• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2016-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "src/core/NEON/kernels/NEThresholdKernel.h"
25 
26 #include "arm_compute/core/Error.h"
27 #include "arm_compute/core/Helpers.h"
28 #include "arm_compute/core/ITensor.h"
29 #include "arm_compute/core/Validate.h"
30 #include "src/core/helpers/AutoConfiguration.h"
31 #include "src/core/helpers/WindowHelpers.h"
32 
33 #include "src/core/NEON/wrapper/wrapper.h"
34 
35 namespace arm_compute
36 {
37 namespace
38 {
validate_arguments(const ITensorInfo * input,const ITensorInfo * output,const ThresholdKernelInfo & info)39 Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output, const ThresholdKernelInfo &info)
40 {
41     ARM_COMPUTE_UNUSED(info);
42     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::U8);
43     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::U8);
44 
45     // Checks performed when output is configured
46     if((output != nullptr) && (output->total_size() != 0))
47     {
48         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output);
49         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
50     }
51 
52     return Status{};
53 }
54 
validate_and_configure_window(ITensorInfo * input,ITensorInfo * output)55 std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITensorInfo *output)
56 {
57     // Configure kernel window
58     Window win = calculate_max_window(*input, Steps());
59 
60     // Output auto inizialitation if not yet initialized
61     auto_init_if_empty(*output, *input->clone());
62 
63     // NEThresholdKernel doesn't need padding so update_window_and_padding() can be skipped
64     Coordinates coord;
65     coord.set_num_dimensions(output->num_dimensions());
66     output->set_valid_region(ValidRegion(coord, output->tensor_shape()));
67 
68     return std::make_pair(Status{}, win);
69 }
70 } // namespace
71 
NEThresholdKernel()72 NEThresholdKernel::NEThresholdKernel()
73     : _func(nullptr), _input(nullptr), _output(nullptr), _info()
74 {
75 }
76 
configure(const ITensor * input,ITensor * output,const ThresholdKernelInfo & info)77 void NEThresholdKernel::configure(const ITensor *input, ITensor *output, const ThresholdKernelInfo &info)
78 {
79     ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
80     ARM_COMPUTE_ERROR_THROW_ON(validate(input->info(), output->info(), info));
81 
82     _input  = input;
83     _output = output;
84     _info   = info;
85 
86     switch(_info.type)
87     {
88         case ThresholdType::BINARY:
89             _func = &NEThresholdKernel::run_binary;
90             break;
91         case ThresholdType::RANGE:
92             _func = &NEThresholdKernel::run_range;
93             break;
94         default:
95             ARM_COMPUTE_ERROR("Thresholding type not recognized");
96             break;
97     }
98 
99     // Configure kernel window
100     auto win_config = validate_and_configure_window(input->info(), output->info());
101     ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
102     ICPPKernel::configure(win_config.second);
103 }
104 
validate(const ITensorInfo * input,const ITensorInfo * output,const ThresholdKernelInfo & info)105 Status NEThresholdKernel::validate(const ITensorInfo *input, const ITensorInfo *output, const ThresholdKernelInfo &info)
106 {
107     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output, info));
108     ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), output->clone().get()).first);
109 
110     return Status{};
111 }
112 
run_binary(const Window & window)113 inline void NEThresholdKernel::run_binary(const Window &window)
114 {
115     /** NEON vector tag type. */
116     using Type         = uint8_t;
117     using ExactTagType = typename wrapper::traits::neon_bitvector_tag_t<Type, wrapper::traits::BitWidth::W128>;
118 
119     const int  window_step_x  = 16 / sizeof(Type);
120     const auto window_start_x = static_cast<int>(window.x().start());
121     const auto window_end_x   = static_cast<int>(window.x().end());
122 
123     Window win_collapsed = window.collapse_if_possible(window, Window::DimZ);
124     win_collapsed.set(Window::DimX, Window::Dimension(0, 1, 1));
125 
126     const uint8_t threshold   = _info.threshold;
127     const uint8_t true_value  = _info.true_value;
128     const uint8_t false_value = _info.false_value;
129 
130     const auto vthreshold   = wrapper::vdup_n(threshold, ExactTagType{});
131     const auto vtrue_value  = wrapper::vdup_n(true_value, ExactTagType{});
132     const auto vfalse_value = wrapper::vdup_n(false_value, ExactTagType{});
133 
134     Iterator input(_input, win_collapsed);
135     Iterator output(_output, win_collapsed);
136 
137     execute_window_loop(win_collapsed, [&](const Coordinates &)
138     {
139         const auto input_ptr  = reinterpret_cast<const Type *>(input.ptr());
140         const auto output_ptr = reinterpret_cast<Type *>(output.ptr());
141 
142         int x = window_start_x;
143         for(; x <= (window_end_x - window_step_x); x += window_step_x)
144         {
145             const auto vdata = wrapper::vloadq(input_ptr + x);
146             const auto vmask = wrapper::vcgt(vdata, vthreshold);
147             wrapper::vstore(output_ptr + x, wrapper::vbsl(vmask, vtrue_value, vfalse_value));
148         }
149 
150         for(; x < window_end_x; ++x)
151         {
152             const Type data   = *(reinterpret_cast<const Type *>(input_ptr + x));
153             *(output_ptr + x) = (data > threshold) ? true_value : false_value;
154         }
155     },
156     input, output);
157 }
158 
run_range(const Window & window)159 inline void NEThresholdKernel::run_range(const Window &window)
160 {
161     /** NEON vector tag type. */
162     using Type         = uint8_t;
163     using ExactTagType = typename wrapper::traits::neon_bitvector_tag_t<Type, wrapper::traits::BitWidth::W128>;
164 
165     const int  window_step_x  = 16 / sizeof(Type);
166     const auto window_start_x = static_cast<int>(window.x().start());
167     const auto window_end_x   = static_cast<int>(window.x().end());
168 
169     Window win_collapsed = window.collapse_if_possible(window, Window::DimZ);
170     win_collapsed.set(Window::DimX, Window::Dimension(0, 1, 1));
171 
172     const uint8_t lower_threshold = _info.threshold;
173     const uint8_t upper_threshold = _info.upper;
174     const uint8_t true_value      = _info.true_value;
175     const uint8_t false_value     = _info.false_value;
176 
177     const auto vlower_threshold = wrapper::vdup_n(lower_threshold, ExactTagType{});
178     const auto vupper_threshold = wrapper::vdup_n(upper_threshold, ExactTagType{});
179     const auto vtrue_value      = wrapper::vdup_n(true_value, ExactTagType{});
180     const auto vfalse_value     = wrapper::vdup_n(false_value, ExactTagType{});
181 
182     Iterator input(_input, win_collapsed);
183     Iterator output(_output, win_collapsed);
184 
185     execute_window_loop(win_collapsed, [&](const Coordinates &)
186     {
187         const auto input_ptr  = reinterpret_cast<const Type *>(input.ptr());
188         const auto output_ptr = reinterpret_cast<Type *>(output.ptr());
189 
190         int x = window_start_x;
191         for(; x <= (window_end_x - window_step_x); x += window_step_x)
192         {
193             const auto vdata = wrapper::vloadq(input_ptr + x);
194             auto       vmask = wrapper::vcle(vdata, vupper_threshold);
195             vmask            = wrapper::vand(wrapper::vcge(vdata, vlower_threshold), vmask);
196             wrapper::vstore(output_ptr + x, wrapper::vbsl(vmask, vtrue_value, vfalse_value));
197         }
198 
199         for(; x < window_end_x; ++x)
200         {
201             const Type data   = *(reinterpret_cast<const Type *>(input_ptr + x));
202             *(output_ptr + x) = (data <= upper_threshold && data >= lower_threshold) ? true_value : false_value;
203         }
204     },
205     input, output);
206 }
207 
run(const Window & window,const ThreadInfo & info)208 void NEThresholdKernel::run(const Window &window, const ThreadInfo &info)
209 {
210     ARM_COMPUTE_UNUSED(info);
211     ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
212     ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
213     ARM_COMPUTE_ERROR_ON(_func == nullptr);
214 
215     (this->*_func)(window);
216 }
217 } // namespace arm_compute
218