1 /*
2 * Copyright (c) 2017-2020 Arm Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24 #include "src/core/CL/kernels/CLSoftmaxLayerKernel.h"
25
26 #include "arm_compute/core/utils/quantization/AsymmHelpers.h"
27 #include "src/core/CL/CLValidate.h"
28 #include "src/core/helpers/AutoConfiguration.h"
29 #include "src/core/helpers/WindowHelpers.h"
30 #include "support/StringSupport.h"
31
32 namespace arm_compute
33 {
34 namespace
35 {
36 /** Calculates softmax parameters from the quantized input scale and scaling factor for the exponent and places them as build options.
37 *
38 * Prepares these build options:
39 * -INPUT_BETA_MULTIPLIER, INPUT_BETA_LEFT_SHIFT - quantized representation of beta multiplier.
40 * -DIFF_MIN - threshold difference between maximum value of input data and current processed value,
41 * it defines whether the value will be taken into account or not.
42 *
43 * @param[in] build_opts Build options to extend
44 * @param[in] input_scale Input scaling factor
45 * @param[in] beta Exponent scaling factor beta
46 */
prepare_quantized_softmax_build_options(float input_scale,float beta)47 CLBuildOptions prepare_quantized_softmax_build_options(float input_scale, float beta)
48 {
49 // Number of integer bits in temporary fixed-point representation of current-to-max difference
50 static const int scaled_diff_int_bits = 5;
51 // Number of integer bits used in temporary fixed-point representation of exponent accumulator
52 static const int exp_accumulation_in_bits = 12;
53
54 const double beta_multiplier = std::min(
55 1.0 * beta * input_scale * (1 << (31 - scaled_diff_int_bits)),
56 (1LL << 31) - 1.0);
57 int input_beta_multiplier;
58 int input_beta_left_shift;
59 quantization::calculate_quantized_multiplier_greater_than_one(beta_multiplier, &input_beta_multiplier, &input_beta_left_shift);
60
61 const double max_input_rescaled = 1.0 * ((1 << scaled_diff_int_bits) - 1) * (1LL << (31 - scaled_diff_int_bits)) / (1LL << input_beta_left_shift);
62 const int diff_min = -1.f * std::floor(max_input_rescaled);
63
64 CLBuildOptions build_opts;
65 build_opts.add_option("-DSCALED_DIFF_INT_BITS=" + support::cpp11::to_string(scaled_diff_int_bits));
66 build_opts.add_option("-DEXP_ACCUMULATION_INT_BITS=" + support::cpp11::to_string(exp_accumulation_in_bits));
67 build_opts.add_option("-DINPUT_BETA_MULTIPLIER=" + support::cpp11::to_string(input_beta_multiplier));
68 build_opts.add_option("-DINPUT_BETA_LEFT_SHIFT=" + support::cpp11::to_string(input_beta_left_shift));
69 build_opts.add_option("-DDIFF_MIN=" + support::cpp11::to_string(diff_min));
70
71 return build_opts;
72 }
73
validate_arguments_1DMaxShiftExpSum(const ITensorInfo * input,const ITensorInfo * max,const ITensorInfo * output,const ITensorInfo * sum)74 Status validate_arguments_1DMaxShiftExpSum(const ITensorInfo *input, const ITensorInfo *max, const ITensorInfo *output, const ITensorInfo *sum)
75 {
76 ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(input);
77 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32);
78 ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(max, sum, output);
79
80 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, max);
81
82 const bool is_quantized_asymmetric = is_data_type_quantized_asymmetric(input->data_type());
83
84 // Checks performed when output is configured
85 if(output->total_size() != 0)
86 {
87 if(is_quantized_asymmetric)
88 {
89 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::S32);
90 }
91 else
92 {
93 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
94 }
95 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output);
96 }
97
98 // Checks performed when sum is configured
99 if(sum->total_size() != 0)
100 {
101 if(is_quantized_asymmetric)
102 {
103 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(sum, 1, DataType::S32);
104 }
105 else
106 {
107 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(max, sum);
108 }
109 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(max, sum);
110 }
111
112 return Status{};
113 }
114
validate_arguments_1DNorm(const ITensorInfo * input,const ITensorInfo * sum,const ITensorInfo * output,const SoftmaxKernelInfo & info)115 Status validate_arguments_1DNorm(const ITensorInfo *input, const ITensorInfo *sum, const ITensorInfo *output, const SoftmaxKernelInfo &info)
116 {
117 ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(input);
118 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::S32, DataType::F16, DataType::F32);
119 ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(sum, output);
120 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, sum);
121 ARM_COMPUTE_RETURN_ERROR_ON(info.is_log && !is_data_type_float(info.input_data_type));
122
123 // Note: output should always have a scale of 1/256 and offset 0
124 const QuantizationInfo allowed_quantization_info = get_softmax_output_quantization_info(info.input_data_type, info.is_log);
125 const bool is_quantized_asymmetric = is_data_type_quantized_asymmetric(info.input_data_type);
126
127 // Checks performed when output is configured
128 if(output->total_size() != 0)
129 {
130 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output);
131 if(!is_quantized_asymmetric)
132 {
133 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
134 }
135 else
136 {
137 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED);
138 ARM_COMPUTE_RETURN_ERROR_ON(output->quantization_info() != allowed_quantization_info);
139 }
140 }
141
142 return Status{};
143 }
144 } // namespace
145
146 /**< Grid size (obtained through auto-tuning) */
147 const unsigned int CLLogits1DMaxShiftExpSumKernel::_grid_size = 64;
148 /**< Vector size in the serial case (obtained through auto-tuning) */
149 const unsigned int CLLogits1DMaxShiftExpSumKernel::_serial_vector_size = 8;
150 /**< Vector size in the parallel case (obtained through auto-tuning, enables the best memory access pattern for Bifrost) .*/
151 const unsigned int CLLogits1DMaxShiftExpSumKernel::_parallel_vector_size = 4;
152
CLLogits1DMaxShiftExpSumKernel()153 CLLogits1DMaxShiftExpSumKernel::CLLogits1DMaxShiftExpSumKernel()
154 : _input(nullptr), _max(nullptr), _output(nullptr), _sum(nullptr)
155 {
156 }
157
configure(const ICLTensor * input,ICLTensor * max,ICLTensor * output,ICLTensor * sum,const SoftmaxKernelInfo & info)158 void CLLogits1DMaxShiftExpSumKernel::configure(const ICLTensor *input, ICLTensor *max, ICLTensor *output, ICLTensor *sum, const SoftmaxKernelInfo &info)
159 {
160 configure(CLKernelLibrary::get().get_compile_context(), input, max, output, sum, info);
161 }
162
configure(const CLCompileContext & compile_context,const ICLTensor * input,ICLTensor * max,ICLTensor * output,ICLTensor * sum,const SoftmaxKernelInfo & info)163 void CLLogits1DMaxShiftExpSumKernel::configure(const CLCompileContext &compile_context, const ICLTensor *input, ICLTensor *max, ICLTensor *output, ICLTensor *sum, const SoftmaxKernelInfo &info)
164 {
165 ARM_COMPUTE_ERROR_ON_NULLPTR(input, max, sum, output);
166
167 auto padding_info = get_padding_info({ input, max, output, sum });
168
169 // Output auto initialization if not yet initialized
170 auto_init_if_empty(*sum->info(), input->info()->clone()->set_tensor_shape(max->info()->tensor_shape()));
171 auto_init_if_empty(*output->info(), *input->info()->clone());
172
173 // Perform validation step
174 ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_1DMaxShiftExpSum(input->info(), max->info(), output->info(), sum->info()));
175
176 _input = input;
177 _max = max;
178 _output = output;
179 _sum = sum;
180
181 const DataType dt = input->info()->data_type();
182 const UniformQuantizationInfo qinfo = input->info()->quantization_info().uniform();
183 const size_t reduction_dim_size = input->info()->dimension(0);
184 const float beta = info.beta;
185 const auto is_signed_qasymm8 = is_data_type_quantized_asymmetric_signed(info.input_data_type);
186 const int min_value = is_signed_qasymm8 ? CL_SCHAR_MIN : 0;
187
188 ParallelReductionInfo parallel_reduction_info = is_parallel_reduction(reduction_dim_size);
189 const unsigned int vector_size = adjust_vec_size(std::get<1>(parallel_reduction_info), reduction_dim_size);
190
191 // Set build options
192 CLBuildOptions build_opts;
193 build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(dt));
194 build_opts.add_option("-DMIN_VALUE=" + support::cpp11::to_string(min_value));
195 build_opts.add_option("-DVECTOR_SIZE=" + support::cpp11::to_string(vector_size));
196 build_opts.add_option("-DSRC_WIDTH=" + support::cpp11::to_string(reduction_dim_size));
197 build_opts.add_option("-DVECTOR_SIZE_LEFTOVER=" + support::cpp11::to_string(reduction_dim_size % vector_size));
198 build_opts.add_option("-DLOG_VECTOR_SIZE=" + support::cpp11::to_string(lround(log2(vector_size))));
199 build_opts.add_option_if((reduction_dim_size % vector_size) != 0, "-DNON_MULTIPLE_OF_VECTOR_SIZE");
200 build_opts.add_option_if(is_signed_qasymm8, "-DQASYMM8_SIGNED");
201 build_opts.add_option_if(is_data_type_float(dt) && (beta != 1.0f), "-DBETA=" + float_to_string_with_full_precision(beta));
202 build_opts.add_option_if(is_data_type_float(dt) && info.is_log, "-DLOG_SOFTMAX");
203 build_opts.add_option_if(is_data_type_float(dt), "-DMINVAL=" + ((dt == DataType::F16) ? std::string("-HALF_MAX") : std::string("-FLT_MAX")));
204 build_opts.add_options_if(is_data_type_quantized_asymmetric(dt), prepare_quantized_softmax_build_options(qinfo.scale, beta).options());
205
206 cl::NDRange lws_hint(cl::NullRange);
207 std::string kernel_name = std::string("softmax_layer_max_shift_exp_sum_") + (is_data_type_quantized_asymmetric(dt) ? "quantized_" : "");
208
209 // Configure parallel kernel if needed
210 if(std::get<0>(parallel_reduction_info))
211 {
212 kernel_name += "parallel";
213 bool is_grid_size_pow2 = (_grid_size != 0) && ((_grid_size & (_grid_size - 1)) == 0);
214 build_opts.add_option_if(is_grid_size_pow2 && _grid_size <= 256, "-DGRID_SIZE=" + support::cpp11::to_string(_grid_size));
215
216 // Handle boundary conditions.
217 const unsigned int multiple_grid_size = (reduction_dim_size / vector_size) % _grid_size;
218 build_opts.add_option_if((multiple_grid_size != 0) || ((reduction_dim_size % vector_size) != 0), "-DNON_MULTIPLE_OF_GRID_SIZE");
219 // Setting _lws_hint in this way can also communicate grid_size to CLLogits1DMaxShiftExpSumKernel::run().
220 // A single workgroup performs reduction in dimension 0 in the parallel case, hence lws[0]==gws[0].
221 lws_hint = cl::NDRange(_grid_size);
222 }
223 else
224 {
225 kernel_name += "serial";
226 }
227
228 // Create kernel.
229 _kernel = create_kernel(compile_context, kernel_name, build_opts.options());
230
231 // Configure window
232 Window win = calculate_max_window(*(input->info()), Steps(reduction_dim_size));
233 ICLKernel::configure_internal(win, lws_hint);
234
235 ARM_COMPUTE_ERROR_ON(has_padding_changed(padding_info));
236 }
237
validate(const ITensorInfo * input,const ITensorInfo * max,const ITensorInfo * output,const ITensorInfo * sum)238 Status CLLogits1DMaxShiftExpSumKernel::validate(const ITensorInfo *input, const ITensorInfo *max, const ITensorInfo *output, const ITensorInfo *sum)
239 {
240 ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_1DMaxShiftExpSum(input, max, output, sum));
241 return Status{};
242 }
243
is_parallel_reduction(size_t size)244 CLLogits1DMaxShiftExpSumKernel::ParallelReductionInfo CLLogits1DMaxShiftExpSumKernel::is_parallel_reduction(size_t size)
245 {
246 bool is_parallel_reduction = (size >= (_grid_size * _serial_vector_size)) && (_grid_size > 1);
247 unsigned int vector_size = is_parallel_reduction ? _parallel_vector_size : _serial_vector_size;
248 return std::make_tuple(is_parallel_reduction, vector_size);
249 }
250
run(const Window & window,cl::CommandQueue & queue)251 void CLLogits1DMaxShiftExpSumKernel::run(const Window &window, cl::CommandQueue &queue)
252 {
253 ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
254 ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window);
255
256 // Collapse window in Z dimension
257 Window window_collapsed = window.collapse_if_possible(ICLKernel::window(), Window::DimZ);
258
259 // Reconfigure window in case of parallel reduction
260 ParallelReductionInfo parallel_reduction_info = is_parallel_reduction(_input->info()->dimension(0));
261 if(std::get<0>(parallel_reduction_info))
262 {
263 // Launch grid_size parallel work items
264 window_collapsed.set(Window::DimX, Window::Dimension(0, _grid_size, 1));
265 }
266
267 // Get slices
268 Window slice = window_collapsed.first_slice_window_3D();
269 do
270 {
271 unsigned int idx = 0;
272 // Set inputs
273 add_3D_tensor_argument(idx, _input, slice);
274 add_3D_tensor_argument(idx, _max, slice);
275 add_3D_tensor_argument(idx, _output, slice);
276 add_3D_tensor_argument(idx, _sum, slice);
277 enqueue(queue, *this, slice, lws_hint());
278 }
279 while(window_collapsed.slide_window_slice_3D(slice));
280 }
281
CLLogits1DNormKernel()282 CLLogits1DNormKernel::CLLogits1DNormKernel()
283 : _input(nullptr), _sum(nullptr), _output(nullptr)
284 {
285 }
286
configure(const ICLTensor * input,const ICLTensor * sum,ICLTensor * output,const SoftmaxKernelInfo & info)287 void CLLogits1DNormKernel::configure(const ICLTensor *input, const ICLTensor *sum, ICLTensor *output, const SoftmaxKernelInfo &info)
288 {
289 configure(CLKernelLibrary::get().get_compile_context(), input, sum, output, info);
290 }
291
configure(const CLCompileContext & compile_context,const ICLTensor * input,const ICLTensor * sum,ICLTensor * output,const SoftmaxKernelInfo & info)292 void CLLogits1DNormKernel::configure(const CLCompileContext &compile_context, const ICLTensor *input, const ICLTensor *sum, ICLTensor *output, const SoftmaxKernelInfo &info)
293 {
294 ARM_COMPUTE_ERROR_ON_NULLPTR(input, sum, output);
295
296 auto padding_info = get_padding_info({ input, output, sum });
297
298 // Note: output should always have a scale of 1/256 and offset 0
299 const bool is_quantized_asymmetric = is_data_type_quantized_asymmetric(info.input_data_type);
300 const DataType output_data_type = info.input_data_type;
301 const QuantizationInfo allowed_quantization_info = get_softmax_output_quantization_info(info.input_data_type, info.is_log);
302 const UniformQuantizationInfo qinfo = input->info()->quantization_info().uniform();
303
304 // Output auto initialization if not yet initialized
305 auto_init_if_empty(*output->info(),
306 input->info()->clone()->set_data_type(output_data_type).set_quantization_info(allowed_quantization_info));
307
308 // Perform validation step
309 ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_1DNorm(input->info(), sum->info(), output->info(), info));
310
311 _input = input;
312 _sum = sum;
313 _output = output;
314
315 const auto is_signed_qasymm8 = is_data_type_quantized_asymmetric_signed(info.input_data_type);
316 const int min_value = is_signed_qasymm8 ? CL_SCHAR_MIN : 0;
317 const unsigned int vector_size = adjust_vec_size(16, input->info()->dimension(0));
318
319 // Set build options
320 CLBuildOptions build_opts;
321 build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(info.input_data_type));
322 build_opts.add_option("-DMIN_VALUE=" + support::cpp11::to_string(min_value));
323 build_opts.add_option("-DVECTOR_SIZE=" + support::cpp11::to_string(vector_size));
324 build_opts.add_option("-DVECTOR_SIZE_LEFTOVER=" + support::cpp11::to_string(input->info()->dimension(0) % vector_size));
325 build_opts.add_option_if(is_data_type_quantized_asymmetric_signed(info.input_data_type), "-DQASYMM8_SIGNED");
326 build_opts.add_options_if(is_quantized_asymmetric,
327 prepare_quantized_softmax_build_options(qinfo.scale, info.beta).options());
328 build_opts.add_option_if(info.is_log, "-DLOG_SOFTMAX");
329
330 // Create kernel
331 std::string kernel_name = std::string("softmax_layer_norm") + (is_quantized_asymmetric ? "_quantized" : "");
332 _kernel = create_kernel(compile_context, kernel_name, build_opts.options());
333
334 // Configure window
335 auto win = calculate_max_window(*(input->info()), Steps(vector_size));
336 ICLKernel::configure_internal(win);
337
338 ARM_COMPUTE_ERROR_ON(has_padding_changed(padding_info));
339 }
340
validate(const ITensorInfo * input,const ITensorInfo * sum,const ITensorInfo * output,const SoftmaxKernelInfo & info)341 Status CLLogits1DNormKernel::validate(const ITensorInfo *input, const ITensorInfo *sum, const ITensorInfo *output, const SoftmaxKernelInfo &info)
342 {
343 ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_1DNorm(input, sum, output, info));
344
345 return Status{};
346 }
347
run(const Window & window,cl::CommandQueue & queue)348 void CLLogits1DNormKernel::run(const Window &window, cl::CommandQueue &queue)
349 {
350 ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
351 ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window);
352
353 Window window_collapsed = window.collapse_if_possible(ICLKernel::window(), Window::DimZ);
354 Window slice = window_collapsed.first_slice_window_3D();
355
356 do
357 {
358 Window sum_slice = slice;
359 sum_slice.set(Window::DimX, Window::Dimension(0, 1, 1));
360
361 unsigned int idx = 0;
362 // Set inputs
363 add_3D_tensor_argument(idx, _input, slice);
364 add_3D_tensor_argument(idx, _sum, sum_slice);
365 add_3D_tensor_argument(idx, _output, slice);
366 enqueue(queue, *this, slice, lws_hint());
367 }
368 while(window_collapsed.slide_window_slice_3D(slice));
369 }
370 } // namespace arm_compute