1 /*
2 * Copyright (c) 2017-2020 Arm Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24 #include "arm_compute/core/utils/quantization/AsymmHelpers.h"
25 #include "arm_compute/core/Helpers.h"
26 #include "support/ToolchainSupport.h"
27
28 #include <cmath>
29 #include <limits>
30 #include <numeric>
31
32 namespace arm_compute
33 {
34 namespace quantization
35 {
36 constexpr int64_t fixed_point_one_Q0 = (1LL << 31);
37 constexpr float epsilon = 0.00001f;
38
calculate_quantized_multiplier(float multiplier,int32_t * quant_multiplier,int32_t * shift,bool ignore_epsilon)39 Status calculate_quantized_multiplier(float multiplier, int32_t *quant_multiplier, int32_t *shift, bool ignore_epsilon)
40 {
41 if(multiplier >= 1.f)
42 {
43 Status status = calculate_quantized_multiplier_greater_than_one(multiplier, quant_multiplier, shift);
44 *shift *= -1;
45 return status;
46 }
47 else
48 {
49 return calculate_quantized_multiplier_less_than_one(multiplier, quant_multiplier, shift, ignore_epsilon);
50 }
51 }
52
calculate_quantized_multiplier_less_than_one(float multiplier,int32_t * quant_multiplier,int32_t * right_shift,bool ignore_epsilon)53 Status calculate_quantized_multiplier_less_than_one(float multiplier,
54 int32_t *quant_multiplier,
55 int32_t *right_shift,
56 bool ignore_epsilon)
57 {
58 const float internal_epsilon = ignore_epsilon ? 0.0f : epsilon;
59
60 ARM_COMPUTE_RETURN_ERROR_ON(quant_multiplier == nullptr);
61 ARM_COMPUTE_RETURN_ERROR_ON(right_shift == nullptr);
62 ARM_COMPUTE_RETURN_ERROR_ON(multiplier < -internal_epsilon);
63 ARM_COMPUTE_RETURN_ERROR_ON(multiplier > 1.0f + internal_epsilon);
64 if(std::fabs(0.0f - multiplier) < internal_epsilon)
65 {
66 *quant_multiplier = 0;
67 *right_shift = 0;
68 return Status{};
69 }
70
71 int shift_exp = 0;
72 const double q = std::frexp(multiplier, &shift_exp);
73 *right_shift = -1 * shift_exp;
74 auto q_fixed = static_cast<int64_t>(support::cpp11::round(q * fixed_point_one_Q0));
75 ARM_COMPUTE_RETURN_ERROR_ON(q_fixed > fixed_point_one_Q0);
76 if(q_fixed == fixed_point_one_Q0)
77 {
78 q_fixed /= 2;
79 --*right_shift;
80 }
81
82 if(ignore_epsilon && *right_shift > 31)
83 {
84 *right_shift = 0;
85 q_fixed = 0;
86 }
87
88 ARM_COMPUTE_RETURN_ERROR_ON(*right_shift < 0);
89 ARM_COMPUTE_RETURN_ERROR_ON(q_fixed > std::numeric_limits<int32_t>::max());
90 *quant_multiplier = static_cast<int32_t>(q_fixed);
91
92 return Status{};
93 }
94
calculate_quantized_multiplier_greater_than_one(float multiplier,int32_t * quantized_multiplier,int32_t * left_shift)95 Status calculate_quantized_multiplier_greater_than_one(float multiplier,
96 int32_t *quantized_multiplier,
97 int32_t *left_shift)
98 {
99 ARM_COMPUTE_RETURN_ERROR_ON(quantized_multiplier == nullptr);
100 ARM_COMPUTE_RETURN_ERROR_ON(left_shift == nullptr);
101 ARM_COMPUTE_RETURN_ERROR_ON(multiplier < 1.f);
102
103 int shift_exp = 0;
104 const double q = std::frexp(multiplier, &shift_exp);
105 *left_shift = shift_exp;
106 auto q_fixed = static_cast<int64_t>(support::cpp11::round(q * fixed_point_one_Q0));
107 ARM_COMPUTE_RETURN_ERROR_ON(q_fixed > fixed_point_one_Q0);
108 if(q_fixed == fixed_point_one_Q0)
109 {
110 q_fixed /= 2;
111 ++*left_shift;
112 }
113 ARM_COMPUTE_RETURN_ERROR_ON(*left_shift < 0);
114 ARM_COMPUTE_RETURN_ERROR_ON(q_fixed > std::numeric_limits<int32_t>::max());
115 *quantized_multiplier = static_cast<int32_t>(q_fixed);
116
117 return Status{};
118 }
119
calculate_quantized_multipliers(const QuantizationInfo & iq_info,const QuantizationInfo & wq_info,const QuantizationInfo & oq_info,GEMMLowpOutputStageInfo & stage_info)120 arm_compute::Status calculate_quantized_multipliers(const QuantizationInfo &iq_info,
121 const QuantizationInfo &wq_info,
122 const QuantizationInfo &oq_info,
123 GEMMLowpOutputStageInfo &stage_info)
124 {
125 ARM_COMPUTE_RETURN_ERROR_ON(iq_info.scale().empty());
126 ARM_COMPUTE_RETURN_ERROR_ON(wq_info.scale().empty());
127 ARM_COMPUTE_RETURN_ERROR_ON(oq_info.scale().empty());
128
129 const unsigned int size = wq_info.scale().size();
130
131 auto &quant_multipliers = stage_info.gemmlowp_multipliers;
132 auto &quant_shifts = stage_info.gemmlowp_shifts;
133 quant_multipliers.resize(size);
134 quant_shifts.resize(size);
135
136 const auto &w_scales = wq_info.scale();
137 const float i_scale = iq_info.scale().at(0);
138 const float o_scale = oq_info.scale().at(0);
139
140 for(unsigned int i = 0; i < size; ++i)
141 {
142 const float multiplier = i_scale * w_scales[i] / o_scale;
143 int32_t quant_multiplier = 0;
144 int32_t quant_shift = 0;
145 ARM_COMPUTE_RETURN_ON_ERROR(calculate_quantized_multiplier(multiplier, &quant_multiplier, &quant_shift));
146 quant_multipliers[i] = quant_multiplier;
147 quant_shifts[i] = quant_shift;
148 }
149
150 // Legacy part
151 stage_info.gemmlowp_shift = quant_shifts[0];
152 stage_info.gemmlowp_multiplier = quant_multipliers[0];
153
154 return Status{};
155 }
156
get_min_max_values_from_quantized_data_type(DataType data_type)157 std::pair<int, int> get_min_max_values_from_quantized_data_type(DataType data_type)
158 {
159 int min_quant_val = 0;
160 int max_quant_val = 0;
161 switch(data_type)
162 {
163 case DataType::QASYMM8:
164 min_quant_val = std::numeric_limits<uint8_t>::min();
165 max_quant_val = std::numeric_limits<uint8_t>::max();
166 break;
167 case DataType::QSYMM8:
168 case DataType::QASYMM8_SIGNED:
169 min_quant_val = std::numeric_limits<int8_t>::min();
170 max_quant_val = std::numeric_limits<int8_t>::max();
171 break;
172 case DataType::QASYMM16:
173 min_quant_val = std::numeric_limits<uint16_t>::min();
174 max_quant_val = std::numeric_limits<uint16_t>::max();
175 break;
176 case DataType::QSYMM16:
177 min_quant_val = std::numeric_limits<int16_t>::min();
178 max_quant_val = std::numeric_limits<int16_t>::max();
179 break;
180 default:
181 ARM_COMPUTE_ERROR("Unsupported data type");
182 }
183 return std::make_pair(min_quant_val, max_quant_val);
184 }
compute_quantized_multipliers_and_shifts(const ITensorInfo * input,const ITensorInfo * weights,const ITensorInfo * output,unsigned int idx_ofms,int32_t * output_multipliers_ptr,int32_t * output_shifts_ptr)185 void compute_quantized_multipliers_and_shifts(const ITensorInfo *input,
186 const ITensorInfo *weights,
187 const ITensorInfo *output,
188 unsigned int idx_ofms,
189 int32_t *output_multipliers_ptr,
190 int32_t *output_shifts_ptr)
191 {
192 const unsigned int num_filters = is_data_type_quantized_per_channel(weights->data_type()) ? weights->dimension(idx_ofms) : 1;
193
194 const UniformQuantizationInfo iq_info = input->quantization_info().uniform();
195 const QuantizationInfo wq_info = weights->quantization_info();
196 const UniformQuantizationInfo oq_info = output->quantization_info().uniform();
197
198 for(unsigned int i = 0; i < num_filters; ++i)
199 {
200 int32_t output_multiplier = 0;
201 int32_t output_shift = 0;
202 const float multiplier = iq_info.scale * wq_info.scale()[i] / oq_info.scale;
203 calculate_quantized_multiplier(multiplier, &output_multiplier, &output_shift);
204
205 output_multipliers_ptr[i] = output_multiplier;
206 output_shifts_ptr[i] = output_shift;
207 }
208 }
209
saturating_rounding_doubling_highmul(int32_t a,int32_t b)210 int32_t saturating_rounding_doubling_highmul(int32_t a, int32_t b)
211 {
212 bool overflow = a == b && a == std::numeric_limits<int32_t>::min();
213 int64_t a_64(a);
214 int64_t b_64(b);
215 int64_t ab_64 = a_64 * b_64;
216 bool is_positive_or_zero = a == 0 || b == 0 || (std::signbit(a) == std::signbit(b));
217 int32_t nudge = is_positive_or_zero ? (1 << 30) : (1 - (1 << 30));
218 int32_t ab_x2_high32 = static_cast<int32_t>((ab_64 + nudge) / (1ll << 31));
219 return overflow ? std::numeric_limits<int32_t>::max() : ab_x2_high32;
220 }
221
rounding_divide_by_pow2(int32_t x,int exponent)222 inline int32_t rounding_divide_by_pow2(int32_t x, int exponent)
223 {
224 const int32_t mask = (1 << exponent) - 1;
225 const int32_t threshold = (mask >> 1) + (x < 0 ? 1 : 0);
226 return (x >> exponent) + ((x & mask) > threshold ? 1 : 0);
227 }
228
multiply_by_quantized_multiplier(int32_t input,int32_t qmul,int32_t shift)229 int32_t multiply_by_quantized_multiplier(int32_t input, int32_t qmul, int32_t shift)
230 {
231 const auto left_shift = shift > 0 ? shift : 0;
232 const auto right_shift = shift > 0 ? 0 : -shift;
233 return rounding_divide_by_pow2(saturating_rounding_doubling_highmul(input * (1 << left_shift), qmul), right_shift);
234 }
235
saturating_rounding_multiply_by_pow2(int32_t exponent,int32_t v)236 int32_t saturating_rounding_multiply_by_pow2(int32_t exponent, int32_t v)
237 {
238 if(exponent == 0)
239 {
240 return v;
241 }
242 else if(exponent < 0)
243 {
244 return rounding_divide_by_pow2(v, -exponent);
245 }
246 else
247 {
248 constexpr auto min = std::numeric_limits<int32_t>::min();
249 constexpr auto max = std::numeric_limits<int32_t>::max();
250 const auto width = sizeof(int32_t) * 8;
251
252 const int32_t threshold = ((1 << (width - 1 - exponent)) - 1);
253 bool pos_mask = v > threshold;
254 bool neg_mask = v < -threshold;
255 int32_t result = v << exponent;
256 result = pos_mask ? max : result;
257 result = neg_mask ? min : result;
258 return result;
259 }
260 }
261
get_invsqrt_quantized_multiplier_exp(int32_t input,int32_t reverse_shift,int32_t & output_inv_sqrt,int32_t & output_shift)262 void get_invsqrt_quantized_multiplier_exp(int32_t input, int32_t reverse_shift, int32_t &output_inv_sqrt, int32_t &output_shift)
263 {
264 ARM_COMPUTE_ERROR_ON(input < 0);
265
266 if(input <= 1)
267 {
268 // dealing the inputs (0 and 1) separately to avoid overflow
269 output_inv_sqrt = std::numeric_limits<std::int32_t>::max();
270 output_shift = 0;
271 return;
272 }
273
274 // prepare input for fixed point operation and compute shift value
275 output_shift = 11;
276 while(input >= (1 << 29))
277 {
278 input /= 4;
279 ++output_shift;
280 }
281
282 const uint32_t max_left_shift_bits = __builtin_clz(static_cast<uint32_t>(input)) - 1;
283 const uint32_t max_left_shift_bits_pairs = max_left_shift_bits / 2;
284 const uint32_t left_shift_bit_pairs = max_left_shift_bits_pairs - 1;
285 output_shift -= left_shift_bit_pairs;
286 input <<= 2 * left_shift_bit_pairs;
287
288 // Calculation in fixed point domain with 3 integer bits.
289 using FixedPointRawType = int32_t;
290 constexpr uint32_t fixedpoint_position = 3;
291 constexpr uint32_t fixedpoint_int_position = sizeof(FixedPointRawType) * 8 - 1 - fixedpoint_position;
292 using FixedPoint3 = FixedPointRawType;
293 using FixedPoint0 = FixedPointRawType;
294
295 // fixed point representation of input divided by 2 and 1.5 for Newton-Raphson iteration
296 const FixedPoint3 fixedpoint_input = (input >> 1);
297 const FixedPoint3 fixedpoint_half_input = rounding_divide_by_pow2(fixedpoint_input, 1);
298 const FixedPoint3 fixedpoint_half_three = (0x1 << fixedpoint_int_position) + (0x1 << (fixedpoint_int_position - 1));
299
300 // initial guess (1) in fixed point representation
301 FixedPoint3 x = 0x1 << fixedpoint_int_position;
302
303 // multiplication of two fixed point numbers, defined for readability
304 auto fixed_point_mul = [](FixedPointRawType a, FixedPointRawType b) -> FixedPointRawType
305 {
306 return saturating_rounding_doubling_highmul(a, b);
307 };
308
309 // rescaling of fixed point to have dst_bit integer bits, defined for readability
310 auto fixed_point_rescale = [](FixedPointRawType a, uint32_t src_bit, uint32_t dst_bit) -> FixedPointRawType
311 {
312 const uint32_t exponent = src_bit - dst_bit;
313 return saturating_rounding_multiply_by_pow2(exponent, a);
314 };
315
316 // 5 iterations of Newton-Raphson method for inverse square root - 1.5 * x_n = input/2 * (x_n)^3
317 constexpr int32_t num_iteration = 5;
318 for(int32_t i = 0; i < num_iteration; ++i)
319 {
320 const auto x3 = fixed_point_rescale(fixed_point_mul(fixed_point_mul(x, x), x), 9, fixedpoint_position);
321 x = fixed_point_rescale(fixed_point_mul(fixedpoint_half_three, x) - fixed_point_mul(fixedpoint_half_input, x3), 6, fixedpoint_position);
322 }
323
324 // fixed point representation of sqrt(1/2)
325 const FixedPoint0 fixedpoint_half_sqrt_2 = 1518500250;
326 x = fixed_point_mul(fixedpoint_half_sqrt_2, x);
327 output_inv_sqrt = x;
328 if(output_shift < 0)
329 {
330 output_inv_sqrt <<= -output_shift;
331 output_shift = 0;
332 }
333 // convert right shift to left shift
334 output_shift *= reverse_shift;
335 }
336 } // quantization
337 } // arm_compute
338