• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-raddstoreexpminusmax/scalar-rr2-lut64-p2.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <xnnpack/common.h>
13 #include <xnnpack/raddstoreexpminusmax.h>
14 
15 #include <fp16/bitcasts.h>
16 
17 
18 // Note redefine as uint32[] to avoid redundant bitcasts.
19 extern XNN_INTERNAL const uint32_t xnn_table_exp2_k_over_64[64];
20 
xnn_f32_raddstoreexpminusmax_ukernel__scalar_rr2_lut64_p2_x2_acc2(size_t elements,const float * input,const float * max,float * output,float * sum,const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS (1)])21 void xnn_f32_raddstoreexpminusmax_ukernel__scalar_rr2_lut64_p2_x2_acc2(
22     size_t elements,
23     const float* input,
24     const float* max,
25     float* output,
26     float* sum,
27     const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS(1)])
28 {
29   assert(elements % sizeof(float) == 0);
30 
31   const float vi_max = *max;
32   const float vlog2e = params->scalar_rr2_lut64_p2.log2e;
33   const float vmagic_bias = params->scalar_rr2_lut64_p2.magic_bias;
34   const uint32_t vindex_mask = UINT32_C(0x3F);
35   const float vminus_ln2_hi = params->scalar_rr2_lut64_p2.minus_ln2_hi;
36   const float vminus_ln2_lo = params->scalar_rr2_lut64_p2.minus_ln2_lo;
37   const float vc2 = params->scalar_rr2_lut64_p2.c2;
38   const float vdenorm_cutoff = params->scalar_rr2_lut64_p2.denorm_cutoff;
39 
40   float vacc0 = 0.0f;
41   float vacc1 = 0.0f;
42   for (; elements >= 2 * sizeof(float); elements -= 2 * sizeof(float)) {
43     // Load 2 inputs at a time.
44     const float vi0 = input[0];
45     const float vi1 = input[1];
46     input += 2;
47 
48     // Subtract maximum input x := i - i_max. This implies x <= 0.
49     const float vx0 = vi0 - vi_max;
50     const float vx1 = vi1 - vi_max;
51 
52     // Compute reduced argument n := round(x * 64 / log(2)).
53     // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
54     // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
55     // The trick with adding large number is valid only within certain bounds (|x * 64 / log(2)| <= 2**22, i.e.
56     // |x| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs outside of [-87.336540, 0.0]
57     // result in denormalized or underflown expf(x). We fixup the result for such inputs at the very end of the
58     // algorithm.
59     float vn0 = vx0 * vlog2e + vmagic_bias;
60     float vn1 = vx1 * vlog2e + vmagic_bias;
61 
62     // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that expf(x) is normalized,
63     // i.e. -87.33642 <= x <= 0.0. As n has 6 fractional bits, we split s == 2**(n / 64) = 2**e * 2**(n / 64 - e), where
64     // e := int(n / 64). We create s in two steps:
65     // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
66     //    fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
67     // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
68     //    number, because for -87.33642 <= x <= 0.0 (inputs for which expf(x) is normalized) we have -126 <= e <= 0,
69     //    and thus the adjusted exponent is not lower than -126.
70     //
71     // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
72     const uint32_t ve0 = (fp32_to_bits(vn0) & UINT32_C(0xFFFFFFC0)) << 17;
73     const uint32_t ve1 = (fp32_to_bits(vn1) & UINT32_C(0xFFFFFFC0)) << 17;
74 
75     // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
76     const uint32_t vidx0 = fp32_to_bits(vn0) & vindex_mask;
77     const uint32_t vidx1 = fp32_to_bits(vn1) & vindex_mask;
78     // Adjust exponent of the value l fetched from the table to get the final s value.
79     const float vs0 = fp32_from_bits(xnn_table_exp2_k_over_64[vidx0] + ve0);
80     const float vs1 = fp32_from_bits(xnn_table_exp2_k_over_64[vidx1] + ve1);
81 
82     // Subtract the large number back to get final n := round(x * 64 / log(2)) as a floating-point number.
83     vn0 -= vmagic_bias;
84     vn1 -= vmagic_bias;
85 
86     // Compute reduced argument t := x - n * log(2) / 64.
87     // Use Cody-Waite range reduction method (note the two constants representing log(2) / 64) to improve accuracy.
88     float vt0 = vn0 * vminus_ln2_hi + vx0;
89     float vt1 = vn1 * vminus_ln2_hi + vx1;
90 
91     vt0 = vn0 * vminus_ln2_lo + vt0;
92     vt1 = vn1 * vminus_ln2_lo + vt1;
93 
94     // Compute degree-2 polynomial approximation for exp(t) on [-log(2)/128, log(2)/128].
95     float vp0 = vt0 * vc2;
96     float vp1 = vt1 * vc2;
97 
98     vp0 = vp0 * vt0 + vt0;
99     vp1 = vp1 * vt1 + vt1;
100 
101     // Reconstruct the final f value:
102     //   f = s * (1 + t * (1 + t * c2))
103     //     = s * (1 + t + t * (t * c2))
104     //     = s + s * (t + t * (t * c2))
105     //     = s + s * p
106     float vf0 = vp0 * vs0 + vs0;
107     float vf1 = vp1 * vs1 + vs1;
108 
109     // For inputs below denormal cutoff, replace output with +0.0f.
110     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
111     if XNN_UNPREDICTABLE(vx0 < vdenorm_cutoff) {
112       vf0 = 0.0f;
113     }
114     if XNN_UNPREDICTABLE(vx1 < vdenorm_cutoff) {
115       vf1 = 0.0f;
116     }
117 
118     // Store 2 outputs at a time.
119     output[0] = vf0;
120     output[1] = vf1;
121     output += 2;
122 
123     // Accumulate computed exponents.
124     vacc0 += vf0;
125     vacc1 += vf1;
126   }
127   // Add up all accumulators to vacc0
128   vacc0 += vacc1;
129 
130   float vacc = vacc0;
131   for (; elements >= sizeof(float); elements -= sizeof(float)) {
132     // Load 1 input at a time.
133     const float vi = *input++;
134 
135     // Subtract maximum input x := i - i_max. This implies x <= 0.
136     const float vx = vi - vi_max;
137 
138     // Compute reduced argument n := round(x * 64 / log(2)).
139     // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
140     // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
141     // The trick with adding large number is valid only within certain bounds (|x * 64 / log(2)| <= 2**22, i.e.
142     // |x| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs outside of [-87.336540, 0.0]
143     // result in denormalized or underflown expf(x). We fixup the result for such inputs at the very end of the
144     // algorithm.
145     float vn = vx * vlog2e + vmagic_bias;
146 
147     // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that expf(x) is normalized,
148     // i.e. -87.33642 <= x <= 0.0. As n has 6 fractional bits, we split s == 2**(n / 64) = 2**e * 2**(n / 64 - e), where
149     // e := int(n / 64). We create s in two steps:
150     // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
151     //    fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
152     // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
153     //    number, because for -87.33642 <= x <= 0.0 (inputs for which expf(x) is normalized) we have -126 <= e <= 0,
154     //    and thus the adjusted exponent is not lower than -126.
155     //
156     // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
157     const uint32_t ve = (fp32_to_bits(vn) & UINT32_C(0xFFFFFFC0)) << 17;
158 
159     // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
160     const uint32_t vidx = fp32_to_bits(vn) & vindex_mask;
161     // Adjust exponent of the value l fetched from the table to get the final s value.
162     const float vs = fp32_from_bits(xnn_table_exp2_k_over_64[vidx] + ve);
163 
164     // Subtract the large number back to get final n := round(x * 64 / log(2)) as a floating-point number.
165     vn -= vmagic_bias;
166 
167     // Compute reduced argument t := x - n * log(2) / 64.
168     // Use Cody-Waite range reduction method (note the two constants representing log(2) / 64) to improve accuracy.
169     float vt = vn * vminus_ln2_hi + vx;
170     vt = vn * vminus_ln2_lo + vt;
171 
172     // Compute degree-2 polynomial approximation for exp(t) on [-log(2)/128, log(2)/128].
173     float vp = vt * vc2;
174     vp = vp * vt + vt;
175 
176     // Reconstruct the final f value:
177     //   f = s * (1 + t * (1 + t * c2))
178     //     = s * (1 + t + t * (t * c2))
179     //     = s + s * (t + t * (t * c2))
180     //     = s + s * p
181     float vf = vp * vs + vs;
182 
183     // For inputs below denormal cutoff, replace output with +0.0f.
184     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
185     if XNN_UNPREDICTABLE(vx < vdenorm_cutoff) {
186       vf = 0.0f;
187     }
188 
189     // Store 1 output at a time.
190     *output++ = vf;
191 
192     // Accumulate computed exponents.
193     vacc += vf;
194   }
195   *sum = vacc;
196 }
197