• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-raddstoreexpminusmax/scalar-rr2-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <xnnpack/common.h>
13 #include <xnnpack/raddstoreexpminusmax.h>
14 
15 #include <fp16/bitcasts.h>
16 
17 
xnn_f32_raddstoreexpminusmax_ukernel__scalar_rr2_p5_x2_acc2(size_t elements,const float * input,const float * max,float * output,float * sum,const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS (1)])18 void xnn_f32_raddstoreexpminusmax_ukernel__scalar_rr2_p5_x2_acc2(
19     size_t elements,
20     const float* input,
21     const float* max,
22     float* output,
23     float* sum,
24     const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS(1)])
25 {
26   assert(elements % sizeof(float) == 0);
27 
28   const float vi_max = *max;
29   const float vlog2e = params->scalar_rr2_p5.log2e;
30   const float vmagic_bias = params->scalar_rr2_p5.magic_bias;
31   const float vminus_ln2_hi = params->scalar_rr2_p5.minus_ln2_hi;
32   const float vminus_ln2_lo = params->scalar_rr2_p5.minus_ln2_lo;
33   const float vc5 = params->scalar_rr2_p5.c5;
34   const float vc4 = params->scalar_rr2_p5.c4;
35   const float vc3 = params->scalar_rr2_p5.c3;
36   const float vc2 = params->scalar_rr2_p5.c2;
37   const float vc1 = params->scalar_rr2_p5.c1;
38   const float vdenorm_cutoff = params->scalar_rr2_p5.denorm_cutoff;
39 
40   float vacc0 = 0.0f;
41   float vacc1 = 0.0f;
42   for (; elements >= 2 * sizeof(float); elements -= 2 * sizeof(float)) {
43     // Load 2 inputs at a time.
44     const float vi0 = input[0];
45     const float vi1 = input[1];
46     input += 2;
47 
48     // Subtract maximum input x := i - i_max. This implies x <= 0.
49     const float vx0 = vi0 - vi_max;
50     const float vx1 = vi1 - vi_max;
51 
52     // Compute reduced argument n := round(x / log(2)).
53     // We do it by adding a large number (magic bias) to the product x * (1/log(2)), which cause rounding of the result
54     // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
55     // certain bounds (|x| <= 2**22), but that's ok, because inputs outside of [-87.336540, 0.0] underflow expf(x)
56     // anyway. We fixup the result for such inputs at the very end of the algorithm.
57     float vn0 = vx0 * vlog2e + vmagic_bias;
58     float vn1 = vx1 * vlog2e + vmagic_bias;
59 
60     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
61     // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
62     const float vs0 = fp32_from_bits(fp32_to_bits(vn0) << 23);
63     const float vs1 = fp32_from_bits(fp32_to_bits(vn1) << 23);
64 
65     // Subtract the large number back to get final n := round(x / log(2)).
66     vn0 -= vmagic_bias;
67     vn1 -= vmagic_bias;
68 
69     // Compute reduced argument t := x - n * log(2).
70     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
71     float vt0 = vn0 * vminus_ln2_hi + vx0;
72     float vt1 = vn1 * vminus_ln2_hi + vx1;
73 
74     vt0 = vn0 * vminus_ln2_lo + vt0;
75     vt1 = vn1 * vminus_ln2_lo + vt1;
76 
77     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
78     float vp0 = vc5 * vt0 + vc4;
79     float vp1 = vc5 * vt1 + vc4;
80 
81     vp0 = vp0 * vt0 + vc3;
82     vp1 = vp1 * vt1 + vc3;
83 
84     vp0 = vp0 * vt0 + vc2;
85     vp1 = vp1 * vt1 + vc2;
86 
87     vp0 = vp0 * vt0 + vc1;
88     vp1 = vp1 * vt1 + vc1;
89 
90     // Reconstruct the final f value:
91     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
92     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
93     //     = s + (t * s) * p
94     vt0 *= vs0;
95     vt1 *= vs1;
96 
97     float vf0 = vt0 * vp0 + vs0;
98     float vf1 = vt1 * vp1 + vs1;
99 
100     // For inputs below denormal cutoff, replace output with +0.0f.
101     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
102     if XNN_UNPREDICTABLE(vx0 < vdenorm_cutoff) {
103       vf0 = 0.0f;
104     }
105     if XNN_UNPREDICTABLE(vx1 < vdenorm_cutoff) {
106       vf1 = 0.0f;
107     }
108 
109     // Store 2 outputs at a time.
110     output[0] = vf0;
111     output[1] = vf1;
112     output += 2;
113 
114     // Accumulate computed exponents.
115     vacc0 += vf0;
116     vacc1 += vf1;
117   }
118   // Add up all accumulators to vacc0
119   vacc0 += vacc1;
120 
121   float vacc = vacc0;
122   for (; elements >= sizeof(float); elements -= sizeof(float)) {
123     // Load 1 input at a time.
124     const float vi = *input++;
125 
126     // Subtract maximum input x := i - i_max. This implies x <= 0.
127     const float vx = vi - vi_max;
128 
129     // Compute reduced argument n := round(x / log(2)).
130     // We do it by adding a large number (magic bias) to the product x * (1/log(2)), which cause rounding of the result
131     // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
132     // certain bounds (|x| <= 2**22), but that's ok, because inputs outside of [-87.336540, 0.0] underflow expf(x)
133     // anyway. We fixup the result for such inputs at the very end of the algorithm.
134     float vn = vx * vlog2e + vmagic_bias;
135 
136     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
137     // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
138     const float vs = fp32_from_bits(fp32_to_bits(vn) << 23);
139 
140     // Subtract the large number back to get final n := round(x / log(2)).
141     vn -= vmagic_bias;
142 
143     // Compute reduced argument t := x - n * log(2).
144     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
145     float vt = vn * vminus_ln2_hi + vx;
146     vt = vn * vminus_ln2_lo + vt;
147 
148     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
149     float vp = vc5 * vt + vc4;
150     vp = vp * vt + vc3;
151     vp = vp * vt + vc2;
152     vp = vp * vt + vc1;
153 
154     // Reconstruct the final f value:
155     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
156     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
157     //     = s + (t * s) * p
158     vt *= vs;
159     float vf = vt * vp + vs;
160 
161     // For inputs below denormal cutoff, replace output with +0.0f.
162     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
163     if XNN_UNPREDICTABLE(vx < vdenorm_cutoff) {
164       vf = 0.0f;
165     }
166 
167     // Store 1 output at a time.
168     *output++ = vf;
169 
170     // Accumulate computed exponents.
171     vacc += vf;
172   }
173   *sum = vacc;
174 }
175