed,const GEMMReshapeInfo & reshape_info,bool fp_mixed_precision,const ActivationLayerInfo & activation_info)281 void CLGEMMMatrixMultiplyKernel::configure(const CLCompileContext &compile_context, const ICLTensor *input0, const ICLTensor *input1, const ICLTensor *input2, ICLTensor *output, float alpha,
282 float beta,
283 bool is_interleaved_transposed, const GEMMReshapeInfo &reshape_info, bool fp_mixed_precision, const ActivationLayerInfo &activation_info)
284 {
285 ARM_COMPUTE_ERROR_ON_NULLPTR(input0, input1, output);
286
287 // Perform validate step
288 ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input0->info(), input1->info(), (input2 != nullptr) ? input2->info() : nullptr, output->info(), beta,
289 is_interleaved_transposed, reshape_info, fp_mixed_precision));
290
291 auto padding_info = is_interleaved_transposed ? get_padding_info({ input0, input1, output }) : get_padding_info({ input0, output });
292
293 _input0 = input0;
294 _input1 = input1;
295 _input2 = helpers::float_ops::is_zero(beta) ? nullptr : input2;
296 _output = output;
297 _reinterpret_input_as_3d = reshape_info.reinterpret_input_as_3d();
298 _reinterpret_output_as_3d = (reshape_info.depth_output_gemm3d() != 0);
299 _add_bias = _input2 != nullptr;
300 _broadcast_bias = reshape_info.broadcast_bias();
301
302 // In case both input and output have to be reinterpreted as 3D tensors,
303 // force reinterpret_input_as_3d and reinterpret_output_as_3d to be false.
304 if(_reinterpret_input_as_3d == _reinterpret_output_as_3d)
305 {
306 _reinterpret_input_as_3d = false;
307 _reinterpret_output_as_3d = false;
308 }
309
310 // Check if we need to slide the matrix B
311 const unsigned int num_dimensions_input0 = _reinterpret_input_as_3d ? _input0->info()->num_dimensions() - 1 : _input0->info()->num_dimensions();
312
313 _slide_matrix_b = (_input1->info()->num_dimensions() >= num_dimensions_input0);
314
315 const DataType data_type = input0->info()->data_type();
316
317 // Get target architecture
318 GPUTarget gpu_target = get_target();
319
320 ElementsProcessed num_elements_processed{};
321
322 // Configure kernel window
323 auto win_config = validate_and_configure_window(input0->info(), input1->info(), (input2 != nullptr) ? input2->info() : nullptr, output->info(), beta, is_interleaved_transposed, reshape_info,
324 gpu_target, num_elements_processed);
325 ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
326 ICLKernel::configure_internal(win_config.second);
327
328 // If _reinterpret_input_as_3d = _reinterpret_output_as_3d = true, both will be turned off (false)
329 // in which case we will dispatch a batched-GEMM to reduce the complexity of the address calculation within the OpenCL kernel.
330 // This means that the actual m used by the kernel is given by output->info()->dimension(1)
331 const unsigned int internal_m = _reinterpret_output_as_3d ? output->info()->dimension(1) * output->info()->dimension(2) : output->info()->dimension(1);
332 const unsigned int n = output->info()->dimension(0);
333
334 const unsigned int h_gemm_3d = _reinterpret_output_as_3d ? output->info()->dimension(1) : input0->info()->dimension(1);
335 const unsigned int d_gemm_3d = _reinterpret_output_as_3d ? output->info()->dimension(2) : input0->info()->dimension(2);
336
337 const unsigned int m0 = num_elements_processed.y();
338 const unsigned int n0 = num_elements_processed.x();
339
340 // Calculate partial (store instead of load) M0 and partial N0 for the partial blocks at the end of a row/column if any. This is to avoid padding.
341 const unsigned int partial_store_m0 = internal_m % m0;
342 const unsigned int partial_store_n0 = n % n0;
343
344 // Create build options
345 CLBuildOptions build_opts;
346
347 build_opts.add_option_if(!(helpers::float_ops::is_one(alpha)), "-DALPHA=" + float_to_string_with_full_precision(alpha));
348 build_opts.add_option_if(_input2 != nullptr, "-DBETA=" + float_to_string_with_full_precision(beta));
349 build_opts.add_option_if(helpers::float_ops::is_one(beta), "-DUNIT_BETA");
350 build_opts.add_option_if(reshape_info.broadcast_bias(), "-DBROADCAST_BIAS");
351 build_opts.add_option_if(_reinterpret_input_as_3d, "-DREINTERPRET_INPUT_AS_3D");
352 build_opts.add_option_if(_reinterpret_output_as_3d, "-DREINTERPRET_OUTPUT_AS_3D");
353 build_opts.add_option_if(_reinterpret_input_as_3d || _reinterpret_output_as_3d, "-DHEIGHT_GEMM3D=" + support::cpp11::to_string(h_gemm_3d));
354 build_opts.add_option_if(_reinterpret_input_as_3d || _reinterpret_output_as_3d, "-DDEPTH_GEMM3D=" + support::cpp11::to_string(d_gemm_3d));
355 build_opts.add_option_if(!_slide_matrix_b, "-DMATRIX_B_DEPTH=" + support::cpp11::to_string(input1->info()->dimension(2)));
356 build_opts.add_option_if(activation_info.enabled(), "-DACTIVATION_TYPE=" + lower_string(string_from_activation_func(activation_info.activation())));
357 build_opts.add_option_if(activation_info.enabled(), "-DA_VAL=" + float_to_string_with_full_precision(activation_info.a()));
358 build_opts.add_option_if(activation_info.enabled(), "-DB_VAL=" + float_to_string_with_full_precision(activation_info.b()));
359
360 const bool is_bifrost = get_arch_from_target(gpu_target) == GPUTarget::BIFROST;
361
362 std::string kernel_name;
363 if(is_interleaved_transposed)
364 {
365 const int mult_transpose1xW_width = reshape_info.mult_transpose1xW_width();
366 const int mult_interleave4x4_height = reshape_info.mult_interleave4x4_height();
367
368 build_opts.add_option("-DM=" + support::cpp11::to_string(internal_m));
369 build_opts.add_option("-DN=" + support::cpp11::to_string(n));
370 build_opts.add_option("-DK=" + support::cpp11::to_string(input1->info()->dimension(0) / (n0 * mult_transpose1xW_width)));
371 build_opts.add_option("-DH0=" + support::cpp11::to_string(mult_transpose1xW_width));
372 build_opts.add_option("-DV0=" + support::cpp11::to_string(mult_interleave4x4_height));
373 build_opts.add_option("-DPARTIAL_STORE_M0=" + support::cpp11::to_string(partial_store_m0));
374 build_opts.add_option("-DPARTIAL_STORE_N0=" + support::cpp11::to_string(partial_store_n0));
375
376 if(is_data_type_float(data_type) && is_bifrost)
377 {
378 kernel_name = "gemm_mm_interleaved_transposed_" + lower_string(string_from_data_type(data_type)) + "_bifrost";
379 }
380 else
381 {
382 kernel_name = "gemm_mm_interleaved_transposed_" + lower_string(string_from_data_type(data_type));
383 if(fp_mixed_precision && data_type == DataType::F16)
384 {
385 // currently wider accumulator is only supported for fp16 kernels.
386 kernel_name += "_acc32";
387 }
388 }
389 }
390 else // The input tensors have not been reshaped
391 {
392 build_opts.add_option("-DN=" + support::cpp11::to_string(n));
393 build_opts.add_option("-DK=" + support::cpp11::to_string(input0->info()->dimension(0)));
394 build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(data_type));
395 build_opts.add_option("-DM0=" + support::cpp11::to_string(m0));
396 build_opts.add_option("-DN0=" + support::cpp11::to_string(n0));
397 build_opts.add_option("-DPARTIAL_STORE_M0=" + support::cpp11::to_string(partial_store_m0));
398 build_opts.add_option("-DPARTIAL_STORE_N0=" + support::cpp11::to_string(partial_store_n0));
399
400 // Create kernels according to the architecture, data type and input size.
401 if(is_data_type_float(data_type) && is_bifrost)
402 {
403 kernel_name = "gemm_mm_floating_point";
404
405 if(input0->info()->num_dimensions() != 1)
406 {
407 kernel_name += "_" + lower_string(string_from_data_type(data_type)) + "_bifrost";
408 if(fp_mixed_precision && data_type == DataType::F16)
409 {
410 // currently wider accumulator is only supported for fp16 kernels.
411 kernel_name += "_acc32";
412 }
413 }
414 else if(input1->info()->dimension(0) <= 1000 && data_type == DataType::F32)
415 {
416 // The first kernel is optimized for the case of 1000 or less output elements (e.g. FC8 of AlexNet and VGG-16, and
417 // FC1 of Inception v3). The second kernel is optimized for the case of greater than 1000 output elements (e.g.
418 // FC6 and FC7 of AlexNet and VGG-16).
419 kernel_name += "_" + lower_string(string_from_data_type(data_type)) + "_bifrost_1000";
420 }
421
422 // The work-group size equal to the Bifrost quad size has been proved to be optimal for these kernels
423 // via exhaustive autotuning over a range of representative layer configurations.
424 set_lws_hint(cl::NDRange(4));
425 }
426 else // (MIDGARD and F32) or (F16)
427 {
428 kernel_name = "gemm_mm_floating_point";
429 }
430 }
431
432 // Create kernel
433 _kernel = create_kernel(compile_context, kernel_name, build_opts.options());
434
435 // Set config_id for enabling LWS tuning
436 _config_id = "gemm_";
437 _config_id += (is_interleaved_transposed ? "reshaped_" : "");
438 _config_id += (_add_bias ? "add_bias_" : "");
439 _config_id += (_broadcast_bias ? "broadcast_bias_" : "");
440 _config_id += (fp_mixed_precision ? "fp_mixed_" : "");
441 _config_id += (_reinterpret_input_as_3d ? "3di_" : "");
442 _config_id += (_reinterpret_output_as_3d ? "3do_" : "");
443 _config_id += lower_string(string_from_data_type(input0->info()->data_type()));
444 _config_id += "_";
445 _config_id += support::cpp11::to_string(output->info()->dimension(1));
446 _config_id += "_";
447 _config_id += support::cpp11::to_string(output->info()->dimension(0));
448 _config_id += "_";
449 _config_id += support::cpp11::to_string(output->info()->dimension(2));
450 _config_id += "_";
451 _config_id += support::cpp11::to_string(output->info()->dimension(3));
452 _config_id += "_";
453 _config_id += (is_interleaved_transposed ? support::cpp11::to_string(input1->info()->dimension(0)) : support::cpp11::to_string(input1->info()->dimension(1)));
454
455 ARM_COMPUTE_ERROR_ON(has_padding_changed(padding_info));
456 }
457
validate(const ITensorInfo * input0,const ITensorInfo * input1,const ITensorInfo * input2,const ITensorInfo * output,float alpha,float beta,bool is_interleaved_transposed,const GEMMReshapeInfo & reshape_info,GPUTarget gpu_target,bool fp_mixed_precision,const ActivationLayerInfo & activation_info)458 Status CLGEMMMatrixMultiplyKernel::validate(const ITensorInfo *input0, const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, float alpha, float beta,
459 bool is_interleaved_transposed, const GEMMReshapeInfo &reshape_info, GPUTarget gpu_target, bool fp_mixed_precision, const ActivationLayerInfo &activation_info)
460 {
461 // Note: num_elements_processed will be set in validate_and_configure_window()
462 ElementsProcessed num_elements_processed{};
463 ARM_COMPUTE_UNUSED(alpha);
464 ARM_COMPUTE_UNUSED(activation_info);
465 ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input0, input1, input2, output, beta, is_interleaved_transposed, reshape_info, fp_mixed_precision));
466 ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input0->clone().get(),
467 input1->clone().get(),
468 (input2 != nullptr) ? input2->clone().get() : nullptr,
469 output->clone().get(),
470 beta,
471 is_interleaved_transposed,
472 reshape_info,
473 gpu_target,
474 num_elements_processed)
475 .first);
476
477 return Status{};
478 }
479
run(const Window & window,cl::CommandQueue & queue)480 void CLGEMMMatrixMultiplyKernel::run(const Window &window, cl::CommandQueue &queue)
481 {
482 ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
483 ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window);
484
485 if(_input1->info()->num_dimensions() < 3)
486 {
487 // The stride_z for matrix B must be zero if we do not slice
488 ARM_COMPUTE_ERROR_ON(_input1->info()->strides_in_bytes()[3] != 0);
489 }
490
491 Window slice = window.first_slice_window_3D();
492 Window slice_matrix_b = slice;
493
494 slice_matrix_b.set(Window::DimX, Window::Dimension(0, 1, 1));
495 slice_matrix_b.set(Window::DimY, Window::Dimension(0, 1, 1));
496
497 const unsigned int num_arguments_bias = _add_bias ? num_arguments_per_2D_tensor() + 1 : 0;
498
499 if(_reinterpret_input_as_3d)
500 {
501 // Pass bottom paddings to the kernel if the input has to be reinterpreted as 3D tensor
502 const unsigned int idx0 = 3 * num_arguments_per_2D_tensor() + 3 + num_arguments_bias;
503 const unsigned int total_cross_plane_pad = _input0->info()->padding().top + _input0->info()->padding().bottom;
504 _kernel.setArg<cl_uint>(idx0, static_cast<unsigned int>(total_cross_plane_pad));
505 }
506
507 if(_reinterpret_output_as_3d)
508 {
509 // Pass bottom paddings to the kernel if the output has to be reinterpreted as 3D tensor
510 const unsigned int idx0 = 3 * num_arguments_per_2D_tensor() + 3 + (_reinterpret_input_as_3d ? 1 : 0) + num_arguments_bias;
511 const unsigned int total_cross_plane_pad = _output->info()->padding().top + _output->info()->padding().bottom;
512 _kernel.setArg<cl_uint>(idx0, static_cast<unsigned int>(total_cross_plane_pad));
513 }
514
515 do
516 {
517 Window slice_b = slice;
518 // Don't slice matrix B along the z dimension if matrix B has just 2 dimensions and matrix A more than 2
519 // This scenario can happen when the matrix multiplication is used to perform a convolution operation
520 if(!_slide_matrix_b)
521 {
522 slice_b = slice_matrix_b;
523 }
524
525 unsigned int idx = 0;
526 add_2D_tensor_argument(idx, _input0, slice);
527 add_2D_tensor_argument(idx, _input1, slice_b);
528 if(_add_bias)
529 {
530 add_2D_tensor_argument(idx, _input2, slice);
531 }
532 add_2D_tensor_argument(idx, _output, slice);
533 _kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(_input0->info()->strides_in_bytes()[2]));
534 _kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(_input1->info()->strides_in_bytes()[2]));
535 if(_add_bias)
536 {
537 _kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(_input2->info()->strides_in_bytes()[2]));
538 }
539 _kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(_output->info()->strides_in_bytes()[2]));
540 enqueue(queue, *this, slice, lws_hint());
541 }
542 while(window.slide_window_slice_3D(slice));
543 }
544 } // namespace arm_compute
545