• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2018-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "src/core/CL/kernels/CLRangeKernel.h"
25 
26 #include "arm_compute/core/CL/CLHelpers.h"
27 #include "arm_compute/core/CL/ICLTensor.h"
28 #include "arm_compute/core/Utils.h"
29 #include "src/core/CL/CLValidate.h"
30 #include "src/core/helpers/AutoConfiguration.h"
31 #include "src/core/helpers/WindowHelpers.h"
32 #include "support/StringSupport.h"
33 
34 using namespace arm_compute;
35 
36 namespace
37 {
get_num_elems_processed_per_iteration(const DataType dt)38 unsigned int get_num_elems_processed_per_iteration(const DataType dt)
39 {
40     unsigned int num_elems_processed_per_iteration = preferred_vector_width(CLKernelLibrary::get().get_device(), dt);
41     if(num_elems_processed_per_iteration > 8)
42     {
43         num_elems_processed_per_iteration = 8; //kernel uses only 8 lanes.
44     }
45     return num_elems_processed_per_iteration;
46 }
47 
validate_arguments(const ITensorInfo & output,const float start,const float end,const float step)48 Status validate_arguments(const ITensorInfo &output, const float start, const float end, const float step)
49 {
50     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&output,
51                                                          1,
52                                                          DataType::U8, DataType::S8, DataType::QASYMM8,
53                                                          DataType::U16, DataType::S16,
54                                                          DataType::U32, DataType::S32,
55                                                          DataType::F16, DataType::F32);
56     ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(&output);
57 
58     ARM_COMPUTE_RETURN_ERROR_ON_MSG((start == end), "start of the requested sequence must not be equal to the end");
59     ARM_COMPUTE_RETURN_ERROR_ON_MSG(((start < end) && (step <= 0)), "step must be greater than 0 when start < end");
60     ARM_COMPUTE_RETURN_ERROR_ON_MSG(((start > end) && (step >= 0)), "step must be less than 0 when start > end");
61 
62     ARM_COMPUTE_RETURN_ERROR_ON_MSG(!check_value_range(start, output.data_type(), output.quantization_info()), "start value is outside the range of the data type");
63     ARM_COMPUTE_RETURN_ERROR_ON_MSG(!check_value_range(end, output.data_type(), output.quantization_info()), "end value is outside the range of the data type");
64     ARM_COMPUTE_RETURN_ERROR_ON_MSG(!check_value_range(step, output.data_type(), output.quantization_info()), "step value is outside the range of the data type");
65 
66     ARM_COMPUTE_RETURN_ERROR_ON_MSG((start == end), "start of the requested sequence must not be equal to the end");
67 
68     ARM_COMPUTE_RETURN_ERROR_ON_MSG(output.num_dimensions() != 1, "Output has to be a 1-D tensor");
69     ARM_COMPUTE_RETURN_ERROR_ON_MSG(output.tensor_shape().total_size() < num_of_elements_in_range(start, end, step), "Output tensor size is incorrect");
70 
71     return Status{};
72 }
73 
validate_and_configure_window(ITensorInfo & output,const float start,const float end,const float step)74 std::pair<Status, Window> validate_and_configure_window(ITensorInfo &output, const float start, const float end, const float step)
75 {
76     unsigned int num_elems_processed_per_iteration = get_num_elems_processed_per_iteration(output.data_type());
77     // Auto initialize output if not initialized
78     auto_init_if_empty(output, TensorShape(num_of_elements_in_range(start, end, step)), 1, output.data_type(), output.quantization_info());
79 
80     // Configure kernel window
81     Window win = calculate_max_window(output, Steps(num_elems_processed_per_iteration));
82 
83     AccessWindowHorizontal output_access(&output, 0, num_elems_processed_per_iteration);
84     bool                   window_changed = update_window_and_padding(win, output_access);
85     output_access.set_valid_region(win, ValidRegion(Coordinates(), TensorShape(num_of_elements_in_range(start, end, step))));
86     Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
87     return std::make_pair(err, win);
88 }
89 } // namespace
90 
CLRangeKernel()91 CLRangeKernel::CLRangeKernel()
92     : _start(0), _end(1), _step(1), _output(nullptr)
93 {
94 }
95 
configure(ICLTensor * output,const float start,const float end,const float step)96 void CLRangeKernel::configure(ICLTensor *output, const float start, const float end, const float step)
97 {
98     configure(CLKernelLibrary::get().get_compile_context(), output, start, end, step);
99 }
100 
configure(const CLCompileContext & compile_context,ICLTensor * output,const float start,const float end,const float step)101 void CLRangeKernel::configure(const CLCompileContext &compile_context, ICLTensor *output, const float start, const float end, const float step)
102 {
103     ARM_COMPUTE_ERROR_ON_NULLPTR(output);
104 
105     ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(*(output->info()), start, end, step));
106 
107     // Configure kernel window
108     auto win_config = validate_and_configure_window(*(output->info()), start, end, step);
109     ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
110 
111     _start  = start;
112     _end    = end;
113     _step   = step;
114     _output = output;
115 
116     std::string kernel_name = "range";
117 
118     unsigned int num_elems_processed_per_iteration = get_num_elems_processed_per_iteration(output->info()->data_type());
119     // Set build options
120     CLBuildOptions build_opts;
121     build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(output->info()->data_type()));
122     build_opts.add_option("-DVECTOR_SIZE=" + support::cpp11::to_string(num_elems_processed_per_iteration));
123     build_opts.add_option("-DSTART=" + support::cpp11::to_string(start));
124     build_opts.add_option("-DSTEP=" + support::cpp11::to_string(step));
125     if(is_data_type_quantized_asymmetric(output->info()->data_type()))
126     {
127         const UniformQuantizationInfo qinfo = output->info()->quantization_info().uniform();
128         build_opts.add_option("-DOFFSET_OUT=" + support::cpp11::to_string(qinfo.offset));
129         build_opts.add_option("-DSCALE_OUT=" + float_to_string_with_full_precision(qinfo.scale));
130         kernel_name += "_quantized";
131     }
132     // Create kernel
133     _kernel = create_kernel(compile_context, kernel_name, build_opts.options());
134     ICLKernel::configure_internal(win_config.second);
135 
136     // Set config_id for enabling LWS tuning
137     _config_id = kernel_name;
138     _config_id += "_";
139     _config_id += lower_string(string_from_data_type(output->info()->data_type()));
140     _config_id += "_";
141     _config_id += support::cpp11::to_string(output->info()->dimension(0));
142 }
143 
validate(const ITensorInfo * output,const float start,const float end,const float step)144 Status CLRangeKernel::validate(const ITensorInfo *output, const float start, const float end, const float step)
145 {
146     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(output);
147 
148     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(*output, start, end, step));
149     ARM_COMPUTE_RETURN_ON_ERROR((validate_and_configure_window(*(output->clone()), start, end, step)).first);
150 
151     return Status{};
152 }
153 
run(const Window & window,cl::CommandQueue & queue)154 void CLRangeKernel::run(const Window &window, cl::CommandQueue &queue)
155 {
156     ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
157     ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window);
158     unsigned int idx = 0;
159     add_1D_tensor_argument(idx, _output, window);
160 
161     enqueue(queue, *this, window, lws_hint());
162 }
163