• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2014 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // SSE2 variant of methods for lossless decoder
11 //
12 // Author: Skal (pascal.massimino@gmail.com)
13 
14 #include "src/dsp/dsp.h"
15 
16 #if defined(WEBP_USE_SSE2)
17 
18 #include "src/dsp/common_sse2.h"
19 #include "src/dsp/lossless.h"
20 #include "src/dsp/lossless_common.h"
21 #include <emmintrin.h>
22 
23 //------------------------------------------------------------------------------
24 // Predictor Transform
25 
ClampedAddSubtractFull_SSE2(uint32_t c0,uint32_t c1,uint32_t c2)26 static WEBP_INLINE uint32_t ClampedAddSubtractFull_SSE2(uint32_t c0,
27                                                         uint32_t c1,
28                                                         uint32_t c2) {
29   const __m128i zero = _mm_setzero_si128();
30   const __m128i C0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c0), zero);
31   const __m128i C1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c1), zero);
32   const __m128i C2 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c2), zero);
33   const __m128i V1 = _mm_add_epi16(C0, C1);
34   const __m128i V2 = _mm_sub_epi16(V1, C2);
35   const __m128i b = _mm_packus_epi16(V2, V2);
36   const uint32_t output = _mm_cvtsi128_si32(b);
37   return output;
38 }
39 
ClampedAddSubtractHalf_SSE2(uint32_t c0,uint32_t c1,uint32_t c2)40 static WEBP_INLINE uint32_t ClampedAddSubtractHalf_SSE2(uint32_t c0,
41                                                         uint32_t c1,
42                                                         uint32_t c2) {
43   const __m128i zero = _mm_setzero_si128();
44   const __m128i C0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c0), zero);
45   const __m128i C1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c1), zero);
46   const __m128i B0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c2), zero);
47   const __m128i avg = _mm_add_epi16(C1, C0);
48   const __m128i A0 = _mm_srli_epi16(avg, 1);
49   const __m128i A1 = _mm_sub_epi16(A0, B0);
50   const __m128i BgtA = _mm_cmpgt_epi16(B0, A0);
51   const __m128i A2 = _mm_sub_epi16(A1, BgtA);
52   const __m128i A3 = _mm_srai_epi16(A2, 1);
53   const __m128i A4 = _mm_add_epi16(A0, A3);
54   const __m128i A5 = _mm_packus_epi16(A4, A4);
55   const uint32_t output = _mm_cvtsi128_si32(A5);
56   return output;
57 }
58 
Select_SSE2(uint32_t a,uint32_t b,uint32_t c)59 static WEBP_INLINE uint32_t Select_SSE2(uint32_t a, uint32_t b, uint32_t c) {
60   int pa_minus_pb;
61   const __m128i zero = _mm_setzero_si128();
62   const __m128i A0 = _mm_cvtsi32_si128(a);
63   const __m128i B0 = _mm_cvtsi32_si128(b);
64   const __m128i C0 = _mm_cvtsi32_si128(c);
65   const __m128i AC0 = _mm_subs_epu8(A0, C0);
66   const __m128i CA0 = _mm_subs_epu8(C0, A0);
67   const __m128i BC0 = _mm_subs_epu8(B0, C0);
68   const __m128i CB0 = _mm_subs_epu8(C0, B0);
69   const __m128i AC = _mm_or_si128(AC0, CA0);
70   const __m128i BC = _mm_or_si128(BC0, CB0);
71   const __m128i pa = _mm_unpacklo_epi8(AC, zero);  // |a - c|
72   const __m128i pb = _mm_unpacklo_epi8(BC, zero);  // |b - c|
73   const __m128i diff = _mm_sub_epi16(pb, pa);
74   {
75     int16_t out[8];
76     _mm_storeu_si128((__m128i*)out, diff);
77     pa_minus_pb = out[0] + out[1] + out[2] + out[3];
78   }
79   return (pa_minus_pb <= 0) ? a : b;
80 }
81 
Average2_m128i(const __m128i * const a0,const __m128i * const a1,__m128i * const avg)82 static WEBP_INLINE void Average2_m128i(const __m128i* const a0,
83                                        const __m128i* const a1,
84                                        __m128i* const avg) {
85   // (a + b) >> 1 = ((a + b + 1) >> 1) - ((a ^ b) & 1)
86   const __m128i ones = _mm_set1_epi8(1);
87   const __m128i avg1 = _mm_avg_epu8(*a0, *a1);
88   const __m128i one = _mm_and_si128(_mm_xor_si128(*a0, *a1), ones);
89   *avg = _mm_sub_epi8(avg1, one);
90 }
91 
Average2_uint32_SSE2(const uint32_t a0,const uint32_t a1,__m128i * const avg)92 static WEBP_INLINE void Average2_uint32_SSE2(const uint32_t a0,
93                                              const uint32_t a1,
94                                              __m128i* const avg) {
95   // (a + b) >> 1 = ((a + b + 1) >> 1) - ((a ^ b) & 1)
96   const __m128i ones = _mm_set1_epi8(1);
97   const __m128i A0 = _mm_cvtsi32_si128(a0);
98   const __m128i A1 = _mm_cvtsi32_si128(a1);
99   const __m128i avg1 = _mm_avg_epu8(A0, A1);
100   const __m128i one = _mm_and_si128(_mm_xor_si128(A0, A1), ones);
101   *avg = _mm_sub_epi8(avg1, one);
102 }
103 
Average2_uint32_16_SSE2(uint32_t a0,uint32_t a1)104 static WEBP_INLINE __m128i Average2_uint32_16_SSE2(uint32_t a0, uint32_t a1) {
105   const __m128i zero = _mm_setzero_si128();
106   const __m128i A0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(a0), zero);
107   const __m128i A1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(a1), zero);
108   const __m128i sum = _mm_add_epi16(A1, A0);
109   return _mm_srli_epi16(sum, 1);
110 }
111 
Average2_SSE2(uint32_t a0,uint32_t a1)112 static WEBP_INLINE uint32_t Average2_SSE2(uint32_t a0, uint32_t a1) {
113   __m128i output;
114   Average2_uint32_SSE2(a0, a1, &output);
115   return _mm_cvtsi128_si32(output);
116 }
117 
Average3_SSE2(uint32_t a0,uint32_t a1,uint32_t a2)118 static WEBP_INLINE uint32_t Average3_SSE2(uint32_t a0, uint32_t a1,
119                                           uint32_t a2) {
120   const __m128i zero = _mm_setzero_si128();
121   const __m128i avg1 = Average2_uint32_16_SSE2(a0, a2);
122   const __m128i A1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(a1), zero);
123   const __m128i sum = _mm_add_epi16(avg1, A1);
124   const __m128i avg2 = _mm_srli_epi16(sum, 1);
125   const __m128i A2 = _mm_packus_epi16(avg2, avg2);
126   const uint32_t output = _mm_cvtsi128_si32(A2);
127   return output;
128 }
129 
Average4_SSE2(uint32_t a0,uint32_t a1,uint32_t a2,uint32_t a3)130 static WEBP_INLINE uint32_t Average4_SSE2(uint32_t a0, uint32_t a1,
131                                           uint32_t a2, uint32_t a3) {
132   const __m128i avg1 = Average2_uint32_16_SSE2(a0, a1);
133   const __m128i avg2 = Average2_uint32_16_SSE2(a2, a3);
134   const __m128i sum = _mm_add_epi16(avg2, avg1);
135   const __m128i avg3 = _mm_srli_epi16(sum, 1);
136   const __m128i A0 = _mm_packus_epi16(avg3, avg3);
137   const uint32_t output = _mm_cvtsi128_si32(A0);
138   return output;
139 }
140 
Predictor5_SSE2(const uint32_t * const left,const uint32_t * const top)141 static uint32_t Predictor5_SSE2(const uint32_t* const left,
142                                 const uint32_t* const top) {
143   const uint32_t pred = Average3_SSE2(*left, top[0], top[1]);
144   return pred;
145 }
Predictor6_SSE2(const uint32_t * const left,const uint32_t * const top)146 static uint32_t Predictor6_SSE2(const uint32_t* const left,
147                                 const uint32_t* const top) {
148   const uint32_t pred = Average2_SSE2(*left, top[-1]);
149   return pred;
150 }
Predictor7_SSE2(const uint32_t * const left,const uint32_t * const top)151 static uint32_t Predictor7_SSE2(const uint32_t* const left,
152                                 const uint32_t* const top) {
153   const uint32_t pred = Average2_SSE2(*left, top[0]);
154   return pred;
155 }
Predictor8_SSE2(const uint32_t * const left,const uint32_t * const top)156 static uint32_t Predictor8_SSE2(const uint32_t* const left,
157                                 const uint32_t* const top) {
158   const uint32_t pred = Average2_SSE2(top[-1], top[0]);
159   (void)left;
160   return pred;
161 }
Predictor9_SSE2(const uint32_t * const left,const uint32_t * const top)162 static uint32_t Predictor9_SSE2(const uint32_t* const left,
163                                 const uint32_t* const top) {
164   const uint32_t pred = Average2_SSE2(top[0], top[1]);
165   (void)left;
166   return pred;
167 }
Predictor10_SSE2(const uint32_t * const left,const uint32_t * const top)168 static uint32_t Predictor10_SSE2(const uint32_t* const left,
169                                  const uint32_t* const top) {
170   const uint32_t pred = Average4_SSE2(*left, top[-1], top[0], top[1]);
171   return pred;
172 }
Predictor11_SSE2(const uint32_t * const left,const uint32_t * const top)173 static uint32_t Predictor11_SSE2(const uint32_t* const left,
174                                  const uint32_t* const top) {
175   const uint32_t pred = Select_SSE2(top[0], *left, top[-1]);
176   return pred;
177 }
Predictor12_SSE2(const uint32_t * const left,const uint32_t * const top)178 static uint32_t Predictor12_SSE2(const uint32_t* const left,
179                                  const uint32_t* const top) {
180   const uint32_t pred = ClampedAddSubtractFull_SSE2(*left, top[0], top[-1]);
181   return pred;
182 }
Predictor13_SSE2(const uint32_t * const left,const uint32_t * const top)183 static uint32_t Predictor13_SSE2(const uint32_t* const left,
184                                  const uint32_t* const top) {
185   const uint32_t pred = ClampedAddSubtractHalf_SSE2(*left, top[0], top[-1]);
186   return pred;
187 }
188 
189 // Batch versions of those functions.
190 
191 // Predictor0: ARGB_BLACK.
PredictorAdd0_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * out)192 static void PredictorAdd0_SSE2(const uint32_t* in, const uint32_t* upper,
193                                int num_pixels, uint32_t* out) {
194   int i;
195   const __m128i black = _mm_set1_epi32(ARGB_BLACK);
196   for (i = 0; i + 4 <= num_pixels; i += 4) {
197     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
198     const __m128i res = _mm_add_epi8(src, black);
199     _mm_storeu_si128((__m128i*)&out[i], res);
200   }
201   if (i != num_pixels) {
202     VP8LPredictorsAdd_C[0](in + i, NULL, num_pixels - i, out + i);
203   }
204   (void)upper;
205 }
206 
207 // Predictor1: left.
PredictorAdd1_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * out)208 static void PredictorAdd1_SSE2(const uint32_t* in, const uint32_t* upper,
209                                int num_pixels, uint32_t* out) {
210   int i;
211   __m128i prev = _mm_set1_epi32(out[-1]);
212   for (i = 0; i + 4 <= num_pixels; i += 4) {
213     // a | b | c | d
214     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
215     // 0 | a | b | c
216     const __m128i shift0 = _mm_slli_si128(src, 4);
217     // a | a + b | b + c | c + d
218     const __m128i sum0 = _mm_add_epi8(src, shift0);
219     // 0 | 0 | a | a + b
220     const __m128i shift1 = _mm_slli_si128(sum0, 8);
221     // a | a + b | a + b + c | a + b + c + d
222     const __m128i sum1 = _mm_add_epi8(sum0, shift1);
223     const __m128i res = _mm_add_epi8(sum1, prev);
224     _mm_storeu_si128((__m128i*)&out[i], res);
225     // replicate prev output on the four lanes
226     prev = _mm_shuffle_epi32(res, (3 << 0) | (3 << 2) | (3 << 4) | (3 << 6));
227   }
228   if (i != num_pixels) {
229     VP8LPredictorsAdd_C[1](in + i, upper + i, num_pixels - i, out + i);
230   }
231 }
232 
233 // Macro that adds 32-bit integers from IN using mod 256 arithmetic
234 // per 8 bit channel.
235 #define GENERATE_PREDICTOR_1(X, IN)                                           \
236 static void PredictorAdd##X##_SSE2(const uint32_t* in, const uint32_t* upper, \
237                                   int num_pixels, uint32_t* out) {            \
238   int i;                                                                      \
239   for (i = 0; i + 4 <= num_pixels; i += 4) {                                  \
240     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);              \
241     const __m128i other = _mm_loadu_si128((const __m128i*)&(IN));             \
242     const __m128i res = _mm_add_epi8(src, other);                             \
243     _mm_storeu_si128((__m128i*)&out[i], res);                                 \
244   }                                                                           \
245   if (i != num_pixels) {                                                      \
246     VP8LPredictorsAdd_C[(X)](in + i, upper + i, num_pixels - i, out + i);     \
247   }                                                                           \
248 }
249 
250 // Predictor2: Top.
251 GENERATE_PREDICTOR_1(2, upper[i])
252 // Predictor3: Top-right.
253 GENERATE_PREDICTOR_1(3, upper[i + 1])
254 // Predictor4: Top-left.
255 GENERATE_PREDICTOR_1(4, upper[i - 1])
256 #undef GENERATE_PREDICTOR_1
257 
258 // Due to averages with integers, values cannot be accumulated in parallel for
259 // predictors 5 to 7.
GENERATE_PREDICTOR_ADD(Predictor5_SSE2,PredictorAdd5_SSE2)260 GENERATE_PREDICTOR_ADD(Predictor5_SSE2, PredictorAdd5_SSE2)
261 GENERATE_PREDICTOR_ADD(Predictor6_SSE2, PredictorAdd6_SSE2)
262 GENERATE_PREDICTOR_ADD(Predictor7_SSE2, PredictorAdd7_SSE2)
263 
264 #define GENERATE_PREDICTOR_2(X, IN)                                           \
265 static void PredictorAdd##X##_SSE2(const uint32_t* in, const uint32_t* upper, \
266                                    int num_pixels, uint32_t* out) {           \
267   int i;                                                                      \
268   for (i = 0; i + 4 <= num_pixels; i += 4) {                                  \
269     const __m128i Tother = _mm_loadu_si128((const __m128i*)&(IN));            \
270     const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);             \
271     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);              \
272     __m128i avg, res;                                                         \
273     Average2_m128i(&T, &Tother, &avg);                                        \
274     res = _mm_add_epi8(avg, src);                                             \
275     _mm_storeu_si128((__m128i*)&out[i], res);                                 \
276   }                                                                           \
277   if (i != num_pixels) {                                                      \
278     VP8LPredictorsAdd_C[(X)](in + i, upper + i, num_pixels - i, out + i);     \
279   }                                                                           \
280 }
281 // Predictor8: average TL T.
282 GENERATE_PREDICTOR_2(8, upper[i - 1])
283 // Predictor9: average T TR.
284 GENERATE_PREDICTOR_2(9, upper[i + 1])
285 #undef GENERATE_PREDICTOR_2
286 
287 // Predictor10: average of (average of (L,TL), average of (T, TR)).
288 #define DO_PRED10(OUT) do {               \
289   __m128i avgLTL, avg;                    \
290   Average2_m128i(&L, &TL, &avgLTL);       \
291   Average2_m128i(&avgTTR, &avgLTL, &avg); \
292   L = _mm_add_epi8(avg, src);             \
293   out[i + (OUT)] = _mm_cvtsi128_si32(L);  \
294 } while (0)
295 
296 #define DO_PRED10_SHIFT do {                                  \
297   /* Rotate the pre-computed values for the next iteration.*/ \
298   avgTTR = _mm_srli_si128(avgTTR, 4);                         \
299   TL = _mm_srli_si128(TL, 4);                                 \
300   src = _mm_srli_si128(src, 4);                               \
301 } while (0)
302 
303 static void PredictorAdd10_SSE2(const uint32_t* in, const uint32_t* upper,
304                                 int num_pixels, uint32_t* out) {
305   int i;
306   __m128i L = _mm_cvtsi32_si128(out[-1]);
307   for (i = 0; i + 4 <= num_pixels; i += 4) {
308     __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
309     __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
310     const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
311     const __m128i TR = _mm_loadu_si128((const __m128i*)&upper[i + 1]);
312     __m128i avgTTR;
313     Average2_m128i(&T, &TR, &avgTTR);
314     DO_PRED10(0);
315     DO_PRED10_SHIFT;
316     DO_PRED10(1);
317     DO_PRED10_SHIFT;
318     DO_PRED10(2);
319     DO_PRED10_SHIFT;
320     DO_PRED10(3);
321   }
322   if (i != num_pixels) {
323     VP8LPredictorsAdd_C[10](in + i, upper + i, num_pixels - i, out + i);
324   }
325 }
326 #undef DO_PRED10
327 #undef DO_PRED10_SHIFT
328 
329 // Predictor11: select.
330 #define DO_PRED11(OUT) do {                                            \
331   const __m128i L_lo = _mm_unpacklo_epi32(L, T);                       \
332   const __m128i TL_lo = _mm_unpacklo_epi32(TL, T);                     \
333   const __m128i pb = _mm_sad_epu8(L_lo, TL_lo); /* pb = sum |L-TL|*/   \
334   const __m128i mask = _mm_cmpgt_epi32(pb, pa);                        \
335   const __m128i A = _mm_and_si128(mask, L);                            \
336   const __m128i B = _mm_andnot_si128(mask, T);                         \
337   const __m128i pred = _mm_or_si128(A, B); /* pred = (pa > b)? L : T*/ \
338   L = _mm_add_epi8(src, pred);                                         \
339   out[i + (OUT)] = _mm_cvtsi128_si32(L);                               \
340 } while (0)
341 
342 #define DO_PRED11_SHIFT do {                                \
343   /* Shift the pre-computed value for the next iteration.*/ \
344   T = _mm_srli_si128(T, 4);                                 \
345   TL = _mm_srli_si128(TL, 4);                               \
346   src = _mm_srli_si128(src, 4);                             \
347   pa = _mm_srli_si128(pa, 4);                               \
348 } while (0)
349 
PredictorAdd11_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * out)350 static void PredictorAdd11_SSE2(const uint32_t* in, const uint32_t* upper,
351                                 int num_pixels, uint32_t* out) {
352   int i;
353   __m128i pa;
354   __m128i L = _mm_cvtsi32_si128(out[-1]);
355   for (i = 0; i + 4 <= num_pixels; i += 4) {
356     __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
357     __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
358     __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
359     {
360       // We can unpack with any value on the upper 32 bits, provided it's the
361       // same on both operands (so that their sum of abs diff is zero). Here we
362       // use T.
363       const __m128i T_lo = _mm_unpacklo_epi32(T, T);
364       const __m128i TL_lo = _mm_unpacklo_epi32(TL, T);
365       const __m128i T_hi = _mm_unpackhi_epi32(T, T);
366       const __m128i TL_hi = _mm_unpackhi_epi32(TL, T);
367       const __m128i s_lo = _mm_sad_epu8(T_lo, TL_lo);
368       const __m128i s_hi = _mm_sad_epu8(T_hi, TL_hi);
369       pa = _mm_packs_epi32(s_lo, s_hi);  // pa = sum |T-TL|
370     }
371     DO_PRED11(0);
372     DO_PRED11_SHIFT;
373     DO_PRED11(1);
374     DO_PRED11_SHIFT;
375     DO_PRED11(2);
376     DO_PRED11_SHIFT;
377     DO_PRED11(3);
378   }
379   if (i != num_pixels) {
380     VP8LPredictorsAdd_C[11](in + i, upper + i, num_pixels - i, out + i);
381   }
382 }
383 #undef DO_PRED11
384 #undef DO_PRED11_SHIFT
385 
386 // Predictor12: ClampedAddSubtractFull.
387 #define DO_PRED12(DIFF, LANE, OUT) do {            \
388   const __m128i all = _mm_add_epi16(L, (DIFF));    \
389   const __m128i alls = _mm_packus_epi16(all, all); \
390   const __m128i res = _mm_add_epi8(src, alls);     \
391   out[i + (OUT)] = _mm_cvtsi128_si32(res);         \
392   L = _mm_unpacklo_epi8(res, zero);                \
393 } while (0)
394 
395 #define DO_PRED12_SHIFT(DIFF, LANE) do {                    \
396   /* Shift the pre-computed value for the next iteration.*/ \
397   if ((LANE) == 0) (DIFF) = _mm_srli_si128((DIFF), 8);      \
398   src = _mm_srli_si128(src, 4);                             \
399 } while (0)
400 
PredictorAdd12_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * out)401 static void PredictorAdd12_SSE2(const uint32_t* in, const uint32_t* upper,
402                                 int num_pixels, uint32_t* out) {
403   int i;
404   const __m128i zero = _mm_setzero_si128();
405   const __m128i L8 = _mm_cvtsi32_si128(out[-1]);
406   __m128i L = _mm_unpacklo_epi8(L8, zero);
407   for (i = 0; i + 4 <= num_pixels; i += 4) {
408     // Load 4 pixels at a time.
409     __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
410     const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
411     const __m128i T_lo = _mm_unpacklo_epi8(T, zero);
412     const __m128i T_hi = _mm_unpackhi_epi8(T, zero);
413     const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
414     const __m128i TL_lo = _mm_unpacklo_epi8(TL, zero);
415     const __m128i TL_hi = _mm_unpackhi_epi8(TL, zero);
416     __m128i diff_lo = _mm_sub_epi16(T_lo, TL_lo);
417     __m128i diff_hi = _mm_sub_epi16(T_hi, TL_hi);
418     DO_PRED12(diff_lo, 0, 0);
419     DO_PRED12_SHIFT(diff_lo, 0);
420     DO_PRED12(diff_lo, 1, 1);
421     DO_PRED12_SHIFT(diff_lo, 1);
422     DO_PRED12(diff_hi, 0, 2);
423     DO_PRED12_SHIFT(diff_hi, 0);
424     DO_PRED12(diff_hi, 1, 3);
425   }
426   if (i != num_pixels) {
427     VP8LPredictorsAdd_C[12](in + i, upper + i, num_pixels - i, out + i);
428   }
429 }
430 #undef DO_PRED12
431 #undef DO_PRED12_SHIFT
432 
433 // Due to averages with integers, values cannot be accumulated in parallel for
434 // predictors 13.
GENERATE_PREDICTOR_ADD(Predictor13_SSE2,PredictorAdd13_SSE2)435 GENERATE_PREDICTOR_ADD(Predictor13_SSE2, PredictorAdd13_SSE2)
436 
437 //------------------------------------------------------------------------------
438 // Subtract-Green Transform
439 
440 static void AddGreenToBlueAndRed_SSE2(const uint32_t* const src, int num_pixels,
441                                       uint32_t* dst) {
442   int i;
443   for (i = 0; i + 4 <= num_pixels; i += 4) {
444     const __m128i in = _mm_loadu_si128((const __m128i*)&src[i]); // argb
445     const __m128i A = _mm_srli_epi16(in, 8);     // 0 a 0 g
446     const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0));
447     const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0));  // 0g0g
448     const __m128i out = _mm_add_epi8(in, C);
449     _mm_storeu_si128((__m128i*)&dst[i], out);
450   }
451   // fallthrough and finish off with plain-C
452   if (i != num_pixels) {
453     VP8LAddGreenToBlueAndRed_C(src + i, num_pixels - i, dst + i);
454   }
455 }
456 
457 //------------------------------------------------------------------------------
458 // Color Transform
459 
TransformColorInverse_SSE2(const VP8LMultipliers * const m,const uint32_t * const src,int num_pixels,uint32_t * dst)460 static void TransformColorInverse_SSE2(const VP8LMultipliers* const m,
461                                        const uint32_t* const src,
462                                        int num_pixels, uint32_t* dst) {
463 // sign-extended multiplying constants, pre-shifted by 5.
464 #define CST(X)  (((int16_t)(m->X << 8)) >> 5)   // sign-extend
465 #define MK_CST_16(HI, LO) \
466   _mm_set1_epi32((int)(((uint32_t)(HI) << 16) | ((LO) & 0xffff)))
467   const __m128i mults_rb = MK_CST_16(CST(green_to_red_), CST(green_to_blue_));
468   const __m128i mults_b2 = MK_CST_16(CST(red_to_blue_), 0);
469 #undef MK_CST_16
470 #undef CST
471   const __m128i mask_ag = _mm_set1_epi32(0xff00ff00);  // alpha-green masks
472   int i;
473   for (i = 0; i + 4 <= num_pixels; i += 4) {
474     const __m128i in = _mm_loadu_si128((const __m128i*)&src[i]); // argb
475     const __m128i A = _mm_and_si128(in, mask_ag);     // a   0   g   0
476     const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0));
477     const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0));  // g0g0
478     const __m128i D = _mm_mulhi_epi16(C, mults_rb);    // x dr  x db1
479     const __m128i E = _mm_add_epi8(in, D);             // x r'  x   b'
480     const __m128i F = _mm_slli_epi16(E, 8);            // r' 0   b' 0
481     const __m128i G = _mm_mulhi_epi16(F, mults_b2);    // x db2  0  0
482     const __m128i H = _mm_srli_epi32(G, 8);            // 0  x db2  0
483     const __m128i I = _mm_add_epi8(H, F);              // r' x  b'' 0
484     const __m128i J = _mm_srli_epi16(I, 8);            // 0  r'  0  b''
485     const __m128i out = _mm_or_si128(J, A);
486     _mm_storeu_si128((__m128i*)&dst[i], out);
487   }
488   // Fall-back to C-version for left-overs.
489   if (i != num_pixels) {
490     VP8LTransformColorInverse_C(m, src + i, num_pixels - i, dst + i);
491   }
492 }
493 
494 //------------------------------------------------------------------------------
495 // Color-space conversion functions
496 
ConvertBGRAToRGB_SSE2(const uint32_t * src,int num_pixels,uint8_t * dst)497 static void ConvertBGRAToRGB_SSE2(const uint32_t* src, int num_pixels,
498                                   uint8_t* dst) {
499   const __m128i* in = (const __m128i*)src;
500   __m128i* out = (__m128i*)dst;
501 
502   while (num_pixels >= 32) {
503     // Load the BGRA buffers.
504     __m128i in0 = _mm_loadu_si128(in + 0);
505     __m128i in1 = _mm_loadu_si128(in + 1);
506     __m128i in2 = _mm_loadu_si128(in + 2);
507     __m128i in3 = _mm_loadu_si128(in + 3);
508     __m128i in4 = _mm_loadu_si128(in + 4);
509     __m128i in5 = _mm_loadu_si128(in + 5);
510     __m128i in6 = _mm_loadu_si128(in + 6);
511     __m128i in7 = _mm_loadu_si128(in + 7);
512     VP8L32bToPlanar_SSE2(&in0, &in1, &in2, &in3);
513     VP8L32bToPlanar_SSE2(&in4, &in5, &in6, &in7);
514     // At this points, in1/in5 contains red only, in2/in6 green only ...
515     // Pack the colors in 24b RGB.
516     VP8PlanarTo24b_SSE2(&in1, &in5, &in2, &in6, &in3, &in7);
517     _mm_storeu_si128(out + 0, in1);
518     _mm_storeu_si128(out + 1, in5);
519     _mm_storeu_si128(out + 2, in2);
520     _mm_storeu_si128(out + 3, in6);
521     _mm_storeu_si128(out + 4, in3);
522     _mm_storeu_si128(out + 5, in7);
523     in += 8;
524     out += 6;
525     num_pixels -= 32;
526   }
527   // left-overs
528   if (num_pixels > 0) {
529     VP8LConvertBGRAToRGB_C((const uint32_t*)in, num_pixels, (uint8_t*)out);
530   }
531 }
532 
ConvertBGRAToRGBA_SSE2(const uint32_t * src,int num_pixels,uint8_t * dst)533 static void ConvertBGRAToRGBA_SSE2(const uint32_t* src,
534                                    int num_pixels, uint8_t* dst) {
535   const __m128i red_blue_mask = _mm_set1_epi32(0x00ff00ffu);
536   const __m128i* in = (const __m128i*)src;
537   __m128i* out = (__m128i*)dst;
538   while (num_pixels >= 8) {
539     const __m128i A1 = _mm_loadu_si128(in++);
540     const __m128i A2 = _mm_loadu_si128(in++);
541     const __m128i B1 = _mm_and_si128(A1, red_blue_mask);     // R 0 B 0
542     const __m128i B2 = _mm_and_si128(A2, red_blue_mask);     // R 0 B 0
543     const __m128i C1 = _mm_andnot_si128(red_blue_mask, A1);  // 0 G 0 A
544     const __m128i C2 = _mm_andnot_si128(red_blue_mask, A2);  // 0 G 0 A
545     const __m128i D1 = _mm_shufflelo_epi16(B1, _MM_SHUFFLE(2, 3, 0, 1));
546     const __m128i D2 = _mm_shufflelo_epi16(B2, _MM_SHUFFLE(2, 3, 0, 1));
547     const __m128i E1 = _mm_shufflehi_epi16(D1, _MM_SHUFFLE(2, 3, 0, 1));
548     const __m128i E2 = _mm_shufflehi_epi16(D2, _MM_SHUFFLE(2, 3, 0, 1));
549     const __m128i F1 = _mm_or_si128(E1, C1);
550     const __m128i F2 = _mm_or_si128(E2, C2);
551     _mm_storeu_si128(out++, F1);
552     _mm_storeu_si128(out++, F2);
553     num_pixels -= 8;
554   }
555   // left-overs
556   if (num_pixels > 0) {
557     VP8LConvertBGRAToRGBA_C((const uint32_t*)in, num_pixels, (uint8_t*)out);
558   }
559 }
560 
ConvertBGRAToRGBA4444_SSE2(const uint32_t * src,int num_pixels,uint8_t * dst)561 static void ConvertBGRAToRGBA4444_SSE2(const uint32_t* src,
562                                        int num_pixels, uint8_t* dst) {
563   const __m128i mask_0x0f = _mm_set1_epi8(0x0f);
564   const __m128i mask_0xf0 = _mm_set1_epi8(0xf0);
565   const __m128i* in = (const __m128i*)src;
566   __m128i* out = (__m128i*)dst;
567   while (num_pixels >= 8) {
568     const __m128i bgra0 = _mm_loadu_si128(in++);     // bgra0|bgra1|bgra2|bgra3
569     const __m128i bgra4 = _mm_loadu_si128(in++);     // bgra4|bgra5|bgra6|bgra7
570     const __m128i v0l = _mm_unpacklo_epi8(bgra0, bgra4);  // b0b4g0g4r0r4a0a4...
571     const __m128i v0h = _mm_unpackhi_epi8(bgra0, bgra4);  // b2b6g2g6r2r6a2a6...
572     const __m128i v1l = _mm_unpacklo_epi8(v0l, v0h);    // b0b2b4b6g0g2g4g6...
573     const __m128i v1h = _mm_unpackhi_epi8(v0l, v0h);    // b1b3b5b7g1g3g5g7...
574     const __m128i v2l = _mm_unpacklo_epi8(v1l, v1h);    // b0...b7 | g0...g7
575     const __m128i v2h = _mm_unpackhi_epi8(v1l, v1h);    // r0...r7 | a0...a7
576     const __m128i ga0 = _mm_unpackhi_epi64(v2l, v2h);   // g0...g7 | a0...a7
577     const __m128i rb0 = _mm_unpacklo_epi64(v2h, v2l);   // r0...r7 | b0...b7
578     const __m128i ga1 = _mm_srli_epi16(ga0, 4);         // g0-|g1-|...|a6-|a7-
579     const __m128i rb1 = _mm_and_si128(rb0, mask_0xf0);  // -r0|-r1|...|-b6|-a7
580     const __m128i ga2 = _mm_and_si128(ga1, mask_0x0f);  // g0-|g1-|...|a6-|a7-
581     const __m128i rgba0 = _mm_or_si128(ga2, rb1);       // rg0..rg7 | ba0..ba7
582     const __m128i rgba1 = _mm_srli_si128(rgba0, 8);     // ba0..ba7 | 0
583 #if (WEBP_SWAP_16BIT_CSP == 1)
584     const __m128i rgba = _mm_unpacklo_epi8(rgba1, rgba0);  // barg0...barg7
585 #else
586     const __m128i rgba = _mm_unpacklo_epi8(rgba0, rgba1);  // rgba0...rgba7
587 #endif
588     _mm_storeu_si128(out++, rgba);
589     num_pixels -= 8;
590   }
591   // left-overs
592   if (num_pixels > 0) {
593     VP8LConvertBGRAToRGBA4444_C((const uint32_t*)in, num_pixels, (uint8_t*)out);
594   }
595 }
596 
ConvertBGRAToRGB565_SSE2(const uint32_t * src,int num_pixels,uint8_t * dst)597 static void ConvertBGRAToRGB565_SSE2(const uint32_t* src,
598                                      int num_pixels, uint8_t* dst) {
599   const __m128i mask_0xe0 = _mm_set1_epi8(0xe0);
600   const __m128i mask_0xf8 = _mm_set1_epi8(0xf8);
601   const __m128i mask_0x07 = _mm_set1_epi8(0x07);
602   const __m128i* in = (const __m128i*)src;
603   __m128i* out = (__m128i*)dst;
604   while (num_pixels >= 8) {
605     const __m128i bgra0 = _mm_loadu_si128(in++);     // bgra0|bgra1|bgra2|bgra3
606     const __m128i bgra4 = _mm_loadu_si128(in++);     // bgra4|bgra5|bgra6|bgra7
607     const __m128i v0l = _mm_unpacklo_epi8(bgra0, bgra4);  // b0b4g0g4r0r4a0a4...
608     const __m128i v0h = _mm_unpackhi_epi8(bgra0, bgra4);  // b2b6g2g6r2r6a2a6...
609     const __m128i v1l = _mm_unpacklo_epi8(v0l, v0h);      // b0b2b4b6g0g2g4g6...
610     const __m128i v1h = _mm_unpackhi_epi8(v0l, v0h);      // b1b3b5b7g1g3g5g7...
611     const __m128i v2l = _mm_unpacklo_epi8(v1l, v1h);      // b0...b7 | g0...g7
612     const __m128i v2h = _mm_unpackhi_epi8(v1l, v1h);      // r0...r7 | a0...a7
613     const __m128i ga0 = _mm_unpackhi_epi64(v2l, v2h);     // g0...g7 | a0...a7
614     const __m128i rb0 = _mm_unpacklo_epi64(v2h, v2l);     // r0...r7 | b0...b7
615     const __m128i rb1 = _mm_and_si128(rb0, mask_0xf8);    // -r0..-r7|-b0..-b7
616     const __m128i g_lo1 = _mm_srli_epi16(ga0, 5);
617     const __m128i g_lo2 = _mm_and_si128(g_lo1, mask_0x07);  // g0-...g7-|xx (3b)
618     const __m128i g_hi1 = _mm_slli_epi16(ga0, 3);
619     const __m128i g_hi2 = _mm_and_si128(g_hi1, mask_0xe0);  // -g0...-g7|xx (3b)
620     const __m128i b0 = _mm_srli_si128(rb1, 8);              // -b0...-b7|0
621     const __m128i rg1 = _mm_or_si128(rb1, g_lo2);           // gr0...gr7|xx
622     const __m128i b1 = _mm_srli_epi16(b0, 3);
623     const __m128i gb1 = _mm_or_si128(b1, g_hi2);            // bg0...bg7|xx
624 #if (WEBP_SWAP_16BIT_CSP == 1)
625     const __m128i rgba = _mm_unpacklo_epi8(gb1, rg1);     // rggb0...rggb7
626 #else
627     const __m128i rgba = _mm_unpacklo_epi8(rg1, gb1);     // bgrb0...bgrb7
628 #endif
629     _mm_storeu_si128(out++, rgba);
630     num_pixels -= 8;
631   }
632   // left-overs
633   if (num_pixels > 0) {
634     VP8LConvertBGRAToRGB565_C((const uint32_t*)in, num_pixels, (uint8_t*)out);
635   }
636 }
637 
ConvertBGRAToBGR_SSE2(const uint32_t * src,int num_pixels,uint8_t * dst)638 static void ConvertBGRAToBGR_SSE2(const uint32_t* src,
639                                   int num_pixels, uint8_t* dst) {
640   const __m128i mask_l = _mm_set_epi32(0, 0x00ffffff, 0, 0x00ffffff);
641   const __m128i mask_h = _mm_set_epi32(0x00ffffff, 0, 0x00ffffff, 0);
642   const __m128i* in = (const __m128i*)src;
643   const uint8_t* const end = dst + num_pixels * 3;
644   // the last storel_epi64 below writes 8 bytes starting at offset 18
645   while (dst + 26 <= end) {
646     const __m128i bgra0 = _mm_loadu_si128(in++);     // bgra0|bgra1|bgra2|bgra3
647     const __m128i bgra4 = _mm_loadu_si128(in++);     // bgra4|bgra5|bgra6|bgra7
648     const __m128i a0l = _mm_and_si128(bgra0, mask_l);   // bgr0|0|bgr0|0
649     const __m128i a4l = _mm_and_si128(bgra4, mask_l);   // bgr0|0|bgr0|0
650     const __m128i a0h = _mm_and_si128(bgra0, mask_h);   // 0|bgr0|0|bgr0
651     const __m128i a4h = _mm_and_si128(bgra4, mask_h);   // 0|bgr0|0|bgr0
652     const __m128i b0h = _mm_srli_epi64(a0h, 8);         // 000b|gr00|000b|gr00
653     const __m128i b4h = _mm_srli_epi64(a4h, 8);         // 000b|gr00|000b|gr00
654     const __m128i c0 = _mm_or_si128(a0l, b0h);          // rgbrgb00|rgbrgb00
655     const __m128i c4 = _mm_or_si128(a4l, b4h);          // rgbrgb00|rgbrgb00
656     const __m128i c2 = _mm_srli_si128(c0, 8);
657     const __m128i c6 = _mm_srli_si128(c4, 8);
658     _mm_storel_epi64((__m128i*)(dst +   0), c0);
659     _mm_storel_epi64((__m128i*)(dst +   6), c2);
660     _mm_storel_epi64((__m128i*)(dst +  12), c4);
661     _mm_storel_epi64((__m128i*)(dst +  18), c6);
662     dst += 24;
663     num_pixels -= 8;
664   }
665   // left-overs
666   if (num_pixels > 0) {
667     VP8LConvertBGRAToBGR_C((const uint32_t*)in, num_pixels, dst);
668   }
669 }
670 
671 //------------------------------------------------------------------------------
672 // Entry point
673 
674 extern void VP8LDspInitSSE2(void);
675 
VP8LDspInitSSE2(void)676 WEBP_TSAN_IGNORE_FUNCTION void VP8LDspInitSSE2(void) {
677   VP8LPredictors[5] = Predictor5_SSE2;
678   VP8LPredictors[6] = Predictor6_SSE2;
679   VP8LPredictors[7] = Predictor7_SSE2;
680   VP8LPredictors[8] = Predictor8_SSE2;
681   VP8LPredictors[9] = Predictor9_SSE2;
682   VP8LPredictors[10] = Predictor10_SSE2;
683   VP8LPredictors[11] = Predictor11_SSE2;
684   VP8LPredictors[12] = Predictor12_SSE2;
685   VP8LPredictors[13] = Predictor13_SSE2;
686 
687   VP8LPredictorsAdd[0] = PredictorAdd0_SSE2;
688   VP8LPredictorsAdd[1] = PredictorAdd1_SSE2;
689   VP8LPredictorsAdd[2] = PredictorAdd2_SSE2;
690   VP8LPredictorsAdd[3] = PredictorAdd3_SSE2;
691   VP8LPredictorsAdd[4] = PredictorAdd4_SSE2;
692   VP8LPredictorsAdd[5] = PredictorAdd5_SSE2;
693   VP8LPredictorsAdd[6] = PredictorAdd6_SSE2;
694   VP8LPredictorsAdd[7] = PredictorAdd7_SSE2;
695   VP8LPredictorsAdd[8] = PredictorAdd8_SSE2;
696   VP8LPredictorsAdd[9] = PredictorAdd9_SSE2;
697   VP8LPredictorsAdd[10] = PredictorAdd10_SSE2;
698   VP8LPredictorsAdd[11] = PredictorAdd11_SSE2;
699   VP8LPredictorsAdd[12] = PredictorAdd12_SSE2;
700   VP8LPredictorsAdd[13] = PredictorAdd13_SSE2;
701 
702   VP8LAddGreenToBlueAndRed = AddGreenToBlueAndRed_SSE2;
703   VP8LTransformColorInverse = TransformColorInverse_SSE2;
704 
705   VP8LConvertBGRAToRGB = ConvertBGRAToRGB_SSE2;
706   VP8LConvertBGRAToRGBA = ConvertBGRAToRGBA_SSE2;
707   VP8LConvertBGRAToRGBA4444 = ConvertBGRAToRGBA4444_SSE2;
708   VP8LConvertBGRAToRGB565 = ConvertBGRAToRGB565_SSE2;
709   VP8LConvertBGRAToBGR = ConvertBGRAToBGR_SSE2;
710 }
711 
712 #else  // !WEBP_USE_SSE2
713 
714 WEBP_DSP_INIT_STUB(VP8LDspInitSSE2)
715 
716 #endif  // WEBP_USE_SSE2
717