1 /*
2 * Copyright (c) 2016-2020 Arm Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24 #include "src/core/NEON/kernels/NEScaleKernel.h"
25
26 #include "arm_compute/core/Helpers.h"
27 #include "arm_compute/core/Window.h"
28 #include "arm_compute/core/utils/misc/Utility.h"
29 #include "src/core/AccessWindowStatic.h"
30 #include "src/core/CPP/Validate.h"
31 #include "src/core/NEON/wrapper/wrapper.h"
32 #include "src/core/helpers/AutoConfiguration.h"
33 #include "src/core/helpers/ScaleHelpers.h"
34 #include "src/core/helpers/WindowHelpers.h"
35 #include "src/core/utils/ScaleUtils.h"
36 #include "support/Rounding.h"
37
38 #include <arm_neon.h>
39 #include <map>
40
41 namespace arm_compute
42 {
43 namespace
44 {
compute_bilinear(float a00,float a01,float a10,float a11,float dx_val,float dy_val)45 inline float compute_bilinear(float a00, float a01, float a10, float a11, float dx_val, float dy_val)
46 {
47 const float dx1_val = 1.0f - dx_val;
48 const float dy1_val = 1.0f - dy_val;
49
50 const float w1 = dx1_val * dy1_val;
51 const float w2 = dx_val * dy1_val;
52 const float w3 = dx1_val * dy_val;
53 const float w4 = dx_val * dy_val;
54 return a00 * w1 + a01 * w2 + a10 * w3 + a11 * w4;
55 }
56
validate_arguments(const ITensorInfo * input,const ITensorInfo * dx,const ITensorInfo * dy,const ITensorInfo * offsets,ITensorInfo * output,const ScaleKernelInfo & info)57 Status validate_arguments(const ITensorInfo *input, const ITensorInfo *dx, const ITensorInfo *dy,
58 const ITensorInfo *offsets, ITensorInfo *output, const ScaleKernelInfo &info)
59 {
60 ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input);
61 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::U8, DataType::S16, DataType::F16, DataType::F32, DataType::QASYMM8, DataType::QASYMM8_SIGNED);
62 ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(output);
63 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
64 ARM_COMPUTE_RETURN_ERROR_ON(output == input);
65 ARM_COMPUTE_RETURN_ERROR_ON(info.sampling_policy != SamplingPolicy::CENTER && info.sampling_policy != SamplingPolicy::TOP_LEFT);
66 ARM_COMPUTE_UNUSED(info.constant_border_value);
67 ARM_COMPUTE_RETURN_ERROR_ON_MSG(info.use_padding, "Padding is not supported");
68
69 const DataLayout data_layout = input->data_layout();
70 const auto width_index = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
71 const auto height_index = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
72 const auto output_width = output->dimension(width_index);
73 const auto output_height = output->dimension(height_index);
74 ARM_COMPUTE_RETURN_ERROR_ON(output_width == 0);
75 ARM_COMPUTE_RETURN_ERROR_ON(output_height == 0);
76
77 if(info.interpolation_policy == InterpolationPolicy::NEAREST_NEIGHBOR)
78 {
79 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(offsets, 1, DataType::S32);
80 }
81
82 if(info.interpolation_policy == InterpolationPolicy::BILINEAR)
83 {
84 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(offsets, 1, DataType::S32);
85 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(dx, 1, DataType::F32);
86 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(dy, 1, DataType::F32);
87 }
88
89 ARM_COMPUTE_RETURN_ERROR_ON(info.align_corners && !scale_utils::is_align_corners_allowed_sampling_policy(info.sampling_policy));
90
91 if(info.interpolation_policy == InterpolationPolicy::AREA)
92 {
93 ARM_COMPUTE_RETURN_ERROR_ON(data_layout != DataLayout::NCHW);
94 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::U8);
95 }
96
97 return Status{};
98 }
99 } // namespace
100
NEScaleKernel()101 NEScaleKernel::NEScaleKernel()
102 : _func(nullptr), _offsets(nullptr), _dx(nullptr), _dy(nullptr), _input(nullptr), _output(nullptr), _policy(), _border_mode(), _constant_border_value(PixelValue()), _sampling_offset(0),
103 _align_corners(false)
104 {
105 }
106
configure(const ITensor * input,const ITensor * dx,const ITensor * dy,const ITensor * offsets,ITensor * output,const ScaleKernelInfo & info)107 void NEScaleKernel::configure(const ITensor *input, const ITensor *dx, const ITensor *dy, const ITensor *offsets,
108 ITensor *output, const ScaleKernelInfo &info)
109 {
110 ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
111 // Perform validation step
112 ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(),
113 dx != nullptr ? dx->info() : nullptr,
114 dy != nullptr ? dy->info() : nullptr,
115 offsets != nullptr ? offsets->info() : nullptr,
116 output->info(),
117 info));
118
119 // Get data layout and width/height indices
120 const DataLayout data_layout = input->info()->data_layout();
121 const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
122 const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
123
124 _input = input;
125 _output = output;
126 _offsets = offsets;
127 _dx = dx;
128 _dy = dy;
129 _policy = info.interpolation_policy;
130 _border_mode = info.border_mode;
131 _constant_border_value = info.constant_border_value;
132 _align_corners = info.align_corners;
133
134 if(info.sampling_policy == SamplingPolicy::CENTER)
135 {
136 _sampling_offset = 0.5f;
137 }
138
139 // Compute the ratio between source width/height and destination width/height
140 const auto wr = scale_utils::calculate_resize_ratio(input->info()->dimension(idx_width), output->info()->dimension(idx_width), _align_corners);
141 const auto hr = scale_utils::calculate_resize_ratio(input->info()->dimension(idx_height), output->info()->dimension(idx_height), _align_corners);
142
143 // Area interpolation behaves as Nearest Neighbour in case of up-sampling
144 const auto policy_to_use = (info.interpolation_policy == InterpolationPolicy::AREA && wr <= 1.f && hr <= 1.f) ? InterpolationPolicy::NEAREST_NEIGHBOR : _policy;
145
146 if(_border_mode == BorderMode::UNDEFINED)
147 {
148 _border_mode = BorderMode::CONSTANT;
149 _constant_border_value = PixelValue();
150 }
151 std::string function_to_call("scale_");
152 function_to_call += string_from_data_type(_input->info()->data_type()) + "_";
153 function_to_call += string_from_data_layout(_input->info()->data_layout()) + "_";
154 function_to_call += string_from_interpolation_policy(policy_to_use);
155
156 static std::map<std::string, ScaleFunctionPtr> map_function =
157 {
158 { "scale_U8_NCHW_AREA_CONSTANT", &NEScaleKernel::scale_area_nchw_u8 },
159
160 { "scale_U8_NCHW_BILINEAR", &NEScaleKernel::scale_bilinear_nchw<uint8_t> },
161 { "scale_U8_NCHW_NEAREST_NEIGHBOUR", &NEScaleKernel::scale_nearest_nchw<uint8_t> },
162
163 { "scale_U8_NHWC_BILINEAR", &NEScaleKernel::scale_bilinear_nhwc<uint8_t> },
164 { "scale_U8_NHWC_NEAREST_NEIGHBOUR", &NEScaleKernel::scale_nearest_nhwc<uint8_t> },
165
166 { "scale_QASYMM8_NCHW_BILINEAR", &NEScaleKernel::scale_bilinear_qasymm<uint8_t> },
167 { "scale_QASYMM8_NCHW_NEAREST_NEIGHBOUR", &NEScaleKernel::scale_nearest_nchw<uint8_t> },
168
169 { "scale_QASYMM8_NHWC_BILINEAR", &NEScaleKernel::scale_bilinear_qasymm<uint8_t> },
170 { "scale_QASYMM8_NHWC_NEAREST_NEIGHBOUR", &NEScaleKernel::scale_nearest_nhwc<uint8_t> },
171
172 { "scale_QASYMM8_SIGNED_NCHW_BILINEAR", &NEScaleKernel::scale_bilinear_qasymm<int8_t> },
173 { "scale_QASYMM8_SIGNED_NCHW_NEAREST_NEIGHBOUR", &NEScaleKernel::scale_nearest_nchw<uint8_t> },
174
175 { "scale_QASYMM8_SIGNED_NHWC_BILINEAR", &NEScaleKernel::scale_bilinear_qasymm<int8_t> },
176 { "scale_QASYMM8_SIGNED_NHWC_NEAREST_NEIGHBOUR", &NEScaleKernel::scale_nearest_nhwc<uint8_t> },
177
178 { "scale_S16_NCHW_BILINEAR", &NEScaleKernel::scale_bilinear_nchw<int16_t> },
179 { "scale_S16_NCHW_NEAREST_NEIGHBOUR", &NEScaleKernel::scale_nearest_nchw<uint16_t> },
180
181 { "scale_S16_NHWC_BILINEAR", &NEScaleKernel::scale_bilinear_nhwc<int16_t> },
182 { "scale_S16_NHWC_NEAREST_NEIGHBOUR", &NEScaleKernel::scale_nearest_nhwc<uint16_t> },
183
184 #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
185 { "scale_F16_NCHW_BILINEAR", &NEScaleKernel::scale_bilinear_nchw<float16_t> },
186 { "scale_F16_NCHW_NEAREST_NEIGHBOUR", &NEScaleKernel::scale_nearest_nchw<uint16_t> },
187
188 { "scale_F16_NHWC_BILINEAR", &NEScaleKernel::scale_bilinear_nhwc<float16_t> },
189 { "scale_F16_NHWC_NEAREST_NEIGHBOUR", &NEScaleKernel::scale_nearest_nhwc<uint16_t> },
190 #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
191
192 { "scale_F32_NCHW_BILINEAR", &NEScaleKernel::scale_bilinear_nchw<float> },
193 { "scale_F32_NCHW_NEAREST_NEIGHBOUR", &NEScaleKernel::scale_nearest_nchw<float> },
194
195 { "scale_F32_NHWC_BILINEAR", &NEScaleKernel::scale_bilinear_nhwc<float> },
196 { "scale_F32_NHWC_NEAREST_NEIGHBOUR", &NEScaleKernel::scale_nearest_nhwc<float> },
197 };
198 auto it = map_function.find(function_to_call);
199 if(it != map_function.end())
200 {
201 _func = it->second;
202 }
203
204 // Configure window
205 Window win = calculate_max_window(*output->info(), Steps());
206 Coordinates coord;
207 coord.set_num_dimensions(output->info()->num_dimensions());
208 output->info()->set_valid_region(ValidRegion(coord, output->info()->tensor_shape()));
209 INEKernel::configure(win);
210 }
211
212 template <typename T>
scale_nearest_nchw(const Window & window)213 void NEScaleKernel::scale_nearest_nchw(const Window &window)
214 {
215 const size_t in_stride_x = _input->info()->dimension(0) + _input->info()->padding().left + _input->info()->padding().right;
216
217 // Compute the ratio between source height and destination height
218 const auto hr = scale_utils::calculate_resize_ratio(_input->info()->dimension(1), _output->info()->dimension(1), _align_corners);
219
220 // Don't increment in X and Y direction for the input tensor
221 // A pointer to the start of this plane is needed as base for the precomputed offsets
222 Window win_in(window);
223 win_in.set(Window::DimX, Window::Dimension(0, 0, 0));
224 win_in.set(Window::DimY, Window::Dimension(0, 0, 0));
225
226 // Set offsets window
227 Window win_off;
228 win_off.set(Window::DimX, window[Window::DimX]);
229 win_off.set(Window::DimY, window[Window::DimY]);
230 for(size_t d = Window::DimZ; d < _offsets->info()->num_dimensions(); ++d)
231 {
232 win_off.set(d, Window::Dimension(0, 0, 0));
233 }
234
235 // Create iterators
236 Iterator in(_input, win_in);
237 Iterator out(_output, window);
238 Iterator offsets(_offsets, win_off);
239 execute_window_loop(window, [&](const Coordinates & id)
240 {
241 const auto offsets_ptr = reinterpret_cast<const int32_t *>(offsets.ptr());
242 const auto in_yi = static_cast<int32_t>(_align_corners ? utils::rounding::round_half_away_from_zero((id.y() + _sampling_offset) * hr) : std::floor((id.y() + _sampling_offset) * hr));
243 const int32_t offset_row = in_yi * in_stride_x;
244 *reinterpret_cast<T *>(out.ptr()) = *(reinterpret_cast<const T *>(in.ptr()) + offsets_ptr[0] + offset_row);
245 },
246 in, offsets, out);
247 }
248
249 template <typename T>
scale_bilinear_nchw(const Window & window)250 void NEScaleKernel::scale_bilinear_nchw(const Window &window)
251 {
252 // Compute the ratio between source height and destination height
253 const auto hr = scale_utils::calculate_resize_ratio(_input->info()->dimension(1), _output->info()->dimension(1), _align_corners);
254 Window win_off;
255 win_off.set(Window::DimX, window.x());
256 win_off.set(Window::DimY, window.y());
257
258 // Don't increment in X and Y direction for the input tensor
259 // A pointer to the start of this plane is needed as base for the precomputed offsets
260 Window win_in(window);
261 win_in.set(Window::DimX, Window::Dimension(0, 0, 0));
262 win_in.set(Window::DimY, Window::Dimension(0, 0, 0));
263
264 for(size_t d = Window::DimZ; d < _offsets->info()->num_dimensions(); ++d)
265 {
266 win_off.set(d, Window::Dimension(0, 0, 0));
267 }
268
269 Iterator in(_input, win_in);
270 Iterator out(_output, window);
271 Iterator offsets(_offsets, win_off);
272 Iterator dx(_dx, win_off);
273 Iterator dy(_dy, win_off);
274
275 const int32_t in_dim_w = _input->info()->dimension(0);
276 const int32_t in_dim_h = _input->info()->dimension(1);
277 const int32_t in_stride_w = in_dim_w + _input->info()->padding().left + _input->info()->padding().right;
278
279 if(_border_mode == BorderMode::CONSTANT)
280 {
281 #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
282 using ConstType = typename std::conditional<std::is_same<T, float16_t>::value, half, T>::type;
283 #else /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
284 using ConstType = T;
285 #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
286 const T const_border_value = static_cast<T>(_constant_border_value.get<ConstType>());
287 execute_window_loop(window, [&](const Coordinates & id)
288 {
289 const int32_t index_h = std::floor((id.y() + _sampling_offset) * hr - _sampling_offset);
290 const auto index_w = *(reinterpret_cast<const int32_t *>(offsets.ptr()));
291 const auto dx_val = *(reinterpret_cast<const float *>(dx.ptr()));
292 const auto dy_val = *(reinterpret_cast<const float *>(dy.ptr()));
293 const auto pixel_row_ptr = reinterpret_cast<const T *>(in.ptr());
294
295 const auto a00 = (0 <= index_w && index_w < in_dim_w && 0 <= index_h && index_h < in_dim_h) ? (*(pixel_row_ptr + index_w + index_h * in_stride_w)) : const_border_value;
296 const auto a01 = (-1 <= index_w && index_w < in_dim_w - 1 && 0 <= index_h && index_h < in_dim_h) ? (*(pixel_row_ptr + index_w + 1 + index_h * in_stride_w)) : const_border_value;
297 const auto a10 = (0 <= index_w && index_w < in_dim_w && -1 <= index_h
298 && index_h < in_dim_h - 1) ?
299 (*(pixel_row_ptr + index_w + index_h * in_stride_w + in_stride_w)) :
300 const_border_value;
301 const auto a11 = (-1 <= index_w && index_w < in_dim_w - 1 && -1 <= index_h
302 && index_h < in_dim_h - 1) ?
303 (*(pixel_row_ptr + index_w + 1 + index_h * in_stride_w + in_stride_w)) :
304 const_border_value;
305
306 *reinterpret_cast<T *>(out.ptr()) = static_cast<T>(compute_bilinear(a00, a01, a10, a11, dx_val, dy_val));
307 },
308 in, offsets, dx, dy, out);
309 }
310 else if(_border_mode == BorderMode::REPLICATE)
311 {
312 execute_window_loop(window, [&](const Coordinates & id)
313 {
314 const int index_h = std::floor((id.y() + _sampling_offset) * hr - _sampling_offset);
315 const auto index_w = *(reinterpret_cast<const int32_t *>(offsets.ptr()));
316 const auto dx_val = *(reinterpret_cast<const float *>(dx.ptr()));
317 const auto dy_val = *(reinterpret_cast<const float *>(dy.ptr()));
318 const auto pixel_row_ptr = reinterpret_cast<const T *>(in.ptr());
319
320 auto clamped_x = utility::clamp<int>(index_w, 0, in_dim_w - 1);
321 auto clamped_x1 = utility::clamp<int>(index_w + 1, 0, in_dim_w - 1);
322 auto clamped_y = utility::clamp<int>(index_h, 0, in_dim_h - 1);
323 auto clamped_y1 = utility::clamp<int>(index_h + 1, 0, in_dim_h - 1);
324
325 const auto a00 = *(pixel_row_ptr + clamped_x + clamped_y * in_stride_w);
326 const auto a01 = *(pixel_row_ptr + clamped_x1 + clamped_y * in_stride_w);
327 const auto a10 = *(pixel_row_ptr + clamped_x + clamped_y1 * in_stride_w);
328 const auto a11 = *(pixel_row_ptr + clamped_x1 + clamped_y1 * in_stride_w);
329
330 *reinterpret_cast<T *>(out.ptr()) = static_cast<T>(compute_bilinear(a00, a01, a10, a11, dx_val, dy_val));
331 },
332 in, offsets, dx, dy, out);
333 }
334 else
335 {
336 ARM_COMPUTE_ERROR("Not implemented");
337 }
338 }
339
scale_area_nchw_u8(const Window & window)340 void NEScaleKernel::scale_area_nchw_u8(const Window &window)
341 {
342 using namespace scale_helpers;
343
344 ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(_input, 1, DataType::U8);
345
346 // Don't increment in width/height/channels for the input tensor
347 // A pointer to the start of this plane is needed as base for the precomputed offsets
348 Window win_in(window);
349 win_in.set(Window::DimX, Window::Dimension(0, 0, 0));
350 win_in.set(Window::DimY, Window::Dimension(0, 0, 0));
351 win_in.set(Window::DimZ, Window::Dimension(0, 0, 0));
352
353 Iterator in(_input, win_in);
354 Iterator out(_output, window);
355
356 const auto wr = scale_utils::calculate_resize_ratio(_input->info()->dimension(0), _output->info()->dimension(0), _align_corners);
357 const auto hr = scale_utils::calculate_resize_ratio(_input->info()->dimension(1), _output->info()->dimension(1), _align_corners);
358 const auto w = _input->info()->dimension(0);
359 const auto h = _input->info()->dimension(1);
360 const size_t in_stride = _input->info()->strides_in_bytes()[1];
361
362 execute_window_loop(window, [&](const Coordinates & id)
363 {
364 const auto in_ptr = reinterpret_cast<const uint8_t *>(in.ptr());
365
366 uint8x8_t tmp0 = vdup_n_u8(0);
367 tmp0 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x(), id.y()), tmp0, 0);
368 tmp0 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 1, id.y()), tmp0, 1);
369 tmp0 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 2, id.y()), tmp0, 2);
370 tmp0 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 3, id.y()), tmp0, 3);
371 tmp0 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 4, id.y()), tmp0, 4);
372 tmp0 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 5, id.y()), tmp0, 5);
373 tmp0 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 6, id.y()), tmp0, 6);
374 tmp0 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 7, id.y()), tmp0, 7);
375
376 uint8x8_t tmp1 = vdup_n_u8(0);
377 tmp1 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 8, id.y()), tmp1, 0);
378 tmp1 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 9, id.y()), tmp1, 1);
379 tmp1 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 10, id.y()), tmp1, 2);
380 tmp1 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 11, id.y()), tmp1, 3);
381 tmp1 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 12, id.y()), tmp1, 4);
382 tmp1 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 13, id.y()), tmp1, 5);
383 tmp1 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 14, id.y()), tmp1, 6);
384 tmp1 = vset_lane_u8(pixel_area_c1u8_clamp(in_ptr, in_stride, w, h, wr, hr, id.x() + 15, id.y()), tmp1, 7);
385
386 vst1q_u8(out.ptr(), vcombine_u8(tmp0, tmp1));
387 },
388 in, out);
389 }
390
391 template <typename T>
scale_nearest_nhwc(const Window & window)392 void NEScaleKernel::scale_nearest_nhwc(const Window &window)
393 {
394 const size_t in_stride_c = _input->info()->dimension(0) + _input->info()->padding().left + _input->info()->padding().right;
395 const size_t in_stride_w = _input->info()->dimension(1) + _input->info()->padding().top + _input->info()->padding().bottom;
396 const size_t in_stride_wc = in_stride_w * in_stride_c;
397 const size_t in_dim_h = _input->info()->dimension(2);
398
399 // Compute the ratio between source height and destination height
400 const auto hr = scale_utils::calculate_resize_ratio(in_dim_h, _output->info()->dimension(2), _align_corners);
401 const auto window_start_x = static_cast<int32_t>(window.x().start());
402 const auto window_end_x = static_cast<int32_t>(window.x().end());
403 const int window_step_x = 16 / sizeof(T);
404
405 Window win(window);
406 win.set(Window::DimX, Window::Dimension(0, 1, 1));
407 Iterator out(_output, win);
408
409 const uint8_t *in_ptr_start = _input->buffer() + _input->info()->offset_first_element_in_bytes();
410 const unsigned int in_stride_bytes_hwc = _input->info()->strides_in_bytes()[3];
411
412 execute_window_loop(win, [&](const Coordinates & id)
413 {
414 const int32_t offset = *reinterpret_cast<const int32_t *>(_offsets->ptr_to_element(Coordinates(id.y(), id.z()))) * in_stride_c;
415 const auto in_hi = static_cast<int>(_align_corners ? utils::rounding::round_half_away_from_zero((id.z() + _sampling_offset) * hr) : std::floor((id.z() + _sampling_offset) * hr));
416 const int offset_row = in_hi * in_stride_wc;
417 int32_t x = window_start_x;
418 const T *in_ptr = reinterpret_cast<const T *>(in_ptr_start + in_stride_bytes_hwc * id[3]);
419
420 for(; x <= window_end_x - window_step_x; x += window_step_x)
421 {
422 wrapper::vstore(reinterpret_cast<T *>(out.ptr()) + x,
423 wrapper::vloadq(in_ptr + offset + offset_row + x));
424 }
425 for(; x < window_end_x; ++x)
426 {
427 *(reinterpret_cast<T *>(out.ptr()) + x) = *(in_ptr + offset + offset_row + x);
428 }
429 },
430 out);
431 }
432
433 template <typename T>
scale_bilinear_nhwc(const Window & window)434 void NEScaleKernel::scale_bilinear_nhwc(const Window &window)
435 {
436 // Compute the ratio between source height and destination height
437 const auto hr = scale_utils::calculate_resize_ratio(_input->info()->dimension(2), _output->info()->dimension(2), _align_corners);
438
439 Iterator out(_output, window);
440 const int in_stride_c = _input->info()->dimension(0) + _input->info()->padding().left + _input->info()->padding().right;
441 const int in_dim_w = _input->info()->dimension(1);
442 const int in_dim_h = _input->info()->dimension(2);
443 const int in_stride_wc = in_stride_c * (in_dim_w + _input->info()->padding().top + _input->info()->padding().bottom);
444
445 // Don't increment in Y and Z direction for the input tensor
446 // A pointer to the start of this plane is needed as base for the precomputed offsets
447 Window win_in(window);
448 win_in.set(Window::DimY, Window::Dimension(0, 0, 0));
449 win_in.set(Window::DimZ, Window::Dimension(0, 0, 0));
450 Iterator in(_input, win_in);
451
452 if(_border_mode == BorderMode::CONSTANT)
453 {
454 #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
455 using ConstType = typename std::conditional<std::is_same<T, float16_t>::value, half, T>::type;
456 #else /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
457 using ConstType = T;
458 #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
459 const T const_border_value = static_cast<T>(_constant_border_value.get<ConstType>());
460 execute_window_loop(window, [&](const Coordinates & id)
461 {
462 const auto offset = *reinterpret_cast<const int32_t *>(_offsets->ptr_to_element(Coordinates(id.y(), id.z())));
463 const auto dx_val = *reinterpret_cast<const float *>(_dx->ptr_to_element(Coordinates(id.y(), id.z())));
464 const auto dy_val = *reinterpret_cast<const float *>(_dy->ptr_to_element(Coordinates(id.y(), id.z())));
465 const int32_t in_hi = std::floor((id.z() + _sampling_offset) * hr - _sampling_offset);
466 const T *in_ptr = reinterpret_cast<const T *>(in.ptr()) + offset * in_stride_c + in_hi * in_stride_wc;
467
468 const auto a00 = (0 <= offset && offset < in_dim_w && 0 <= in_hi && in_hi < in_dim_h) ? *in_ptr : const_border_value;
469 const auto a01 = (-1 <= offset && offset < in_dim_w - 1 && 0 <= in_hi && in_hi < in_dim_h) ? *(in_ptr + in_stride_c) : const_border_value;
470 const auto a10 = (0 <= offset && offset < in_dim_w && -1 <= in_hi && in_hi < in_dim_h - 1) ? *(in_ptr + in_stride_wc) : const_border_value;
471 const auto a11 = (-1 <= offset && offset < in_dim_w - 1 && -1 <= in_hi && in_hi < in_dim_h - 1) ? *(in_ptr + in_stride_c + in_stride_wc) : const_border_value;
472
473 *reinterpret_cast<T *>(out.ptr()) = static_cast<T>(compute_bilinear(a00, a01, a10, a11, dx_val, dy_val));
474 },
475 in, out);
476 }
477 else if(_border_mode == BorderMode::REPLICATE)
478 {
479 execute_window_loop(window, [&](const Coordinates & id)
480 {
481 const auto offset = *reinterpret_cast<const int32_t *>(_offsets->ptr_to_element(Coordinates(id.y(), id.z())));
482 const auto dx_val = *reinterpret_cast<const float *>(_dx->ptr_to_element(Coordinates(id.y(), id.z())));
483 const auto dy_val = *reinterpret_cast<const float *>(_dy->ptr_to_element(Coordinates(id.y(), id.z())));
484 const int in_hi = std::floor((id.z() + _sampling_offset) * hr - _sampling_offset);
485
486 auto clamped_w = utility::clamp<int>(offset, 0, in_dim_w - 1);
487 auto clamped_w1 = utility::clamp<int>(offset + 1, 0, in_dim_w - 1);
488 auto clamped_h = utility::clamp<int>(in_hi, 0, in_dim_h - 1);
489 auto clamped_h1 = utility::clamp<int>(in_hi + 1, 0, in_dim_h - 1);
490
491 const auto a00 = *(reinterpret_cast<const T *>(in.ptr()) + clamped_w * in_stride_c + clamped_h * in_stride_wc);
492 const auto a01 = *(reinterpret_cast<const T *>(in.ptr()) + clamped_w1 * in_stride_c + clamped_h * in_stride_wc);
493 const auto a10 = *(reinterpret_cast<const T *>(in.ptr()) + clamped_w * in_stride_c + clamped_h1 * in_stride_wc);
494 const auto a11 = *(reinterpret_cast<const T *>(in.ptr()) + clamped_w1 * in_stride_c + clamped_h1 * in_stride_wc);
495
496 *reinterpret_cast<T *>(out.ptr()) = static_cast<T>(compute_bilinear(a00, a01, a10, a11, dx_val, dy_val));
497 },
498 in, out);
499 }
500 else
501 {
502 ARM_COMPUTE_ERROR("Not implemented");
503 }
504 }
505
506 template <typename T>
scale_bilinear_qasymm(const Window & window)507 void NEScaleKernel::scale_bilinear_qasymm(const Window &window)
508 {
509 // Get data layout and width/height indices
510 const DataLayout data_layout = _input->info()->data_layout();
511 const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
512 const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
513
514 // Compute the ratio between source height and destination height
515 const auto hr = scale_utils::calculate_resize_ratio(_input->info()->dimension(idx_height), _output->info()->dimension(idx_height), _align_corners);
516 Window win_off;
517 win_off.set(Window::DimX, Window::Dimension(0, 0, 0));
518 win_off.set(Window::DimY, Window::Dimension(0, 0, 0));
519
520 // Don't increment in X and Y direction for the input tensor
521 // A pointer to the start of this plane is needed as base for the precomputed offsets
522 Window win_in(window);
523 win_in.set(idx_width, Window::Dimension(0, 0, 0));
524 win_in.set(idx_height, Window::Dimension(0, 0, 0));
525
526 for(size_t d = Window::DimZ; d < _offsets->info()->num_dimensions(); ++d)
527 {
528 win_off.set(d, Window::Dimension(0, 0, 0));
529 }
530
531 Iterator in(_input, win_in);
532 Iterator out(_output, window);
533
534 const int32_t in_dim_w = _input->info()->dimension(idx_width);
535 const int32_t in_dim_h = _input->info()->dimension(idx_height);
536 const int32_t stride_w = _input->info()->strides_in_bytes()[idx_width];
537 const int32_t stride_h = _input->info()->strides_in_bytes()[idx_height];
538
539 const UniformQuantizationInfo iq_info = _input->info()->quantization_info().uniform();
540 const UniformQuantizationInfo oq_info = _output->info()->quantization_info().uniform();
541
542 if(_border_mode == BorderMode::CONSTANT)
543 {
544 #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
545 using ConstType = typename std::conditional<std::is_same<T, float16_t>::value, half, T>::type;
546 #else /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
547 using ConstType = T;
548 #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
549 const T const_border_value = static_cast<T>(_constant_border_value.get<ConstType>());
550 execute_window_loop(window, [&](const Coordinates & id)
551 {
552 const int32_t index_h = std::floor((id[idx_height] + _sampling_offset) * hr - _sampling_offset);
553 const int32_t index_w = *(reinterpret_cast<const int32_t *>(_offsets->ptr_to_element(Coordinates(id[idx_width], id[idx_height]))));
554 const auto dx_val = *(reinterpret_cast<const float *>(_dx->ptr_to_element(Coordinates(id[idx_width], id[idx_height]))));
555 const auto dy_val = *(reinterpret_cast<const float *>(_dy->ptr_to_element(Coordinates(id[idx_width], id[idx_height]))));
556 const auto pixel_row_ptr = reinterpret_cast<const T *>(in.ptr());
557
558 const auto a00 = (0 <= index_w && index_w < in_dim_w && 0 <= index_h && index_h < in_dim_h) ?
559 (*(pixel_row_ptr + index_w * stride_w + index_h * stride_h)) :
560 const_border_value;
561 const auto a01 = (-1 <= index_w && index_w < in_dim_w - 1 && 0 <= index_h && index_h < in_dim_h) ?
562 (*(pixel_row_ptr + (index_w + 1) * stride_w + index_h * stride_h)) :
563 const_border_value;
564 const auto a10 = (0 <= index_w && index_w < in_dim_w && -1 <= index_h && index_h < in_dim_h - 1) ?
565 (*(pixel_row_ptr + index_w * stride_w + (index_h + 1) * stride_h)) :
566 const_border_value;
567 const auto a11 = (-1 <= index_w && index_w < in_dim_w - 1 && -1 <= index_h && index_h < in_dim_h - 1) ?
568 (*(pixel_row_ptr + (index_w + 1) * stride_w + (index_h + 1) * stride_h)) :
569 const_border_value;
570
571 const float inp00 = Qasymm8QuantizationHelper<T>::dequantize(a00, iq_info);
572 const float inp01 = Qasymm8QuantizationHelper<T>::dequantize(a01, iq_info);
573 const float inp10 = Qasymm8QuantizationHelper<T>::dequantize(a10, iq_info);
574 const float inp11 = Qasymm8QuantizationHelper<T>::dequantize(a11, iq_info);
575 *reinterpret_cast<T *>(out.ptr()) = Qasymm8QuantizationHelper<T>::quantize(compute_bilinear(inp00, inp01, inp10, inp11, dx_val, dy_val), oq_info);
576 },
577 in, out);
578 }
579 else if(_border_mode == BorderMode::REPLICATE)
580 {
581 execute_window_loop(window, [&](const Coordinates & id)
582 {
583 const int index_h = std::floor((id[idx_height] + _sampling_offset) * hr - _sampling_offset);
584 const int32_t index_w = *(reinterpret_cast<const int32_t *>(_offsets->ptr_to_element(Coordinates(id[idx_width], id[idx_height]))));
585 const auto dx_val = *(reinterpret_cast<const float *>(_dx->ptr_to_element(Coordinates(id[idx_width], id[idx_height]))));
586 const auto dy_val = *(reinterpret_cast<const float *>(_dy->ptr_to_element(Coordinates(id[idx_width], id[idx_height]))));
587 const auto pixel_row_ptr = reinterpret_cast<const T *>(in.ptr());
588
589 auto clamped_w = utility::clamp<int>(index_w, 0, in_dim_w - 1);
590 auto clamped_w1 = utility::clamp<int>(index_w + 1, 0, in_dim_w - 1);
591 auto clamped_h = utility::clamp<int>(index_h, 0, in_dim_h - 1);
592 auto clamped_h1 = utility::clamp<int>(index_h + 1, 0, in_dim_h - 1);
593
594 const auto a00 = *(pixel_row_ptr + clamped_w * stride_w + clamped_h * stride_h);
595 const auto a01 = *(pixel_row_ptr + clamped_w1 * stride_w + clamped_h * stride_h);
596 const auto a10 = *(pixel_row_ptr + clamped_w * stride_w + clamped_h1 * stride_h);
597 const auto a11 = *(pixel_row_ptr + clamped_w1 * stride_w + clamped_h1 * stride_h);
598
599 const float inp00 = Qasymm8QuantizationHelper<T>::dequantize(a00, iq_info);
600 const float inp01 = Qasymm8QuantizationHelper<T>::dequantize(a01, iq_info);
601 const float inp10 = Qasymm8QuantizationHelper<T>::dequantize(a10, iq_info);
602 const float inp11 = Qasymm8QuantizationHelper<T>::dequantize(a11, iq_info);
603 *reinterpret_cast<T *>(out.ptr()) = Qasymm8QuantizationHelper<T>::quantize(compute_bilinear(inp00, inp01, inp10, inp11, dx_val, dy_val), oq_info);
604 },
605 in, out);
606 }
607 else
608 {
609 ARM_COMPUTE_ERROR("Not implemented");
610 }
611 }
612
validate(const ITensorInfo * input,const ITensorInfo * dx,const ITensorInfo * dy,const ITensorInfo * offsets,ITensorInfo * output,const ScaleKernelInfo & info)613 Status NEScaleKernel::validate(const ITensorInfo *input, const ITensorInfo *dx, const ITensorInfo *dy,
614 const ITensorInfo *offsets, ITensorInfo *output, const ScaleKernelInfo &info)
615 {
616 ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, dx, dy, offsets, output, info));
617 return Status{};
618 }
619
run(const Window & window,const ThreadInfo & info)620 void NEScaleKernel::run(const Window &window, const ThreadInfo &info)
621 {
622 ARM_COMPUTE_UNUSED(info);
623 ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
624 ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
625 ARM_COMPUTE_ERROR_ON(_func == nullptr);
626
627 (this->*_func)(window);
628 }
629 } // namespace arm_compute
630