• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
25 #include "arm.hpp"
26 #include "input.hpp"
27 
28 namespace winograd
29 {
30 template <>
transform_tile(const int n_channels,const __fp16 * const input_base,const int input_row_stride,const int input_col_stride,__fp16 * outptr,const int matrix_stride)31 void InputTransform<6, 6, __fp16, __fp16, WinogradRoots::Integers>::transform_tile(
32     const int n_channels,
33     const __fp16* const input_base,
34     const int input_row_stride,
35     const int input_col_stride,
36     __fp16* outptr,
37     const int matrix_stride
38 )
39 {
40     constexpr int inner_tile_rows = 6;
41     constexpr int inner_tile_cols = 6;
42 
43     // Get pointers into the input tile
44     const __fp16 *x_ptrs[inner_tile_rows][inner_tile_cols];
45     for (int i = 0, xi = 0; i < inner_tile_rows; i++, xi++)
46     {
47         // Get a pointer into the row
48         const __fp16* const row_ptr = input_base + xi*input_row_stride;
49 
50         for (int j = 0, xj = 0; j < inner_tile_cols; j++, xj++)
51         {
52             x_ptrs[i][j] = row_ptr + xj*input_col_stride;
53         }
54     }
55 
56     // Matrices used/computed in this kernel.
57     __fp16 x[inner_tile_rows][inner_tile_cols];
58     __fp16 XTx[inner_tile_rows][inner_tile_cols];
59     __fp16 U[inner_tile_rows][inner_tile_cols];
60     for (int i = 0; i < inner_tile_rows; i++)
61     {
62         for (int j = 0; j < inner_tile_cols; j++)
63         {
64             x[i][j] = XTx[i][j] = 0.0f;
65         }
66     }
67 
68     // Perform the Winograd input transformation for each channel in the input
69     // tensor.
70     int channels_remaining = n_channels;
71     for (; channels_remaining >= 8; channels_remaining -= 8)
72     {
73         // Matrices used/computed in this kernel
74         float16x8_t x[inner_tile_rows][inner_tile_cols];
75         float16x8_t XTx[inner_tile_rows][inner_tile_cols];
76         float16x8_t U[inner_tile_rows][inner_tile_cols];
77         for (int i = 0; i < inner_tile_rows; i++)
78         {
79             for (int j = 0; j < inner_tile_cols; j++)
80             {
81                 x[i][j] = vdupq_n_f16(0.0f);
82                 XTx[i][j] = vdupq_n_f16(0.0f);
83             }
84         }
85 
86         // Read a 6x6 tile in the Winograd domain
87         for (int i = 0; i < inner_tile_rows; i++)
88         {
89             for (int j = 0; j < inner_tile_cols; j++)
90             {
91                 x[i][j] = vld1q_f16(x_ptrs[i][j]);
92                 x_ptrs[i][j] += 8;
93             }
94         }
95 
96         // Compute XT . x
97         for (int j = 0; j < inner_tile_cols; j++)
98         {
99             // XTx[0][j] =  4*x[0][j] + -5*x[2][j] +  1*x[4][j];
100             XTx[0][j] = vsubq_f16(vaddq_f16(x[4][j], vmulq_f16(x[0][j], vdupq_n_f16(4.0f))), vmulq_f16(x[2][j], vdupq_n_f16(5.0f)));
101 
102             // XTx[1][j] = -4*x[1][j] + -4*x[2][j] +  1*x[3][j] +  1*x[4][j];
103             XTx[1][j] = vsubq_f16(vaddq_f16(x[3][j], x[4][j]), vmulq_f16(vaddq_f16(x[1][j], x[2][j]),  vdupq_n_f16(4.0f)));
104 
105             // XTx[2][j] =  4*x[1][j] + -4*x[2][j] + -1*x[3][j] +  1*x[4][j];
106             XTx[2][j] = vaddq_f16(vsubq_f16(x[4][j], x[3][j]), vmulq_f16(vsubq_f16(x[1][j], x[2][j]), vdupq_n_f16(4.0f)));
107 
108             // XTx[3][j] = -2*x[1][j] + -1*x[2][j] +  2*x[3][j] +  1*x[4][j];
109             XTx[3][j] = vaddq_f16(vsubq_f16(x[4][j], x[2][j]), vmulq_f16(vsubq_f16(x[3][j], x[1][j]), vdupq_n_f16(2.0f)));
110 
111             // XTx[4][j] =  2*x[1][j] + -1*x[2][j] + -2*x[3][j] +  1*x[4][j];
112             XTx[4][j] = vaddq_f16(vsubq_f16(x[4][j], x[2][j]), vmulq_f16(vsubq_f16(x[1][j], x[3][j]), vdupq_n_f16(2.0f)));
113 
114             // XTx[5][j] =  4*x[1][j] + -5*x[3][j] +  1*x[5][j];
115             XTx[5][j] = vsubq_f16(vaddq_f16(x[5][j], vmulq_f16(x[1][j], vdupq_n_f16(4.0f))), vmulq_f16(x[3][j], vdupq_n_f16(5.0f)));
116         }
117 
118         // Compute U = XT . x . X
119         for (int i = 0; i < inner_tile_rows; i++)
120         {
121             // U[i][0] =  4*XTx[i][0] + -5*XTx[i][2] +  1*XTx[i][4];
122             U[i][0] = vsubq_f16(vaddq_f16(XTx[i][4], vmulq_f16(XTx[i][0], vdupq_n_f16(4.0f))), vmulq_f16(XTx[i][2], vdupq_n_f16(5.0f)));
123 
124             // U[i][1] = -4*XTx[i][1] + -4*XTx[i][2] +  1*XTx[i][3] +  1*XTx[i][4];
125             U[i][1] = vsubq_f16(vaddq_f16(XTx[i][3], XTx[i][4]), vmulq_f16(vaddq_f16(XTx[i][1], XTx[i][2]), vdupq_n_f16(4.0f)));
126 
127             // U[i][2] =  4*XTx[i][1] + -4*XTx[i][2] + -1*XTx[i][3] +  1*XTx[i][4];
128             U[i][2] = vaddq_f16(vsubq_f16(XTx[i][4], XTx[i][3]), vmulq_f16(vsubq_f16(XTx[i][1], XTx[i][2]), vdupq_n_f16(4.0f)));
129 
130             // U[i][3] = -2*XTx[i][1] + -1*XTx[i][2] +  2*XTx[i][3] +  1*XTx[i][4];
131             U[i][3] = vaddq_f16(vsubq_f16(XTx[i][4], XTx[i][2]), vmulq_f16(vsubq_f16(XTx[i][3], XTx[i][1]), vdupq_n_f16(2.0f)));
132 
133             // U[i][4] =  2*XTx[i][1] + -1*XTx[i][2] + -2*XTx[i][3] +  1*XTx[i][4];
134             U[i][4] = vaddq_f16(vsubq_f16(XTx[i][4], XTx[i][2]), vmulq_f16(vsubq_f16(XTx[i][1], XTx[i][3]), vdupq_n_f16(2.0f)));
135 
136             // U[i][5] =  4*XTx[i][1] + -5*XTx[i][3] +  1*XTx[i][5];
137             U[i][5] = vsubq_f16(vaddq_f16(XTx[i][5], vmulq_f16(XTx[i][1], vdupq_n_f16(4.0f))), vmulq_f16(XTx[i][3], vdupq_n_f16(5.0f)));
138         }
139 
140         // Store the transformed matrix
141         for (int i = 0, m = 0; i < inner_tile_rows; i++)
142         {
143             for (int j = 0; j < inner_tile_cols; j++, m++)
144             {
145                 vst1q_f16(outptr + m*matrix_stride, U[i][j]);
146             }
147         }
148         outptr += 8;
149     }
150     for (; channels_remaining >= 4; channels_remaining -= 4)
151     {
152         // Matrices used/computed in this kernel
153         float16x4_t x[inner_tile_rows][inner_tile_cols];
154         float16x4_t XTx[inner_tile_rows][inner_tile_cols];
155         float16x4_t U[inner_tile_rows][inner_tile_cols];
156         for (int i = 0; i < inner_tile_rows; i++)
157         {
158             for (int j = 0; j < inner_tile_cols; j++)
159             {
160                 x[i][j] = vdup_n_f16(0.0f);
161                 XTx[i][j] = vdup_n_f16(0.0f);
162             }
163         }
164 
165         // Read a 6x6 tile in the Winograd domain
166         for (int i = 0; i < inner_tile_rows; i++)
167         {
168             for (int j = 0; j < inner_tile_cols; j++)
169             {
170                 x[i][j] = vld1_f16(x_ptrs[i][j]);
171                 x_ptrs[i][j] += 4;
172             }
173         }
174 
175         // Compute XT . x
176         for (int j = 0; j < inner_tile_cols; j++)
177         {
178             // XTx[0][j] =  4*x[0][j] + -5*x[2][j] +  1*x[4][j];
179             XTx[0][j] = vsub_f16(vadd_f16(x[4][j], vmul_f16(x[0][j], vdup_n_f16(4.0f))), vmul_f16(x[2][j], vdup_n_f16(5.0f)));
180 
181             // XTx[1][j] = -4*x[1][j] + -4*x[2][j] +  1*x[3][j] +  1*x[4][j];
182             XTx[1][j] = vsub_f16(vadd_f16(x[3][j], x[4][j]), vmul_f16(vadd_f16(x[1][j], x[2][j]),  vdup_n_f16(4.0f)));
183 
184             // XTx[2][j] =  4*x[1][j] + -4*x[2][j] + -1*x[3][j] +  1*x[4][j];
185             XTx[2][j] = vadd_f16(vsub_f16(x[4][j], x[3][j]), vmul_f16(vsub_f16(x[1][j], x[2][j]), vdup_n_f16(4.0f)));
186 
187             // XTx[3][j] = -2*x[1][j] + -1*x[2][j] +  2*x[3][j] +  1*x[4][j];
188             XTx[3][j] = vadd_f16(vsub_f16(x[4][j], x[2][j]), vmul_f16(vsub_f16(x[3][j], x[1][j]), vdup_n_f16(2.0f)));
189 
190             // XTx[4][j] =  2*x[1][j] + -1*x[2][j] + -2*x[3][j] +  1*x[4][j];
191             XTx[4][j] = vadd_f16(vsub_f16(x[4][j], x[2][j]), vmul_f16(vsub_f16(x[1][j], x[3][j]), vdup_n_f16(2.0f)));
192 
193             // XTx[5][j] =  4*x[1][j] + -5*x[3][j] +  1*x[5][j];
194             XTx[5][j] = vsub_f16(vadd_f16(x[5][j], vmul_f16(x[1][j], vdup_n_f16(4.0f))), vmul_f16(x[3][j], vdup_n_f16(5.0f)));
195         }
196 
197         // Compute U = XT . x . X
198         for (int i = 0; i < inner_tile_rows; i++)
199         {
200             // U[i][0] =  4*XTx[i][0] + -5*XTx[i][2] +  1*XTx[i][4];
201             U[i][0] = vsub_f16(vadd_f16(XTx[i][4], vmul_f16(XTx[i][0], vdup_n_f16(4.0f))), vmul_f16(XTx[i][2], vdup_n_f16(5.0f)));
202 
203             // U[i][1] = -4*XTx[i][1] + -4*XTx[i][2] +  1*XTx[i][3] +  1*XTx[i][4];
204             U[i][1] = vsub_f16(vadd_f16(XTx[i][3], XTx[i][4]), vmul_f16(vadd_f16(XTx[i][1], XTx[i][2]), vdup_n_f16(4.0f)));
205 
206             // U[i][2] =  4*XTx[i][1] + -4*XTx[i][2] + -1*XTx[i][3] +  1*XTx[i][4];
207             U[i][2] = vadd_f16(vsub_f16(XTx[i][4], XTx[i][3]), vmul_f16(vsub_f16(XTx[i][1], XTx[i][2]), vdup_n_f16(4.0f)));
208 
209             // U[i][3] = -2*XTx[i][1] + -1*XTx[i][2] +  2*XTx[i][3] +  1*XTx[i][4];
210             U[i][3] = vadd_f16(vsub_f16(XTx[i][4], XTx[i][2]), vmul_f16(vsub_f16(XTx[i][3], XTx[i][1]), vdup_n_f16(2.0f)));
211 
212             // U[i][4] =  2*XTx[i][1] + -1*XTx[i][2] + -2*XTx[i][3] +  1*XTx[i][4];
213             U[i][4] = vadd_f16(vsub_f16(XTx[i][4], XTx[i][2]), vmul_f16(vsub_f16(XTx[i][1], XTx[i][3]), vdup_n_f16(2.0f)));
214 
215             // U[i][5] =  4*XTx[i][1] + -5*XTx[i][3] +  1*XTx[i][5];
216             U[i][5] = vsub_f16(vadd_f16(XTx[i][5], vmul_f16(XTx[i][1], vdup_n_f16(4.0f))), vmul_f16(XTx[i][3], vdup_n_f16(5.0f)));
217         }
218 
219         // Store the transformed matrix
220         for (int i = 0, m = 0; i < inner_tile_rows; i++)
221         {
222             for (int j = 0; j < inner_tile_cols; j++, m++)
223             {
224                 vst1_f16(outptr + m*matrix_stride, U[i][j]);
225             }
226         }
227         outptr += 4;
228     }
229     for (; channels_remaining; channels_remaining--)
230     {
231         // Load x
232         for (int i = 0; i < inner_tile_rows; i++)
233         {
234             for (int j = 0; j < inner_tile_cols; j++)
235             {
236                 x[i][j] = *(x_ptrs[i][j]++);
237             }
238         }
239 
240         // Compute XT . x
241         for (int j = 0; j < inner_tile_cols; j++)
242         {
243             XTx[0][j] =  4*x[0][j] + -5*x[2][j] +  1*x[4][j];
244             XTx[1][j] = -4*x[1][j] + -4*x[2][j] +  1*x[3][j] +  1*x[4][j];
245             XTx[2][j] =  4*x[1][j] + -4*x[2][j] + -1*x[3][j] +  1*x[4][j];
246             XTx[3][j] = -2*x[1][j] + -1*x[2][j] +  2*x[3][j] +  1*x[4][j];
247             XTx[4][j] =  2*x[1][j] + -1*x[2][j] + -2*x[3][j] +  1*x[4][j];
248             XTx[5][j] =  4*x[1][j] + -5*x[3][j] +  1*x[5][j];
249         }
250 
251         // Compute U = XT . x . X
252         for (int i = 0; i < inner_tile_rows; i++)
253         {
254             U[i][0] =  4*XTx[i][0] + -5*XTx[i][2] +  1*XTx[i][4];
255             U[i][1] = -4*XTx[i][1] + -4*XTx[i][2] +  1*XTx[i][3] +  1*XTx[i][4];
256             U[i][2] =  4*XTx[i][1] + -4*XTx[i][2] + -1*XTx[i][3] +  1*XTx[i][4];
257             U[i][3] = -2*XTx[i][1] + -1*XTx[i][2] +  2*XTx[i][3] +  1*XTx[i][4];
258             U[i][4] =  2*XTx[i][1] + -1*XTx[i][2] + -2*XTx[i][3] +  1*XTx[i][4];
259             U[i][5] =  4*XTx[i][1] + -5*XTx[i][3] +  1*XTx[i][5];
260         }
261 
262         // Store the transformed matrix
263         for (int i = 0, m = 0; i < inner_tile_rows; i++)
264         {
265             for (int j = 0; j < inner_tile_cols; j++, m++)
266             {
267                 *(outptr + m*matrix_stride) = U[i][j];
268             }
269         }
270         outptr++;
271     }
272 }
273 
274 template class InputTransform<6, 6, __fp16, __fp16, WinogradRoots::Integers>;
275 
276 }  // namespace winograd
277 #endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC