• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2017-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/core/utils/quantization/AsymmHelpers.h"
25 #include "arm_compute/core/Helpers.h"
26 #include "support/ToolchainSupport.h"
27 
28 #include <cmath>
29 #include <limits>
30 #include <numeric>
31 
32 namespace arm_compute
33 {
34 namespace quantization
35 {
36 constexpr int64_t fixed_point_one_Q0 = (1LL << 31);
37 constexpr float   epsilon            = 0.00001f;
38 
calculate_quantized_multiplier(float multiplier,int32_t * quant_multiplier,int32_t * shift,bool ignore_epsilon)39 Status calculate_quantized_multiplier(float multiplier, int32_t *quant_multiplier, int32_t *shift, bool ignore_epsilon)
40 {
41     if(multiplier >= 1.f)
42     {
43         Status status = calculate_quantized_multiplier_greater_than_one(multiplier, quant_multiplier, shift);
44         *shift *= -1;
45         return status;
46     }
47     else
48     {
49         return calculate_quantized_multiplier_less_than_one(multiplier, quant_multiplier, shift, ignore_epsilon);
50     }
51 }
52 
calculate_quantized_multiplier_less_than_one(float multiplier,int32_t * quant_multiplier,int32_t * right_shift,bool ignore_epsilon)53 Status calculate_quantized_multiplier_less_than_one(float    multiplier,
54                                                     int32_t *quant_multiplier,
55                                                     int32_t *right_shift,
56                                                     bool     ignore_epsilon)
57 {
58     const float internal_epsilon = ignore_epsilon ? 0.0f : epsilon;
59 
60     ARM_COMPUTE_RETURN_ERROR_ON(quant_multiplier == nullptr);
61     ARM_COMPUTE_RETURN_ERROR_ON(right_shift == nullptr);
62     ARM_COMPUTE_RETURN_ERROR_ON(multiplier < -internal_epsilon);
63     ARM_COMPUTE_RETURN_ERROR_ON(multiplier > 1.0f + internal_epsilon);
64     if(std::fabs(0.0f - multiplier) < internal_epsilon)
65     {
66         *quant_multiplier = 0;
67         *right_shift      = 0;
68         return Status{};
69     }
70 
71     int          shift_exp = 0;
72     const double q         = std::frexp(multiplier, &shift_exp);
73     *right_shift           = -1 * shift_exp;
74     auto q_fixed           = static_cast<int64_t>(support::cpp11::round(q * fixed_point_one_Q0));
75     ARM_COMPUTE_RETURN_ERROR_ON(q_fixed > fixed_point_one_Q0);
76     if(q_fixed == fixed_point_one_Q0)
77     {
78         q_fixed /= 2;
79         --*right_shift;
80     }
81 
82     if(ignore_epsilon && *right_shift > 31)
83     {
84         *right_shift = 0;
85         q_fixed      = 0;
86     }
87 
88     ARM_COMPUTE_RETURN_ERROR_ON(*right_shift < 0);
89     ARM_COMPUTE_RETURN_ERROR_ON(q_fixed > std::numeric_limits<int32_t>::max());
90     *quant_multiplier = static_cast<int32_t>(q_fixed);
91 
92     return Status{};
93 }
94 
calculate_quantized_multiplier_greater_than_one(float multiplier,int32_t * quantized_multiplier,int32_t * left_shift)95 Status calculate_quantized_multiplier_greater_than_one(float    multiplier,
96                                                        int32_t *quantized_multiplier,
97                                                        int32_t *left_shift)
98 {
99     ARM_COMPUTE_RETURN_ERROR_ON(quantized_multiplier == nullptr);
100     ARM_COMPUTE_RETURN_ERROR_ON(left_shift == nullptr);
101     ARM_COMPUTE_RETURN_ERROR_ON(multiplier < 1.f);
102 
103     int          shift_exp = 0;
104     const double q         = std::frexp(multiplier, &shift_exp);
105     *left_shift            = shift_exp;
106     auto q_fixed           = static_cast<int64_t>(support::cpp11::round(q * fixed_point_one_Q0));
107     ARM_COMPUTE_RETURN_ERROR_ON(q_fixed > fixed_point_one_Q0);
108     if(q_fixed == fixed_point_one_Q0)
109     {
110         q_fixed /= 2;
111         ++*left_shift;
112     }
113     ARM_COMPUTE_RETURN_ERROR_ON(*left_shift < 0);
114     ARM_COMPUTE_RETURN_ERROR_ON(q_fixed > std::numeric_limits<int32_t>::max());
115     *quantized_multiplier = static_cast<int32_t>(q_fixed);
116 
117     return Status{};
118 }
119 
calculate_quantized_multipliers(const QuantizationInfo & iq_info,const QuantizationInfo & wq_info,const QuantizationInfo & oq_info,GEMMLowpOutputStageInfo & stage_info)120 arm_compute::Status calculate_quantized_multipliers(const QuantizationInfo &iq_info,
121                                                     const QuantizationInfo &wq_info,
122                                                     const QuantizationInfo &oq_info,
123                                                     GEMMLowpOutputStageInfo &stage_info)
124 {
125     ARM_COMPUTE_RETURN_ERROR_ON(iq_info.scale().empty());
126     ARM_COMPUTE_RETURN_ERROR_ON(wq_info.scale().empty());
127     ARM_COMPUTE_RETURN_ERROR_ON(oq_info.scale().empty());
128 
129     const unsigned int size = wq_info.scale().size();
130 
131     auto &quant_multipliers = stage_info.gemmlowp_multipliers;
132     auto &quant_shifts      = stage_info.gemmlowp_shifts;
133     quant_multipliers.resize(size);
134     quant_shifts.resize(size);
135 
136     const auto &w_scales = wq_info.scale();
137     const float i_scale  = iq_info.scale().at(0);
138     const float o_scale  = oq_info.scale().at(0);
139 
140     for(unsigned int i = 0; i < size; ++i)
141     {
142         const float multiplier       = i_scale * w_scales[i] / o_scale;
143         int32_t     quant_multiplier = 0;
144         int32_t     quant_shift      = 0;
145         ARM_COMPUTE_RETURN_ON_ERROR(calculate_quantized_multiplier(multiplier, &quant_multiplier, &quant_shift));
146         quant_multipliers[i] = quant_multiplier;
147         quant_shifts[i]      = quant_shift;
148     }
149 
150     // Legacy part
151     stage_info.gemmlowp_shift      = quant_shifts[0];
152     stage_info.gemmlowp_multiplier = quant_multipliers[0];
153 
154     return Status{};
155 }
156 
get_min_max_values_from_quantized_data_type(DataType data_type)157 std::pair<int, int> get_min_max_values_from_quantized_data_type(DataType data_type)
158 {
159     int min_quant_val = 0;
160     int max_quant_val = 0;
161     switch(data_type)
162     {
163         case DataType::QASYMM8:
164             min_quant_val = std::numeric_limits<uint8_t>::min();
165             max_quant_val = std::numeric_limits<uint8_t>::max();
166             break;
167         case DataType::QSYMM8:
168         case DataType::QASYMM8_SIGNED:
169             min_quant_val = std::numeric_limits<int8_t>::min();
170             max_quant_val = std::numeric_limits<int8_t>::max();
171             break;
172         case DataType::QASYMM16:
173             min_quant_val = std::numeric_limits<uint16_t>::min();
174             max_quant_val = std::numeric_limits<uint16_t>::max();
175             break;
176         case DataType::QSYMM16:
177             min_quant_val = std::numeric_limits<int16_t>::min();
178             max_quant_val = std::numeric_limits<int16_t>::max();
179             break;
180         default:
181             ARM_COMPUTE_ERROR("Unsupported data type");
182     }
183     return std::make_pair(min_quant_val, max_quant_val);
184 }
compute_quantized_multipliers_and_shifts(const ITensorInfo * input,const ITensorInfo * weights,const ITensorInfo * output,unsigned int idx_ofms,int32_t * output_multipliers_ptr,int32_t * output_shifts_ptr)185 void compute_quantized_multipliers_and_shifts(const ITensorInfo *input,
186                                               const ITensorInfo *weights,
187                                               const ITensorInfo *output,
188                                               unsigned int       idx_ofms,
189                                               int32_t           *output_multipliers_ptr,
190                                               int32_t           *output_shifts_ptr)
191 {
192     const unsigned int num_filters = is_data_type_quantized_per_channel(weights->data_type()) ? weights->dimension(idx_ofms) : 1;
193 
194     const UniformQuantizationInfo iq_info = input->quantization_info().uniform();
195     const QuantizationInfo        wq_info = weights->quantization_info();
196     const UniformQuantizationInfo oq_info = output->quantization_info().uniform();
197 
198     for(unsigned int i = 0; i < num_filters; ++i)
199     {
200         int32_t     output_multiplier = 0;
201         int32_t     output_shift      = 0;
202         const float multiplier        = iq_info.scale * wq_info.scale()[i] / oq_info.scale;
203         calculate_quantized_multiplier(multiplier, &output_multiplier, &output_shift);
204 
205         output_multipliers_ptr[i] = output_multiplier;
206         output_shifts_ptr[i]      = output_shift;
207     }
208 }
209 
saturating_rounding_doubling_highmul(int32_t a,int32_t b)210 int32_t saturating_rounding_doubling_highmul(int32_t a, int32_t b)
211 {
212     bool    overflow = a == b && a == std::numeric_limits<int32_t>::min();
213     int64_t a_64(a);
214     int64_t b_64(b);
215     int64_t ab_64               = a_64 * b_64;
216     bool    is_positive_or_zero = a == 0 || b == 0 || (std::signbit(a) == std::signbit(b));
217     int32_t nudge               = is_positive_or_zero ? (1 << 30) : (1 - (1 << 30));
218     int32_t ab_x2_high32        = static_cast<int32_t>((ab_64 + nudge) / (1ll << 31));
219     return overflow ? std::numeric_limits<int32_t>::max() : ab_x2_high32;
220 }
221 
rounding_divide_by_pow2(int32_t x,int exponent)222 inline int32_t rounding_divide_by_pow2(int32_t x, int exponent)
223 {
224     const int32_t mask      = (1 << exponent) - 1;
225     const int32_t threshold = (mask >> 1) + (x < 0 ? 1 : 0);
226     return (x >> exponent) + ((x & mask) > threshold ? 1 : 0);
227 }
228 
multiply_by_quantized_multiplier(int32_t input,int32_t qmul,int32_t shift)229 int32_t multiply_by_quantized_multiplier(int32_t input, int32_t qmul, int32_t shift)
230 {
231     const auto left_shift  = shift > 0 ? shift : 0;
232     const auto right_shift = shift > 0 ? 0 : -shift;
233     return rounding_divide_by_pow2(saturating_rounding_doubling_highmul(input * (1 << left_shift), qmul), right_shift);
234 }
235 
saturating_rounding_multiply_by_pow2(int32_t exponent,int32_t v)236 int32_t saturating_rounding_multiply_by_pow2(int32_t exponent, int32_t v)
237 {
238     if(exponent == 0)
239     {
240         return v;
241     }
242     else if(exponent < 0)
243     {
244         return rounding_divide_by_pow2(v, -exponent);
245     }
246     else
247     {
248         constexpr auto min   = std::numeric_limits<int32_t>::min();
249         constexpr auto max   = std::numeric_limits<int32_t>::max();
250         const auto     width = sizeof(int32_t) * 8;
251 
252         const int32_t threshold = ((1 << (width - 1 - exponent)) - 1);
253         bool          pos_mask  = v > threshold;
254         bool          neg_mask  = v < -threshold;
255         int32_t       result    = v << exponent;
256         result                  = pos_mask ? max : result;
257         result                  = neg_mask ? min : result;
258         return result;
259     }
260 }
261 
get_invsqrt_quantized_multiplier_exp(int32_t input,int32_t reverse_shift,int32_t & output_inv_sqrt,int32_t & output_shift)262 void get_invsqrt_quantized_multiplier_exp(int32_t input, int32_t reverse_shift, int32_t &output_inv_sqrt, int32_t &output_shift)
263 {
264     ARM_COMPUTE_ERROR_ON(input < 0);
265 
266     if(input <= 1)
267     {
268         // dealing the inputs (0 and 1) separately to avoid overflow
269         output_inv_sqrt = std::numeric_limits<std::int32_t>::max();
270         output_shift    = 0;
271         return;
272     }
273 
274     // prepare input for fixed point operation and compute shift value
275     output_shift = 11;
276     while(input >= (1 << 29))
277     {
278         input /= 4;
279         ++output_shift;
280     }
281 
282     const uint32_t max_left_shift_bits       = __builtin_clz(static_cast<uint32_t>(input)) - 1;
283     const uint32_t max_left_shift_bits_pairs = max_left_shift_bits / 2;
284     const uint32_t left_shift_bit_pairs      = max_left_shift_bits_pairs - 1;
285     output_shift -= left_shift_bit_pairs;
286     input <<= 2 * left_shift_bit_pairs;
287 
288     // Calculation in fixed point domain with 3 integer bits.
289     using FixedPointRawType                    = int32_t;
290     constexpr uint32_t fixedpoint_position     = 3;
291     constexpr uint32_t fixedpoint_int_position = sizeof(FixedPointRawType) * 8 - 1 - fixedpoint_position;
292     using FixedPoint3                          = FixedPointRawType;
293     using FixedPoint0                          = FixedPointRawType;
294 
295     // fixed point representation of input divided by 2 and 1.5 for Newton-Raphson iteration
296     const FixedPoint3 fixedpoint_input      = (input >> 1);
297     const FixedPoint3 fixedpoint_half_input = rounding_divide_by_pow2(fixedpoint_input, 1);
298     const FixedPoint3 fixedpoint_half_three = (0x1 << fixedpoint_int_position) + (0x1 << (fixedpoint_int_position - 1));
299 
300     // initial guess (1) in fixed point representation
301     FixedPoint3 x = 0x1 << fixedpoint_int_position;
302 
303     // multiplication of two fixed point numbers, defined for readability
304     auto fixed_point_mul = [](FixedPointRawType a, FixedPointRawType b) -> FixedPointRawType
305     {
306         return saturating_rounding_doubling_highmul(a, b);
307     };
308 
309     // rescaling of fixed point to have dst_bit integer bits, defined for readability
310     auto fixed_point_rescale = [](FixedPointRawType a, uint32_t src_bit, uint32_t dst_bit) -> FixedPointRawType
311     {
312         const uint32_t exponent = src_bit - dst_bit;
313         return saturating_rounding_multiply_by_pow2(exponent, a);
314     };
315 
316     // 5 iterations of Newton-Raphson method for inverse square root - 1.5 * x_n = input/2 * (x_n)^3
317     constexpr int32_t num_iteration = 5;
318     for(int32_t i = 0; i < num_iteration; ++i)
319     {
320         const auto x3 = fixed_point_rescale(fixed_point_mul(fixed_point_mul(x, x), x), 9, fixedpoint_position);
321         x             = fixed_point_rescale(fixed_point_mul(fixedpoint_half_three, x) - fixed_point_mul(fixedpoint_half_input, x3), 6, fixedpoint_position);
322     }
323 
324     // fixed point representation of sqrt(1/2)
325     const FixedPoint0 fixedpoint_half_sqrt_2 = 1518500250;
326     x                                        = fixed_point_mul(fixedpoint_half_sqrt_2, x);
327     output_inv_sqrt                          = x;
328     if(output_shift < 0)
329     {
330         output_inv_sqrt <<= -output_shift;
331         output_shift = 0;
332     }
333     // convert right shift to left shift
334     output_shift *= reverse_shift;
335 }
336 } // quantization
337 } // arm_compute
338