• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2017-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "src/core/NEON/kernels/NEWeightsReshapeKernel.h"
25 
26 #include "arm_compute/core/Helpers.h"
27 #include "arm_compute/core/Validate.h"
28 #include "src/core/helpers/AutoConfiguration.h"
29 #include "src/core/helpers/WindowHelpers.h"
30 
31 namespace arm_compute
32 {
33 namespace
34 {
get_output_shape(const ITensorInfo * input,bool has_bias)35 TensorShape get_output_shape(const ITensorInfo *input, bool has_bias)
36 {
37     TensorShape output_shape{ input->tensor_shape() };
38 
39     output_shape.collapse(3);
40     const size_t tmp_dim = output_shape[0];
41     output_shape.set(0, output_shape[1]);
42     output_shape.set(1, tmp_dim + (has_bias ? 1 : 0));
43 
44     return output_shape;
45 }
46 
validate_arguments(const ITensorInfo * input,const ITensorInfo * biases,const ITensorInfo * output)47 Status validate_arguments(const ITensorInfo *input, const ITensorInfo *biases, const ITensorInfo *output)
48 {
49     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output);
50     //Note: ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input) is not needed here as this kernel doesn't use NEON FP16 instructions.
51     ARM_COMPUTE_RETURN_ERROR_ON(input->data_type() == DataType::UNKNOWN);
52 
53     if(biases != nullptr)
54     {
55         ARM_COMPUTE_RETURN_ERROR_ON(is_data_type_quantized_asymmetric(input->data_type()));
56         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, biases);
57         ARM_COMPUTE_RETURN_ERROR_ON((input->num_dimensions() == 4) && (biases->num_dimensions() != 1));
58         ARM_COMPUTE_RETURN_ERROR_ON((input->num_dimensions() == 5) && (biases->num_dimensions() != 2));
59         ARM_COMPUTE_RETURN_ERROR_ON((input->num_dimensions() == 4) && (biases->dimension(0) != input->tensor_shape()[3]));
60         ARM_COMPUTE_RETURN_ERROR_ON((input->num_dimensions() == 5) && (biases->dimension(0) != input->tensor_shape()[3] || biases->dimension(1) != input->tensor_shape()[4]));
61     }
62 
63     // Checks performed when output is configured
64     if(output->total_size() != 0)
65     {
66         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output->tensor_shape(), get_output_shape(input, biases != nullptr));
67         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
68         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_QUANTIZATION_INFO(input, output);
69     }
70 
71     return Status{};
72 }
73 
validate_and_configure_window(ITensorInfo * input,ITensorInfo * output)74 std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITensorInfo *output)
75 {
76     Window window = calculate_max_window(*input, Steps());
77     window.set(Window::DimX, Window::Dimension(0, input->dimension(0), input->dimension(0)));
78     window.set(Window::DimY, Window::Dimension(0, input->dimension(1), input->dimension(1)));
79     window.set(Window::DimZ, Window::Dimension(0, input->dimension(2), input->dimension(2)));
80 
81     // The NEConvolutionLayerWeightsReshapeKernel doesn't need padding so update_window_and_padding() can be skipped
82     output->set_valid_region(ValidRegion(Coordinates(), output->tensor_shape()));
83 
84     return std::make_pair(Status{}, window);
85 }
86 } // namespace
87 
NEWeightsReshapeKernel()88 NEWeightsReshapeKernel::NEWeightsReshapeKernel()
89     : _input(nullptr), _bias(nullptr), _output(nullptr)
90 {
91 }
92 
configure(const ITensor * input,const ITensor * bias,ITensor * output)93 void NEWeightsReshapeKernel::configure(const ITensor *input, const ITensor *bias, ITensor *output)
94 {
95     ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
96 
97     // Output tensor auto inizialitation if not yet initialized
98     auto_init_if_empty(*output->info(), input->info()->clone()->set_tensor_shape(get_output_shape(input->info(), (bias != nullptr))));
99 
100     // Perform validation step
101     ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(),
102                                                   (bias != nullptr) ? bias->info() : nullptr,
103                                                   output->info()));
104 
105     _input  = input;
106     _bias   = bias;
107     _output = output;
108 
109     // Configure kernel
110     auto win_config = validate_and_configure_window(input->info(), output->info());
111     ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
112     INEKernel::configure(win_config.second);
113 }
114 
validate(const ITensorInfo * input,const ITensorInfo * biases,const ITensorInfo * output)115 Status NEWeightsReshapeKernel::validate(const ITensorInfo *input, const ITensorInfo *biases, const ITensorInfo *output)
116 {
117     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, biases, output));
118     ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), output->clone().get()).first);
119 
120     return Status{};
121 }
122 
run(const Window & window,const ThreadInfo & info)123 void NEWeightsReshapeKernel::run(const Window &window, const ThreadInfo &info)
124 {
125     ARM_COMPUTE_UNUSED(info);
126     ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
127     ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
128 
129     const unsigned int kernel_size_x   = _input->info()->dimension(0);
130     const unsigned int kernel_size_y   = _input->info()->dimension(1);
131     const unsigned int kernel_depth    = _input->info()->dimension(2);
132     const unsigned int input_stride_x  = _input->info()->strides_in_bytes().x();
133     const unsigned int input_stride_y  = _input->info()->strides_in_bytes().y();
134     const unsigned int input_stride_z  = _input->info()->strides_in_bytes().z();
135     const unsigned int output_stride_y = _output->info()->strides_in_bytes().y();
136 
137     // Create iterators
138     Iterator in(_input, window);
139     execute_window_loop(window, [&](const Coordinates & id)
140     {
141         // Get column index
142         const int kernel_idx = id[3];
143         const int kernel_idz = id[4];
144 
145         // Setup pointers
146         const uint8_t *tmp_input_ptr        = in.ptr();
147         uint8_t       *tmp_output_ptr       = _output->ptr_to_element(Coordinates(kernel_idx, 0, kernel_idz));
148         const uint8_t *curr_input_row_ptr   = tmp_input_ptr;
149         const uint8_t *curr_input_depth_ptr = tmp_input_ptr;
150 
151         // Linearize volume
152         for(unsigned int d = 0; d < kernel_depth; ++d)
153         {
154             for(unsigned int j = 0; j < kernel_size_y; ++j)
155             {
156                 for(unsigned int i = 0; i < kernel_size_x; ++i)
157                 {
158                     std::memcpy(tmp_output_ptr, tmp_input_ptr, _input->info()->element_size());
159                     tmp_input_ptr += input_stride_x;
160                     tmp_output_ptr += output_stride_y;
161                 }
162                 curr_input_row_ptr += input_stride_y;
163                 tmp_input_ptr = curr_input_row_ptr;
164             }
165             curr_input_depth_ptr += input_stride_z;
166             curr_input_row_ptr = curr_input_depth_ptr;
167             tmp_input_ptr      = curr_input_depth_ptr;
168         }
169 
170         // Add bias
171         if(_bias != nullptr)
172         {
173             std::memcpy(tmp_output_ptr, _bias->ptr_to_element(Coordinates(kernel_idx, kernel_idz)), _input->info()->element_size());
174         }
175     },
176     in);
177 }
178 } // namespace arm_compute
179