• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2016-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "src/core/CL/kernels/CLPixelWiseMultiplicationKernel.h"
25 
26 #include "arm_compute/core/CL/CLHelpers.h"
27 #include "arm_compute/core/CL/CLKernelLibrary.h"
28 #include "arm_compute/core/CL/ICLTensor.h"
29 #include "arm_compute/core/CL/OpenCL.h"
30 #include "arm_compute/core/TensorInfo.h"
31 #include "src/core/CL/CLValidate.h"
32 #include "src/core/helpers/AutoConfiguration.h"
33 #include "src/core/helpers/WindowHelpers.h"
34 #include "support/Cast.h"
35 #include "support/StringSupport.h"
36 
37 namespace arm_compute
38 {
39 namespace
40 {
41 constexpr unsigned int num_elems_processed_per_iteration = 16;
42 
validate_arguments(const ITensorInfo * input1,const ITensorInfo * input2,const ITensorInfo * output,float scale,ConvertPolicy overflow_policy,RoundingPolicy rounding_policy,const ActivationLayerInfo & act_info)43 Status validate_arguments(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, float scale,
44                           ConvertPolicy overflow_policy, RoundingPolicy rounding_policy, const ActivationLayerInfo &act_info)
45 {
46     ARM_COMPUTE_UNUSED(overflow_policy);
47     ARM_COMPUTE_UNUSED(rounding_policy);
48 
49     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input1, input2, output);
50     ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(input1);
51     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input1,
52                                                          1,
53                                                          DataType::U8, DataType::QASYMM8, DataType::QASYMM8_SIGNED,
54                                                          DataType::S16, DataType::QSYMM16, DataType::F16,
55                                                          DataType::F32);
56     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input2,
57                                                          1,
58                                                          DataType::U8, DataType::QASYMM8, DataType::QASYMM8_SIGNED,
59                                                          DataType::S16, DataType::QSYMM16, DataType::F16,
60                                                          DataType::F32);
61     ARM_COMPUTE_RETURN_ERROR_ON_MSG(scale < 0, "Scale cannot be negative.");
62     ARM_COMPUTE_RETURN_ERROR_ON(act_info.enabled() && !is_data_type_float(output->data_type()));
63 
64     const TensorShape &out_shape = TensorShape::broadcast_shape(input1->tensor_shape(), input2->tensor_shape());
65 
66     ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible");
67 
68     // Validate in case of configured output
69     if(output->total_size() > 0)
70     {
71         ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output,
72                                                              1,
73                                                              DataType::U8, DataType::QASYMM8, DataType::QASYMM8_SIGNED,
74                                                              DataType::S16, DataType::QSYMM16, DataType::F16,
75                                                              DataType::S32, DataType::F32);
76         ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->data_type() == DataType::U8 && (input1->data_type() != DataType::U8 || input2->data_type() != DataType::U8),
77                                         "Output can only be U8 if both inputs are U8");
78         ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->data_type() == DataType::QASYMM8 && (input1->data_type() != DataType::QASYMM8 || input2->data_type() != DataType::QASYMM8),
79                                         "Output can only be QASYMM8 if both inputs are QASYMM8");
80         ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->data_type() == DataType::QASYMM8_SIGNED && (input1->data_type() != DataType::QASYMM8_SIGNED || input2->data_type() != DataType::QASYMM8_SIGNED),
81                                         "Output can only be QASYMM8_SIGNED if both inputs are QASYMM8_SIGNED");
82         ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->data_type() == DataType::QSYMM16 && (input1->data_type() != DataType::QSYMM16 || input2->data_type() != DataType::QSYMM16),
83                                         "Output can only be QSYMM16 if both inputs are QSYMM16");
84         ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->data_type() == DataType::S32 && (input1->data_type() != DataType::QSYMM16 || input2->data_type() != DataType::QSYMM16),
85                                         "Output can only be S32 if both inputs are QSYMM16");
86         ARM_COMPUTE_RETURN_ERROR_ON_MSG(detail::have_different_dimensions(out_shape, output->tensor_shape(), 0), "Wrong shape for output");
87     }
88 
89     return Status{};
90 }
91 
validate_and_configure_window(ITensorInfo * input1,ITensorInfo * input2,ITensorInfo * output)92 std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input1, ITensorInfo *input2, ITensorInfo *output)
93 {
94     const std::pair<TensorShape, ValidRegion> broadcast_pair = ITensorInfo::broadcast_shape_and_valid_region(*input1, *input2);
95     const TensorShape &out_shape    = broadcast_pair.first;
96     const ValidRegion &valid_region = broadcast_pair.second;
97 
98     // Auto initialize output if not initialized
99     {
100         set_shape_if_empty(*output, out_shape);
101 
102         if(input1->data_type() == DataType::S16 || input2->data_type() == DataType::S16)
103         {
104             set_format_if_unknown(*output, Format::S16);
105         }
106         else if(input1->data_type() == DataType::F32 || input2->data_type() == DataType::F32)
107         {
108             set_format_if_unknown(*output, Format::F32);
109         }
110         else if(input1->data_type() == DataType::QASYMM8)
111         {
112             set_data_type_if_unknown(*output, DataType::QASYMM8);
113         }
114         else if(input1->data_type() == DataType::QASYMM8_SIGNED)
115         {
116             set_data_type_if_unknown(*output, DataType::QASYMM8_SIGNED);
117         }
118         else if(input1->data_type() == DataType::QSYMM16)
119         {
120             set_data_type_if_unknown(*output, DataType::QSYMM16);
121         }
122     }
123 
124     Window win        = calculate_max_window(valid_region, Steps(num_elems_processed_per_iteration));
125     Window win_input1 = win.broadcast_if_dimension_le_one(*input1);
126     Window win_input2 = win.broadcast_if_dimension_le_one(*input2);
127 
128     AccessWindowHorizontal input1_access(input1, 0, num_elems_processed_per_iteration);
129     AccessWindowHorizontal input2_access(input2, 0, num_elems_processed_per_iteration);
130     AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration);
131 
132     bool window_changed = update_window_and_padding(win_input1, input1_access)
133                           || update_window_and_padding(win_input2, input2_access)
134                           || update_window_and_padding(win, output_access);
135 
136     output_access.set_valid_region(win, valid_region);
137 
138     Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
139     return std::make_pair(err, win);
140 }
141 } // namespace
142 
CLPixelWiseMultiplicationKernel()143 CLPixelWiseMultiplicationKernel::CLPixelWiseMultiplicationKernel()
144     : _input1(nullptr), _input2(nullptr), _output(nullptr)
145 {
146 }
147 
configure(ITensorInfo * input1,ITensorInfo * input2,ITensorInfo * output,float scale,ConvertPolicy overflow_policy,RoundingPolicy rounding_policy,const ActivationLayerInfo & act_info)148 void CLPixelWiseMultiplicationKernel::configure(ITensorInfo *input1, ITensorInfo *input2, ITensorInfo *output, float scale,
149                                                 ConvertPolicy overflow_policy, RoundingPolicy rounding_policy, const ActivationLayerInfo &act_info)
150 {
151     configure(CLKernelLibrary::get().get_compile_context(), input1, input2, output, scale, overflow_policy, rounding_policy, act_info);
152 }
153 
configure(const CLCompileContext & compile_context,ITensorInfo * input1,ITensorInfo * input2,ITensorInfo * output,float scale,ConvertPolicy overflow_policy,RoundingPolicy rounding_policy,const ActivationLayerInfo & act_info)154 void CLPixelWiseMultiplicationKernel::configure(const CLCompileContext &compile_context, ITensorInfo *input1, ITensorInfo *input2, ITensorInfo *output, float scale,
155                                                 ConvertPolicy overflow_policy, RoundingPolicy rounding_policy, const ActivationLayerInfo &act_info)
156 {
157     ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output);
158     ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input1, input2, output,
159                                                   scale, overflow_policy, rounding_policy, act_info));
160 
161     // Configure kernel window
162     auto win_config = validate_and_configure_window(input1, input2, output);
163     ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
164 
165     _input1 = input1;
166     _input2 = input2;
167     _output = output;
168 
169     int scale_int = -1;
170     // Extract sign, exponent and mantissa
171     int   exponent            = 0;
172     float normalized_mantissa = std::frexp(scale, &exponent);
173     // Use int scaling if factor is equal to 1/2^n for 0 <= n <= 15
174     // frexp returns 0.5 as mantissa which means that the exponent will be in the range of -1 <= e <= 14
175     // Moreover, it will be negative as we deal with 1/2^n
176     if((normalized_mantissa == 0.5f) && (-14 <= exponent) && (exponent <= 1))
177     {
178         // Store the positive exponent. We know that we compute 1/2^n
179         // Additionally we need to subtract 1 to compensate that frexp used a mantissa of 0.5
180         scale_int = std::abs(exponent - 1);
181     }
182 
183     std::string acc_type;
184     // Check if it has float inputs and output
185     if(is_data_type_float(input1->data_type()) || is_data_type_float(input2->data_type()))
186     {
187         scale_int = -1;
188         acc_type  = (input1->data_type() == DataType::F32 || input2->data_type() == DataType::F32) ? "float" : "half";
189     }
190     else
191     {
192         if(input1->element_size() == 2 || input2->element_size() == 2)
193         {
194             // Use 32-bit accumulator for 16-bit input
195             acc_type = "int";
196         }
197         else
198         {
199             // Use 16-bit accumulator for 8-bit input
200             acc_type = "ushort";
201         }
202     }
203 
204     const bool is_quantized = is_data_type_quantized(input1->data_type());
205 
206     // Set kernel build options
207     std::string    kernel_name = "pixelwise_mul";
208     CLBuildOptions build_opts;
209     build_opts.add_option("-DDATA_TYPE_IN1=" + get_cl_type_from_data_type(input1->data_type()));
210     build_opts.add_option("-DDATA_TYPE_IN2=" + get_cl_type_from_data_type(input2->data_type()));
211     build_opts.add_option("-DDATA_TYPE_OUT=" + get_cl_type_from_data_type(output->data_type()));
212     build_opts.add_option("-DVEC_SIZE=" + support::cpp11::to_string(num_elems_processed_per_iteration));
213     if(is_quantized && (output->data_type() != DataType::S32))
214     {
215         const UniformQuantizationInfo iq1_info = input1->quantization_info().uniform();
216         const UniformQuantizationInfo iq2_info = input2->quantization_info().uniform();
217         const UniformQuantizationInfo oq_info  = output->quantization_info().uniform();
218 
219         build_opts.add_option_if(is_data_type_quantized_asymmetric(input1->data_type()),
220                                  "-DOFFSET_IN1=" + support::cpp11::to_string(iq1_info.offset));
221         build_opts.add_option_if(is_data_type_quantized_asymmetric(input2->data_type()),
222                                  "-DOFFSET_IN2=" + support::cpp11::to_string(iq2_info.offset));
223         build_opts.add_option_if(is_data_type_quantized_asymmetric(output->data_type()),
224                                  "-DOFFSET_OUT=" + support::cpp11::to_string(oq_info.offset));
225         build_opts.add_option("-DSCALE_IN1=" + float_to_string_with_full_precision(iq1_info.scale));
226         build_opts.add_option("-DSCALE_IN2=" + float_to_string_with_full_precision(iq2_info.scale));
227         build_opts.add_option("-DSCALE_OUT=" + float_to_string_with_full_precision(oq_info.scale));
228         kernel_name += "_quantized";
229     }
230     else
231     {
232         kernel_name += (scale_int >= 0) ? "_int" : "_float";
233         build_opts.add_option_if_else(overflow_policy == ConvertPolicy::WRAP || is_data_type_float(output->data_type()), "-DWRAP", "-DSATURATE");
234         build_opts.add_option_if_else(rounding_policy == RoundingPolicy::TO_ZERO, "-DROUND=_rtz", "-DROUND=_rte");
235         build_opts.add_option("-DACC_DATA_TYPE=" + acc_type);
236         if(act_info.enabled())
237         {
238             build_opts.add_option("-DACTIVATION_TYPE=" + lower_string(string_from_activation_func(act_info.activation())));
239             build_opts.add_option("-DA_VAL=" + float_to_string_with_full_precision(act_info.a()));
240             build_opts.add_option("-DB_VAL=" + float_to_string_with_full_precision(act_info.b()));
241         }
242     }
243 
244     // Create kernel
245     _kernel = create_kernel(compile_context, kernel_name, build_opts.options());
246 
247     // Set scale argument
248     unsigned int idx = 3 * num_arguments_per_3D_tensor(); // Skip the inputs and output parameters
249 
250     if(scale_int >= 0 && !is_quantized)
251     {
252         _kernel.setArg(idx++, scale_int);
253     }
254     else
255     {
256         _kernel.setArg(idx++, scale);
257     }
258 
259     ICLKernel::configure_internal(win_config.second);
260 }
261 
validate(const ITensorInfo * input1,const ITensorInfo * input2,const ITensorInfo * output,float scale,ConvertPolicy overflow_policy,RoundingPolicy rounding_policy,const ActivationLayerInfo & act_info)262 Status CLPixelWiseMultiplicationKernel::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, float scale,
263                                                  ConvertPolicy overflow_policy, RoundingPolicy rounding_policy, const ActivationLayerInfo &act_info)
264 {
265     ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output);
266     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input1, input2, output, scale, overflow_policy, rounding_policy, act_info));
267     ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input1->clone().get(), input2->clone().get(), output->clone().get()).first);
268 
269     return Status{};
270 }
271 
run_op(ITensorPack & tensors,const Window & window,cl::CommandQueue & queue)272 void CLPixelWiseMultiplicationKernel::run_op(ITensorPack &tensors, const Window &window, cl::CommandQueue &queue)
273 {
274     ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
275     ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window);
276 
277     const auto src_0 = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC_0));
278     const auto src_1 = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC_1));
279     auto       dst   = utils::cast::polymorphic_downcast<ICLTensor *>(tensors.get_tensor(TensorType::ACL_DST));
280 
281     const TensorShape &in_shape1 = src_0->info()->tensor_shape();
282     const TensorShape &in_shape2 = src_1->info()->tensor_shape();
283     const TensorShape &out_shape = dst->info()->tensor_shape();
284 
285     bool can_collapse = true;
286     if(std::min(in_shape1.total_size(), in_shape2.total_size()) > 1)
287     {
288         can_collapse = (std::min(in_shape1.num_dimensions(), in_shape2.num_dimensions()) > Window::DimZ);
289         for(size_t d = Window::DimZ; can_collapse && (d < out_shape.num_dimensions()); ++d)
290         {
291             can_collapse = (in_shape1[d] == in_shape2[d]);
292         }
293     }
294 
295     bool   has_collapsed = false;
296     Window collapsed     = can_collapse ? window.collapse_if_possible(ICLKernel::window(), Window::DimZ, &has_collapsed) : window;
297 
298     const TensorShape &in_shape1_collapsed = has_collapsed ? in_shape1.collapsed_from(Window::DimZ) : in_shape1;
299     const TensorShape &in_shape2_collapsed = has_collapsed ? in_shape2.collapsed_from(Window::DimZ) : in_shape2;
300 
301     Window slice        = collapsed.first_slice_window_3D();
302     Window slice_input1 = slice.broadcast_if_dimension_le_one(in_shape1_collapsed);
303     Window slice_input2 = slice.broadcast_if_dimension_le_one(in_shape2_collapsed);
304 
305     do
306     {
307         unsigned int idx = 0;
308         add_3D_tensor_argument(idx, src_0, slice_input1);
309         add_3D_tensor_argument(idx, src_1, slice_input2);
310         add_3D_tensor_argument(idx, dst, slice);
311         enqueue(queue, *this, slice, lws_hint());
312 
313         ARM_COMPUTE_UNUSED(collapsed.slide_window_slice_3D(slice_input1));
314         ARM_COMPUTE_UNUSED(collapsed.slide_window_slice_3D(slice_input2));
315     }
316     while(collapsed.slide_window_slice_3D(slice));
317 }
318 
border_size() const319 BorderSize CLPixelWiseMultiplicationKernel::border_size() const
320 {
321     const unsigned int replicateSize = _output->dimension(0) - std::min(_input1->dimension(0), _input2->dimension(0));
322     const unsigned int border        = std::min<unsigned int>(num_elems_processed_per_iteration - 1U, replicateSize);
323     return BorderSize{ 0, border, 0, 0 };
324 }
325 
326 namespace
327 {
328 constexpr unsigned int num_elems_processed_per_iteration_complex = 1;
329 
validate_arguments_complex(const ITensorInfo * input1,const ITensorInfo * input2,const ITensorInfo * output,const ActivationLayerInfo & act_info)330 Status validate_arguments_complex(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, const ActivationLayerInfo &act_info)
331 {
332     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input1, 2, DataType::F32);
333     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input2, 2, DataType::F32);
334 
335     const TensorShape &out_shape = TensorShape::broadcast_shape(input1->tensor_shape(), input2->tensor_shape());
336 
337     ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible");
338     ARM_COMPUTE_RETURN_ERROR_ON(act_info.enabled() && !is_data_type_float(output->data_type()));
339 
340     // Validate in case of configured output
341     if(output->total_size() > 0)
342     {
343         ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 2, DataType::F32);
344         ARM_COMPUTE_RETURN_ERROR_ON_MSG(detail::have_different_dimensions(out_shape, output->tensor_shape(), 0), "Wrong shape for output");
345     }
346 
347     return Status{};
348 }
349 
validate_and_configure_window_complex(ITensorInfo * input1,ITensorInfo * input2,ITensorInfo * output)350 std::pair<Status, Window> validate_and_configure_window_complex(ITensorInfo *input1, ITensorInfo *input2, ITensorInfo *output)
351 {
352     const std::pair<TensorShape, ValidRegion> broadcast_pair = ITensorInfo::broadcast_shape_and_valid_region(*input1, *input2);
353     const TensorShape &out_shape    = broadcast_pair.first;
354     const ValidRegion &valid_region = broadcast_pair.second;
355 
356     // Auto initialize output if not initialized
357     const TensorInfo out_info(out_shape, input1->num_channels(), input1->data_type());
358     auto_init_if_empty(*output, out_info);
359 
360     Window win        = calculate_max_window(valid_region, Steps(num_elems_processed_per_iteration_complex));
361     Window win_input1 = win.broadcast_if_dimension_le_one(*input1);
362     Window win_input2 = win.broadcast_if_dimension_le_one(*input2);
363 
364     AccessWindowHorizontal input1_access(input1, 0, num_elems_processed_per_iteration_complex);
365     AccessWindowHorizontal input2_access(input2, 0, num_elems_processed_per_iteration_complex);
366     AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration_complex);
367 
368     bool window_changed = update_window_and_padding(win_input1, input1_access)
369                           || update_window_and_padding(win_input2, input2_access)
370                           || update_window_and_padding(win, output_access);
371 
372     output_access.set_valid_region(win, valid_region);
373 
374     Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
375     return std::make_pair(err, win);
376 }
377 } // namespace
378 
CLComplexPixelWiseMultiplicationKernel()379 CLComplexPixelWiseMultiplicationKernel::CLComplexPixelWiseMultiplicationKernel()
380     : _input1(nullptr), _input2(nullptr), _output(nullptr)
381 {
382 }
383 
configure(ITensorInfo * input1,ITensorInfo * input2,ITensorInfo * output,const ActivationLayerInfo & act_info)384 void CLComplexPixelWiseMultiplicationKernel::configure(ITensorInfo *input1, ITensorInfo *input2, ITensorInfo *output, const ActivationLayerInfo &act_info)
385 {
386     configure(CLKernelLibrary::get().get_compile_context(), input1, input2, output, act_info);
387 }
388 
configure(const CLCompileContext & compile_context,ITensorInfo * input1,ITensorInfo * input2,ITensorInfo * output,const ActivationLayerInfo & act_info)389 void CLComplexPixelWiseMultiplicationKernel::configure(const CLCompileContext &compile_context, ITensorInfo *input1, ITensorInfo *input2, ITensorInfo *output, const ActivationLayerInfo &act_info)
390 {
391     ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output);
392     ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_complex(input1, input2, output, act_info));
393 
394     // Configure kernel window
395     auto win_config = validate_and_configure_window_complex(input1, input2, output);
396     ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
397 
398     _input1 = input1;
399     _input2 = input2;
400     _output = output;
401 
402     CLBuildOptions build_opts;
403     if(act_info.enabled())
404     {
405         build_opts.add_option("-DACTIVATION_TYPE=" + lower_string(string_from_activation_func(act_info.activation())));
406         build_opts.add_option("-DA_VAL=" + float_to_string_with_full_precision(act_info.a()));
407         build_opts.add_option("-DB_VAL=" + float_to_string_with_full_precision(act_info.b()));
408     }
409 
410     // Create kernel
411     _kernel = create_kernel(compile_context, "pixelwise_mul_complex", build_opts.options());
412 
413     ICLKernel::configure_internal(win_config.second);
414 }
415 
validate(const ITensorInfo * input1,const ITensorInfo * input2,const ITensorInfo * output,const ActivationLayerInfo & act_info)416 Status CLComplexPixelWiseMultiplicationKernel::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, const ActivationLayerInfo &act_info)
417 {
418     ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output);
419     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_complex(input1, input2, output, act_info));
420     ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window_complex(input1->clone().get(), input2->clone().get(), output->clone().get()).first);
421 
422     return Status{};
423 }
424 
run_op(ITensorPack & tensors,const Window & window,cl::CommandQueue & queue)425 void CLComplexPixelWiseMultiplicationKernel::run_op(ITensorPack &tensors, const Window &window, cl::CommandQueue &queue)
426 {
427     ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
428     ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window);
429 
430     const auto src_0 = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC_0));
431     const auto src_1 = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC_1));
432     auto       dst   = utils::cast::polymorphic_downcast<ICLTensor *>(tensors.get_tensor(TensorType::ACL_DST));
433 
434     const TensorShape &in_shape1 = src_0->info()->tensor_shape();
435     const TensorShape &in_shape2 = src_1->info()->tensor_shape();
436     const TensorShape &out_shape = dst->info()->tensor_shape();
437 
438     bool can_collapse = true;
439     if(std::min(in_shape1.total_size(), in_shape2.total_size()) > 1)
440     {
441         can_collapse = (std::min(in_shape1.num_dimensions(), in_shape2.num_dimensions()) > Window::DimZ);
442         for(size_t d = Window::DimZ; can_collapse && (d < out_shape.num_dimensions()); ++d)
443         {
444             can_collapse = (in_shape1[d] == in_shape2[d]);
445         }
446     }
447 
448     bool   has_collapsed = false;
449     Window collapsed     = can_collapse ? window.collapse_if_possible(ICLKernel::window(), Window::DimZ, &has_collapsed) : window;
450 
451     const TensorShape &in_shape1_collapsed = has_collapsed ? in_shape1.collapsed_from(Window::DimZ) : in_shape1;
452     const TensorShape &in_shape2_collapsed = has_collapsed ? in_shape2.collapsed_from(Window::DimZ) : in_shape2;
453 
454     Window slice        = collapsed.first_slice_window_3D();
455     Window slice_input1 = slice.broadcast_if_dimension_le_one(in_shape1_collapsed);
456     Window slice_input2 = slice.broadcast_if_dimension_le_one(in_shape2_collapsed);
457 
458     do
459     {
460         unsigned int idx = 0;
461         add_3D_tensor_argument(idx, src_0, slice_input1);
462         add_3D_tensor_argument(idx, src_1, slice_input2);
463         add_3D_tensor_argument(idx, dst, slice);
464         enqueue(queue, *this, slice, lws_hint());
465 
466         ARM_COMPUTE_UNUSED(collapsed.slide_window_slice_3D(slice_input1));
467         ARM_COMPUTE_UNUSED(collapsed.slide_window_slice_3D(slice_input2));
468     }
469     while(collapsed.slide_window_slice_3D(slice));
470 }
471 
border_size() const472 BorderSize CLComplexPixelWiseMultiplicationKernel::border_size() const
473 {
474     const unsigned int replicateSize = _output->dimension(0) - std::min(_input1->dimension(0), _input2->dimension(0));
475     const unsigned int border        = std::min<unsigned int>(num_elems_processed_per_iteration_complex - 1U, replicateSize);
476     return BorderSize{ 0, border, 0, 0 };
477 }
478 } // namespace arm_compute
479