• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2014 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef GrXferProcessor_DEFINED
9 #define GrXferProcessor_DEFINED
10 
11 #include "include/gpu/GrTypes.h"
12 #include "src/gpu/GrBlend.h"
13 #include "src/gpu/GrNonAtomicRef.h"
14 #include "src/gpu/GrProcessor.h"
15 #include "src/gpu/GrProcessorAnalysis.h"
16 #include "src/gpu/GrSurfaceProxyView.h"
17 #include "src/gpu/glsl/GrGLSLUniformHandler.h"
18 
19 class GrGLSLXPFragmentBuilder;
20 class GrGLSLProgramDataManager;
21 struct GrShaderCaps;
22 
23 /**
24  * Barriers for blending. When a shader reads the dst directly, an Xfer barrier is sometimes
25  * required after a pixel has been written, before it can be safely read again.
26  */
27 enum GrXferBarrierType {
28     kNone_GrXferBarrierType = 0, //<! No barrier is required
29     kTexture_GrXferBarrierType,  //<! Required when a shader reads and renders to the same texture.
30     kBlend_GrXferBarrierType,    //<! Required by certain blend extensions.
31 };
32 /** Should be able to treat kNone as false in boolean expressions */
33 static_assert(SkToBool(kNone_GrXferBarrierType) == false);
34 
35 // Flag version of the above enum.
36 enum class GrXferBarrierFlags {
37     kNone    = 0,
38     kTexture = 1 << 0,
39     kBlend   = 1 << 1,
40 };
41 
GR_MAKE_BITFIELD_CLASS_OPS(GrXferBarrierFlags)42 GR_MAKE_BITFIELD_CLASS_OPS(GrXferBarrierFlags)
43 
44 /**
45  * GrXferProcessor is responsible for implementing the xfer mode that blends the src color and dst
46  * color, and for applying any coverage. It does this by emitting fragment shader code and
47  * controlling the fixed-function blend state. When dual-source blending is available, it may also
48  * write a seconday fragment shader output color. GrXferProcessor has two modes of operation:
49  *
50  * Dst read: When allowed by the backend API, or when supplied a texture of the destination, the
51  * GrXferProcessor may read the destination color. While operating in this mode, the subclass only
52  * provides shader code that blends the src and dst colors, and the base class applies coverage.
53  *
54  * No dst read: When not performing a dst read, the subclass is given full control of the fixed-
55  * function blend state and/or secondary output, and is responsible to apply coverage on its own.
56  *
57  * A GrXferProcessor is never installed directly into our draw state, but instead is created from a
58  * GrXPFactory once we have finalized the state of our draw.
59  */
60 class GrXferProcessor : public GrProcessor, public GrNonAtomicRef<GrXferProcessor> {
61 public:
62     /**
63      * Every GrXferProcessor must be capable of creating a subclass of ProgramImpl. The ProgramImpl
64      * emits the shader code combines determines the fragment shader output(s) from the color and
65      * coverage FP outputs, is attached to the generated backend API pipeline/program, and used to
66      * extract uniform data from GrXferProcessor instances.
67      */
68     class ProgramImpl;
69 
70     /**
71      * Adds a key on the skgpu::KeyBuilder calls onAddToKey(...) to get the specific subclass's key.
72      */
73     void addToKey(const GrShaderCaps&,
74                   skgpu::KeyBuilder*,
75                   const GrSurfaceOrigin* originIfDstTexture,
76                   bool usesInputAttachmentForDstRead) const;
77 
78     /** Returns a new instance of the appropriate *GL* implementation class
79         for the given GrXferProcessor; caller is responsible for deleting
80         the object. */
81     virtual std::unique_ptr<ProgramImpl> makeProgramImpl() const = 0;
82 
83     /**
84      * Returns the barrier type, if any, that this XP will require. Note that the possibility
85      * that a kTexture type barrier is required is handled by the GrPipeline and need not be
86      * considered by subclass overrides of this function.
87      */
88     virtual GrXferBarrierType xferBarrierType(const GrCaps& caps) const {
89         return kNone_GrXferBarrierType;
90     }
91 
92     struct BlendInfo {
93         SkDEBUGCODE(SkString dump() const;)
94 
95         GrBlendEquation fEquation = kAdd_GrBlendEquation;
96         GrBlendCoeff    fSrcBlend = kOne_GrBlendCoeff;
97         GrBlendCoeff    fDstBlend = kZero_GrBlendCoeff;
98         SkPMColor4f     fBlendConstant = SK_PMColor4fTRANSPARENT;
99         bool            fWriteColor = true;
100     };
101 
102     inline BlendInfo getBlendInfo() const {
103         BlendInfo blendInfo;
104         if (!this->willReadDstColor()) {
105             this->onGetBlendInfo(&blendInfo);
106         }
107         return blendInfo;
108     }
109 
110     bool willReadDstColor() const { return fWillReadDstColor; }
111 
112     /**
113      * Returns whether or not this xferProcossor will set a secondary output to be used with dual
114      * source blending.
115      */
116     bool hasSecondaryOutput() const;
117 
118     bool isLCD() const { return fIsLCD; }
119 
120     /** Returns true if this and other processor conservatively draw identically. It can only return
121         true when the two processor are of the same subclass (i.e. they return the same object from
122         from getFactory()).
123 
124         A return value of true from isEqual() should not be used to test whether the processor would
125         generate the same shader code. To test for identical code generation use addToKey.
126       */
127 
128     bool isEqual(const GrXferProcessor& that) const {
129         if (this->classID() != that.classID()) {
130             return false;
131         }
132         if (this->fWillReadDstColor != that.fWillReadDstColor) {
133             return false;
134         }
135         if (fIsLCD != that.fIsLCD) {
136             return false;
137         }
138         return this->onIsEqual(that);
139     }
140 
141 protected:
142     GrXferProcessor(ClassID classID);
143     GrXferProcessor(ClassID classID, bool willReadDstColor, GrProcessorAnalysisCoverage);
144 
145 private:
146     /**
147      * Adds a key on the skgpu::KeyBuilder that reflects any variety in the code that may be emitted
148      * by the xfer processor subclass.
149      */
150     virtual void onAddToKey(const GrShaderCaps&, skgpu::KeyBuilder*) const = 0;
151 
152     /**
153      * If we are not performing a dst read, returns whether the subclass will set a secondary
154      * output. When using dst reads, the base class controls the secondary output and this method
155      * will not be called.
156      */
157     virtual bool onHasSecondaryOutput() const { return false; }
158 
159     /**
160      * If we are not performing a dst read, retrieves the fixed-function blend state required by the
161      * subclass. When using dst reads, the base class controls the fixed-function blend state and
162      * this method will not be called. The BlendInfo struct comes initialized to "no blending".
163      */
164     virtual void onGetBlendInfo(BlendInfo*) const {}
165 
166     virtual bool onIsEqual(const GrXferProcessor&) const = 0;
167 
168     bool fWillReadDstColor;
169     bool fIsLCD;
170 
171     using INHERITED = GrProcessor;
172 };
173 
174 /**
175  * We install a GrXPFactory (XPF) early on in the pipeline before all the final draw information is
176  * known (e.g. whether there is fractional pixel coverage, will coverage be 1 or 4 channel, is the
177  * draw opaque, etc.). Once the state of the draw is finalized, we use the XPF along with all the
178  * draw information to create a GrXferProcessor (XP) which can implement the desired blending for
179  * the draw.
180  *
181  * Before the XP is created, the XPF is able to answer queries about what functionality the XPs it
182  * creates will have. For example, can it create an XP that supports RGB coverage or will the XP
183  * blend with the destination color.
184  *
185  * GrXPFactories are intended to be static immutable objects. We pass them around as raw pointers
186  * and expect the pointers to always be valid and for the factories to be reusable and thread safe.
187  * Equality is tested for using pointer comparison. GrXPFactory destructors must be no-ops.
188  */
189 
190 // In order to construct GrXPFactory subclass instances as constexpr the subclass, and therefore
191 // GrXPFactory, must be a literal type. One requirement is having a trivial destructor. This is ok
192 // since these objects have no need for destructors. However, GCC and clang throw a warning when a
193 // class has virtual functions and a non-virtual destructor. We suppress that warning here and
194 // for the subclasses.
195 #if defined(__GNUC__)
196 #pragma GCC diagnostic push
197 #pragma GCC diagnostic ignored "-Wnon-virtual-dtor"
198 #endif
199 #if defined(__clang__)
200 #pragma clang diagnostic push
201 #pragma clang diagnostic ignored "-Wnon-virtual-dtor"
202 #endif
203 class GrXPFactory {
204 public:
205     enum class AnalysisProperties : unsigned {
206         kNone = 0x0,
207         /**
208          * The fragment shader will require the destination color.
209          */
210         kReadsDstInShader = 0x1,
211         /**
212          * The op may apply coverage as alpha and still blend correctly.
213          */
214         kCompatibleWithCoverageAsAlpha = 0x2,
215         /**
216          * The color input to the GrXferProcessor will be ignored.
217          */
218         kIgnoresInputColor = 0x4,
219         /**
220          * The destination color will be provided to the fragment processor using a texture. This is
221          * additional information about the implementation of kReadsDstInShader.
222          */
223         kRequiresDstTexture = 0x10,
224         /**
225          * If set, each pixel can only be touched once during a draw (e.g., because we have a dst
226          * texture or because we need an xfer barrier).
227          */
228         kRequiresNonOverlappingDraws = 0x20,
229         /**
230          * If set the draw will use fixed function non coherent advanced blends.
231          */
232         kUsesNonCoherentHWBlending = 0x40,
233         /**
234          * If set, the existing dst value has no effect on the final output.
235          */
236         kUnaffectedByDstValue = 0x80,
237     };
238     GR_DECL_BITFIELD_CLASS_OPS_FRIENDS(AnalysisProperties);
239 
240     static sk_sp<const GrXferProcessor> MakeXferProcessor(const GrXPFactory*,
241                                                           const GrProcessorAnalysisColor&,
242                                                           GrProcessorAnalysisCoverage,
243                                                           const GrCaps& caps,
244                                                           GrClampType);
245 
246     static AnalysisProperties GetAnalysisProperties(const GrXPFactory*,
247                                                     const GrProcessorAnalysisColor&,
248                                                     const GrProcessorAnalysisCoverage&,
249                                                     const GrCaps&,
250                                                     GrClampType);
251 
252 protected:
GrXPFactory()253     constexpr GrXPFactory() {}
254 
255 private:
256     virtual sk_sp<const GrXferProcessor> makeXferProcessor(const GrProcessorAnalysisColor&,
257                                                            GrProcessorAnalysisCoverage,
258                                                            const GrCaps&,
259                                                            GrClampType) const = 0;
260 
261     /**
262      * Subclass analysis implementation. This should not return kNeedsDstInTexture as that will be
263      * inferred by the base class based on kReadsDstInShader and the caps.
264      */
265     virtual AnalysisProperties analysisProperties(const GrProcessorAnalysisColor&,
266                                                   const GrProcessorAnalysisCoverage&,
267                                                   const GrCaps&,
268                                                   GrClampType) const = 0;
269 };
270 #if defined(__GNUC__)
271 #pragma GCC diagnostic pop
272 #endif
273 #if defined(__clang__)
274 #pragma clang diagnostic pop
275 #endif
276 
GR_MAKE_BITFIELD_CLASS_OPS(GrXPFactory::AnalysisProperties)277 GR_MAKE_BITFIELD_CLASS_OPS(GrXPFactory::AnalysisProperties)
278 
279 //////////////////////////////////////////////////////////////////////////////
280 
281 class GrXferProcessor::ProgramImpl {
282 public:
283     virtual ~ProgramImpl() = default;
284 
285     using SamplerHandle = GrGLSLUniformHandler::SamplerHandle;
286 
287     struct EmitArgs {
288         EmitArgs(GrGLSLXPFragmentBuilder* fragBuilder,
289                  GrGLSLUniformHandler* uniformHandler,
290                  const GrShaderCaps* caps,
291                  const GrXferProcessor& xp,
292                  const char* inputColor,
293                  const char* inputCoverage,
294                  const char* outputPrimary,
295                  const char* outputSecondary,
296                  const SamplerHandle dstTextureSamplerHandle,
297                  GrSurfaceOrigin dstTextureOrigin,
298                  const skgpu::Swizzle& writeSwizzle)
299                 : fXPFragBuilder(fragBuilder)
300                 , fUniformHandler(uniformHandler)
301                 , fShaderCaps(caps)
302                 , fXP(xp)
303                 , fInputColor(inputColor ? inputColor : "half4(1.0)")
304                 , fInputCoverage(inputCoverage)
305                 , fOutputPrimary(outputPrimary)
306                 , fOutputSecondary(outputSecondary)
307                 , fDstTextureSamplerHandle(dstTextureSamplerHandle)
308                 , fDstTextureOrigin(dstTextureOrigin)
309                 , fWriteSwizzle(writeSwizzle) {}
310         GrGLSLXPFragmentBuilder* fXPFragBuilder;
311         GrGLSLUniformHandler* fUniformHandler;
312         const GrShaderCaps* fShaderCaps;
313         const GrXferProcessor& fXP;
314         const char* fInputColor;
315         const char* fInputCoverage;
316         const char* fOutputPrimary;
317         const char* fOutputSecondary;
318         const SamplerHandle fDstTextureSamplerHandle;
319         GrSurfaceOrigin fDstTextureOrigin;
320         skgpu::Swizzle fWriteSwizzle;
321     };
322     /**
323      * This is similar to emitCode() in the base class, except it takes a full shader builder.
324      * This allows the effect subclass to emit vertex code.
325      */
326     void emitCode(const EmitArgs&);
327 
328     /** A ProgramImpl instance can be reused with any GrXferProcessor that produces the same key.
329         This function reads data from a GrXferProcessor and uploads any uniform variables required
330         by the shaders created in emitCode(). The GrXferProcessor parameter is guaranteed to be of
331         the same type that created this ProgramImpl and to have an identical processor key as the
332         one that created this ProgramImpl. This function calls onSetData on the subclass of
333         ProgramImpl.
334      */
335     void setData(const GrGLSLProgramDataManager& pdm, const GrXferProcessor& xp);
336 
337 protected:
338     ProgramImpl() = default;
339 
340     static void DefaultCoverageModulation(GrGLSLXPFragmentBuilder* fragBuilder,
341                                           const char* srcCoverage,
342                                           const char* dstColor,
343                                           const char* outColor,
344                                           const char* outColorSecondary,
345                                           const GrXferProcessor& proc);
346 
347 private:
348     /**
349      * Called by emitCode() when the XP will not be performing a dst read. This method is
350      * responsible for both blending and coverage. A subclass only needs to implement this method if
351      * it can construct a GrXferProcessor that will not read the dst color.
352      */
353     virtual void emitOutputsForBlendState(const EmitArgs&) {
354         SK_ABORT("emitOutputsForBlendState not implemented.");
355     }
356 
357     /**
358      * Called by emitCode() when the XP will perform a dst read. This method only needs to supply
359      * the blending logic. The base class applies coverage. A subclass only needs to implement this
360      * method if it can construct a GrXferProcessor that reads the dst color.
361      */
362     virtual void emitBlendCodeForDstRead(GrGLSLXPFragmentBuilder*,
363                                          GrGLSLUniformHandler*,
364                                          const char* srcColor,
365                                          const char* srcCoverage,
366                                          const char* dstColor,
367                                          const char* outColor,
368                                          const char* outColorSecondary,
369                                          const GrXferProcessor&) {
370         SK_ABORT("emitBlendCodeForDstRead not implemented.");
371     }
372 
373     virtual void emitWriteSwizzle(GrGLSLXPFragmentBuilder*,
374                                   const skgpu::Swizzle&,
375                                   const char* outColor,
376                                   const char* outColorSecondary) const;
377 
378     virtual void onSetData(const GrGLSLProgramDataManager&, const GrXferProcessor&) {}
379 };
380 
381 #endif
382