• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2019-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "src/core/NEON/kernels/NEBatchConcatenateLayerKernel.h"
25 
26 #include "arm_compute/core/Error.h"
27 #include "arm_compute/core/Helpers.h"
28 #include "arm_compute/core/IAccessWindow.h"
29 #include "arm_compute/core/TensorInfo.h"
30 #include "arm_compute/core/Utils.h"
31 #include "arm_compute/core/Validate.h"
32 #include "arm_compute/core/Window.h"
33 #include "src/core/NEON/NEAsymm.h"
34 #include "src/core/NEON/wrapper/wrapper.h"
35 #include "src/core/helpers/AutoConfiguration.h"
36 #include "src/core/helpers/WindowHelpers.h"
37 
38 namespace arm_compute
39 {
40 namespace
41 {
42 template <typename T>
batch_concat(const ITensor * in,ITensor * out,unsigned int batch_offset,const Window & window)43 void batch_concat(const ITensor *in, ITensor *out, unsigned int batch_offset, const Window &window)
44 {
45     // Offset input
46     uint8_t *input_ptr = in->buffer() + in->info()->offset_first_element_in_bytes();
47 
48     // Offset output
49     uint8_t *output_ptr = out->buffer() + out->info()->offset_first_element_in_bytes() + batch_offset * out->info()->strides_in_bytes()[3];
50 
51     const auto window_start_x = static_cast<int>(window.x().start());
52     const auto window_end_x   = static_cast<int>(window.x().end());
53     const int  window_step_x  = 16 / out->info()->element_size();
54 
55     Window win{ window };
56     win.set(Window::DimX, Window::Dimension(0, 1, 1));
57     win.set(3, Window::Dimension(0, in->info()->tensor_shape()[3], 1));
58 
59     Iterator input(in, win);
60     Iterator output(out, win);
61 
62     const DataType                dt           = in->info()->data_type();
63     const UniformQuantizationInfo input_qinfo  = in->info()->quantization_info().uniform();
64     const UniformQuantizationInfo output_qinfo = out->info()->quantization_info().uniform();
65     if(dt == DataType::QASYMM8 && input_qinfo != output_qinfo)
66     {
67         execute_window_loop(win, [&](const Coordinates &)
68         {
69             const auto in_ptr  = reinterpret_cast<const uint8_t *>(input_ptr + input.offset());
70             const auto out_ptr = reinterpret_cast<uint8_t *>(output_ptr + output.offset());
71 
72             int x = window_start_x;
73             for(; x <= (window_end_x - window_step_x); x += window_step_x)
74             {
75                 wrapper::vstore(out_ptr, vquantize(vdequantize(wrapper::vloadq(in_ptr), input_qinfo), output_qinfo));
76             }
77 
78             // Compute left-over elements
79             for(; x < window_end_x; ++x)
80             {
81                 *(out_ptr + x) = quantize_qasymm8(dequantize_qasymm8(*(in_ptr + x), input_qinfo), output_qinfo);
82             }
83         },
84         input, output);
85     }
86     else if(dt == DataType::QASYMM8_SIGNED && input_qinfo != output_qinfo)
87     {
88         execute_window_loop(win, [&](const Coordinates &)
89         {
90             const auto in_ptr  = reinterpret_cast<const int8_t *>(input_ptr + input.offset());
91             const auto out_ptr = reinterpret_cast<int8_t *>(output_ptr + output.offset());
92             int        x       = window_start_x;
93             for(; x <= (window_end_x - window_step_x); x += window_step_x)
94             {
95                 wrapper::vstore(out_ptr, vquantize_signed(vdequantize(wrapper::vloadq(in_ptr), input_qinfo), output_qinfo));
96             }
97             // Compute left-over elements
98             for(; x < window_end_x; ++x)
99             {
100                 *(out_ptr + x) = quantize_qasymm8_signed(dequantize_qasymm8_signed(*(in_ptr + x), input_qinfo), output_qinfo);
101             }
102         },
103         input, output);
104     }
105     else
106     {
107         execute_window_loop(win, [&](const Coordinates &)
108         {
109             const auto in_ptr  = reinterpret_cast<const T *>(input_ptr + input.offset());
110             const auto out_ptr = reinterpret_cast<T *>(output_ptr + output.offset());
111 
112             int x = window_start_x;
113             for(; x <= (window_end_x - window_step_x); x += window_step_x)
114             {
115                 wrapper::vstore(out_ptr + x, wrapper::vloadq(in_ptr + x));
116             }
117 
118             // Compute left-over elements
119             for(; x < window_end_x; ++x)
120             {
121                 *(out_ptr + x) = *(in_ptr + x);
122             }
123         },
124         input, output);
125     }
126 }
127 
validate_arguments(const ITensorInfo * input,unsigned int batch_offset,const ITensorInfo * output)128 Status validate_arguments(const ITensorInfo *input, unsigned int batch_offset, const ITensorInfo *output)
129 {
130     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output);
131     //Note: ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input) is not needed here as this kernel doesn't use NEON FP16 instructions.
132     ARM_COMPUTE_RETURN_ERROR_ON(input->data_type() == DataType::UNKNOWN);
133     ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
134 
135     ARM_COMPUTE_RETURN_ERROR_ON(input->dimension(Window::DimX) != output->dimension(Window::DimX));
136     ARM_COMPUTE_RETURN_ERROR_ON(input->dimension(Window::DimY) != output->dimension(Window::DimY));
137     ARM_COMPUTE_RETURN_ERROR_ON(input->dimension(Window::DimZ) != output->dimension(Window::DimZ));
138     ARM_COMPUTE_RETURN_ERROR_ON(input->dimension(3) + batch_offset > output->dimension(3));
139     ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(4, input, output);
140 
141     return Status{};
142 }
143 } // namespace
144 
NEBatchConcatenateLayerKernel()145 NEBatchConcatenateLayerKernel::NEBatchConcatenateLayerKernel()
146     : _func(nullptr), _batch_offset(0)
147 {
148 }
149 
configure(const ITensorInfo * input,unsigned int batch_offset,ITensorInfo * output)150 void NEBatchConcatenateLayerKernel::configure(const ITensorInfo *input, unsigned int batch_offset, ITensorInfo *output)
151 {
152     ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
153     ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input, batch_offset, output));
154 
155     _func         = nullptr;
156     _batch_offset = batch_offset;
157 
158     switch(input->data_type())
159     {
160         case DataType::S8:
161         case DataType::U8:
162         case DataType::QASYMM8:
163         case DataType::QASYMM8_SIGNED:
164             _func = &batch_concat<uint8_t>;
165             break;
166         case DataType::S16:
167         case DataType::U16:
168         case DataType::F16:
169             _func = &batch_concat<uint16_t>;
170             break;
171         case DataType::S32:
172         case DataType::U32:
173         case DataType::F32:
174             _func = &batch_concat<uint32_t>;
175             break;
176         default:
177             ARM_COMPUTE_ERROR("Unsupported data type.");
178     }
179 
180     // Configure kernel window
181     Window      win = calculate_max_window(*output, Steps());
182     Coordinates coord;
183     coord.set_num_dimensions(output->num_dimensions());
184     output->set_valid_region(ValidRegion(coord, output->tensor_shape()));
185     INEKernel::configure(win);
186 }
187 
validate(const arm_compute::ITensorInfo * input,unsigned int batch_offset,const arm_compute::ITensorInfo * output)188 Status NEBatchConcatenateLayerKernel::validate(const arm_compute::ITensorInfo *input,
189                                                unsigned int                    batch_offset,
190                                                const arm_compute::ITensorInfo *output)
191 {
192     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, batch_offset, output));
193     return Status{};
194 }
195 
run_op(ITensorPack & tensors,const Window & window,const ThreadInfo & info)196 void NEBatchConcatenateLayerKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
197 {
198     ARM_COMPUTE_UNUSED(info);
199     ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
200     ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
201     ARM_COMPUTE_ERROR_ON(_func == nullptr);
202 
203     (*_func)(tensors.get_const_tensor(TensorType::ACL_SRC),
204              tensors.get_tensor(TensorType::ACL_DST),
205              _batch_offset,
206              window);
207 }
208 } // namespace arm_compute
209