• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-raddstoreexpminusmax/scalar-rr2-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <xnnpack/common.h>
13 #include <xnnpack/raddstoreexpminusmax.h>
14 
15 #include <fp16/bitcasts.h>
16 
17 
xnn_f32_raddstoreexpminusmax_ukernel__scalar_rr2_p5_x1(size_t elements,const float * input,const float * max,float * output,float * sum,const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS (1)])18 void xnn_f32_raddstoreexpminusmax_ukernel__scalar_rr2_p5_x1(
19     size_t elements,
20     const float* input,
21     const float* max,
22     float* output,
23     float* sum,
24     const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS(1)])
25 {
26   assert(elements % sizeof(float) == 0);
27 
28   const float vi_max = *max;
29   const float vlog2e = params->scalar_rr2_p5.log2e;
30   const float vmagic_bias = params->scalar_rr2_p5.magic_bias;
31   const float vminus_ln2_hi = params->scalar_rr2_p5.minus_ln2_hi;
32   const float vminus_ln2_lo = params->scalar_rr2_p5.minus_ln2_lo;
33   const float vc5 = params->scalar_rr2_p5.c5;
34   const float vc4 = params->scalar_rr2_p5.c4;
35   const float vc3 = params->scalar_rr2_p5.c3;
36   const float vc2 = params->scalar_rr2_p5.c2;
37   const float vc1 = params->scalar_rr2_p5.c1;
38   const float vdenorm_cutoff = params->scalar_rr2_p5.denorm_cutoff;
39 
40   float vacc = 0.0f;
41   for (; elements >= sizeof(float); elements -= sizeof(float)) {
42     // Load 1 input at a time.
43     const float vi = *input++;
44 
45     // Subtract maximum input x := i - i_max. This implies x <= 0.
46     const float vx = vi - vi_max;
47 
48     // Compute reduced argument n := round(x / log(2)).
49     // We do it by adding a large number (magic bias) to the product x * (1/log(2)), which cause rounding of the result
50     // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
51     // certain bounds (|x| <= 2**22), but that's ok, because inputs outside of [-87.336540, 0.0] underflow expf(x)
52     // anyway. We fixup the result for such inputs at the very end of the algorithm.
53     float vn = vx * vlog2e + vmagic_bias;
54 
55     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
56     // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
57     const float vs = fp32_from_bits(fp32_to_bits(vn) << 23);
58 
59     // Subtract the large number back to get final n := round(x / log(2)).
60     vn -= vmagic_bias;
61 
62     // Compute reduced argument t := x - n * log(2).
63     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
64     float vt = vn * vminus_ln2_hi + vx;
65     vt = vn * vminus_ln2_lo + vt;
66 
67     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
68     float vp = vc5 * vt + vc4;
69     vp = vp * vt + vc3;
70     vp = vp * vt + vc2;
71     vp = vp * vt + vc1;
72 
73     // Reconstruct the final f value:
74     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
75     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
76     //     = s + (t * s) * p
77     vt *= vs;
78     float vf = vt * vp + vs;
79 
80     // For inputs below denormal cutoff, replace output with +0.0f.
81     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
82     if XNN_UNPREDICTABLE(vx < vdenorm_cutoff) {
83       vf = 0.0f;
84     }
85 
86     // Store 1 output at a time.
87     *output++ = vf;
88 
89     // Accumulate computed exponents.
90     vacc += vf;
91   }
92   *sum = vacc;
93 }
94