1 /*
2 * Copyright 2014 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #ifndef skgpu_ResourceKey_DEFINED
9 #define skgpu_ResourceKey_DEFINED
10
11 #include "include/core/SkData.h"
12 #include "include/core/SkString.h"
13 #include "include/private/SkOnce.h"
14 #include "include/private/SkTemplates.h"
15 #include "include/private/SkTo.h"
16
17 #include <new>
18
19 class TestResource;
20
21 namespace skgpu {
22
23 uint32_t ResourceKeyHash(const uint32_t* data, size_t size);
24
25 /**
26 * Base class for all gpu Resource cache keys. There are two types of cache keys. Refer to the
27 * comments for each key type below.
28 */
29 class ResourceKey {
30 public:
hash()31 uint32_t hash() const {
32 this->validate();
33 return fKey[kHash_MetaDataIdx];
34 }
35
size()36 size_t size() const {
37 this->validate();
38 SkASSERT(this->isValid());
39 return this->internalSize();
40 }
41
42 /** Used to initialize a key. */
43 class Builder {
44 public:
~Builder()45 ~Builder() { this->finish(); }
46
finish()47 void finish() {
48 if (nullptr == fKey) {
49 return;
50 }
51 uint32_t* hash = &fKey->fKey[kHash_MetaDataIdx];
52 *hash = ResourceKeyHash(hash + 1, fKey->internalSize() - sizeof(uint32_t));
53 fKey->validate();
54 fKey = nullptr;
55 }
56
57 uint32_t& operator[](int dataIdx) {
58 SkASSERT(fKey);
59 SkDEBUGCODE(size_t dataCount = fKey->internalSize() / sizeof(uint32_t) - kMetaDataCnt;)
60 SkASSERT(SkToU32(dataIdx) < dataCount);
61 return fKey->fKey[(int)kMetaDataCnt + dataIdx];
62 }
63
64 protected:
Builder(ResourceKey * key,uint32_t domain,int data32Count)65 Builder(ResourceKey* key, uint32_t domain, int data32Count) : fKey(key) {
66 size_t count = SkToSizeT(data32Count);
67 SkASSERT(domain != kInvalidDomain);
68 key->fKey.reset(kMetaDataCnt + count);
69 size_t size = (count + kMetaDataCnt) * sizeof(uint32_t);
70 SkASSERT(SkToU16(size) == size);
71 SkASSERT(SkToU16(domain) == domain);
72 key->fKey[kDomainAndSize_MetaDataIdx] = domain | (size << 16);
73 }
74
75 private:
76 ResourceKey* fKey;
77 };
78
79 protected:
80 static const uint32_t kInvalidDomain = 0;
81
ResourceKey()82 ResourceKey() { this->reset(); }
83
84 /** Reset to an invalid key. */
reset()85 void reset() {
86 fKey.reset(kMetaDataCnt);
87 fKey[kHash_MetaDataIdx] = 0;
88 fKey[kDomainAndSize_MetaDataIdx] = kInvalidDomain;
89 }
90
91 bool operator==(const ResourceKey& that) const {
92 // Both keys should be sized to at least contain the meta data. The metadata contains each
93 // key's length. So the second memcmp should only run if the keys have the same length.
94 return 0 == memcmp(fKey.get(), that.fKey.get(), kMetaDataCnt*sizeof(uint32_t)) &&
95 0 == memcmp(&fKey[kMetaDataCnt], &that.fKey[kMetaDataCnt], this->dataSize());
96 }
97
98 ResourceKey& operator=(const ResourceKey& that) {
99 if (this != &that) {
100 if (!that.isValid()) {
101 this->reset();
102 } else {
103 size_t bytes = that.size();
104 SkASSERT(SkIsAlign4(bytes));
105 fKey.reset(bytes / sizeof(uint32_t));
106 memcpy(fKey.get(), that.fKey.get(), bytes);
107 this->validate();
108 }
109 }
110 return *this;
111 }
112
isValid()113 bool isValid() const { return kInvalidDomain != this->domain(); }
114
domain()115 uint32_t domain() const { return fKey[kDomainAndSize_MetaDataIdx] & 0xffff; }
116
117 /** size of the key data, excluding meta-data (hash, domain, etc). */
dataSize()118 size_t dataSize() const { return this->size() - 4 * kMetaDataCnt; }
119
120 /** ptr to the key data, excluding meta-data (hash, domain, etc). */
data()121 const uint32_t* data() const {
122 this->validate();
123 return &fKey[kMetaDataCnt];
124 }
125
126 #ifdef SK_DEBUG
dump()127 void dump() const {
128 if (!this->isValid()) {
129 SkDebugf("Invalid Key\n");
130 } else {
131 SkDebugf("hash: %d ", this->hash());
132 SkDebugf("domain: %d ", this->domain());
133 SkDebugf("size: %zuB ", this->internalSize());
134 size_t dataCount = this->internalSize() / sizeof(uint32_t) - kMetaDataCnt;
135 for (size_t i = 0; i < dataCount; ++i) {
136 SkDebugf("%d ", fKey[SkTo<int>(kMetaDataCnt+i)]);
137 }
138 SkDebugf("\n");
139 }
140 }
141 #endif
142
143 private:
144 enum MetaDataIdx {
145 kHash_MetaDataIdx,
146 // The key domain and size are packed into a single uint32_t.
147 kDomainAndSize_MetaDataIdx,
148
149 kLastMetaDataIdx = kDomainAndSize_MetaDataIdx
150 };
151 static const uint32_t kMetaDataCnt = kLastMetaDataIdx + 1;
152
internalSize()153 size_t internalSize() const { return fKey[kDomainAndSize_MetaDataIdx] >> 16; }
154
validate()155 void validate() const {
156 SkASSERT(this->isValid());
157 SkASSERT(fKey[kHash_MetaDataIdx] ==
158 ResourceKeyHash(&fKey[kHash_MetaDataIdx] + 1,
159 this->internalSize() - sizeof(uint32_t)));
160 SkASSERT(SkIsAlign4(this->internalSize()));
161 }
162
163 friend class ::TestResource; // For unit test to access kMetaDataCnt.
164
165 // bmp textures require 5 uint32_t values.
166 SkAutoSTMalloc<kMetaDataCnt + 5, uint32_t> fKey;
167 };
168
169 /**
170 * A key used for scratch resources. There are three important rules about scratch keys:
171 * * Multiple resources can share the same scratch key. Therefore resources assigned the same
172 * scratch key should be interchangeable with respect to the code that uses them.
173 * * A resource can have at most one scratch key and it is set at resource creation by the
174 * resource itself.
175 * * When a scratch resource is ref'ed it will not be returned from the
176 * cache for a subsequent cache request until all refs are released. This facilitates using
177 * a scratch key for multiple render-to-texture scenarios. An example is a separable blur:
178 *
179 * GrTexture* texture[2];
180 * texture[0] = get_scratch_texture(scratchKey);
181 * texture[1] = get_scratch_texture(scratchKey); // texture[0] is already owned so we will get a
182 * // different one for texture[1]
183 * draw_mask(texture[0], path); // draws path mask to texture[0]
184 * blur_x(texture[0], texture[1]); // blurs texture[0] in y and stores result in texture[1]
185 * blur_y(texture[1], texture[0]); // blurs texture[1] in y and stores result in texture[0]
186 * texture[1]->unref(); // texture 1 can now be recycled for the next request with scratchKey
187 * consume_blur(texture[0]);
188 * texture[0]->unref(); // texture 0 can now be recycled for the next request with scratchKey
189 */
190 class ScratchKey : public ResourceKey {
191 public:
192 /** Uniquely identifies the type of resource that is cached as scratch. */
193 typedef uint32_t ResourceType;
194
195 /** Generate a unique ResourceType. */
196 static ResourceType GenerateResourceType();
197
198 /** Creates an invalid scratch key. It must be initialized using a Builder object before use. */
ScratchKey()199 ScratchKey() {}
200
ScratchKey(const ScratchKey & that)201 ScratchKey(const ScratchKey& that) { *this = that; }
202
203 /** reset() returns the key to the invalid state. */
204 using ResourceKey::reset;
205
206 using ResourceKey::isValid;
207
resourceType()208 ResourceType resourceType() const { return this->domain(); }
209
210 ScratchKey& operator=(const ScratchKey& that) {
211 this->ResourceKey::operator=(that);
212 return *this;
213 }
214
215 bool operator==(const ScratchKey& that) const { return this->ResourceKey::operator==(that); }
216 bool operator!=(const ScratchKey& that) const { return !(*this == that); }
217
218 class Builder : public ResourceKey::Builder {
219 public:
Builder(ScratchKey * key,ResourceType type,int data32Count)220 Builder(ScratchKey* key, ResourceType type, int data32Count)
221 : ResourceKey::Builder(key, type, data32Count) {}
222 };
223 };
224
225 /**
226 * A key that allows for exclusive use of a resource for a use case (AKA "domain"). There are three
227 * rules governing the use of unique keys:
228 * * Only one resource can have a given unique key at a time. Hence, "unique".
229 * * A resource can have at most one unique key at a time.
230 * * Unlike scratch keys, multiple requests for a unique key will return the same
231 * resource even if the resource already has refs.
232 * This key type allows a code path to create cached resources for which it is the exclusive user.
233 * The code path creates a domain which it sets on its keys. This guarantees that there are no
234 * cross-domain collisions.
235 *
236 * Unique keys preempt scratch keys. While a resource has a unique key it is inaccessible via its
237 * scratch key. It can become scratch again if the unique key is removed.
238 */
239 class UniqueKey : public ResourceKey {
240 public:
241 typedef uint32_t Domain;
242 /** Generate a Domain for unique keys. */
243 static Domain GenerateDomain();
244
245 /** Creates an invalid unique key. It must be initialized using a Builder object before use. */
UniqueKey()246 UniqueKey() : fTag(nullptr) {}
247
UniqueKey(const UniqueKey & that)248 UniqueKey(const UniqueKey& that) { *this = that; }
249
250 /** reset() returns the key to the invalid state. */
251 using ResourceKey::reset;
252
253 using ResourceKey::isValid;
254
255 UniqueKey& operator=(const UniqueKey& that) {
256 this->ResourceKey::operator=(that);
257 this->setCustomData(sk_ref_sp(that.getCustomData()));
258 fTag = that.fTag;
259 return *this;
260 }
261
262 bool operator==(const UniqueKey& that) const { return this->ResourceKey::operator==(that); }
263 bool operator!=(const UniqueKey& that) const { return !(*this == that); }
264
setCustomData(sk_sp<SkData> data)265 void setCustomData(sk_sp<SkData> data) { fData = std::move(data); }
getCustomData()266 SkData* getCustomData() const { return fData.get(); }
refCustomData()267 sk_sp<SkData> refCustomData() const { return fData; }
268
tag()269 const char* tag() const { return fTag; }
270
271 #ifdef SK_DEBUG
dump(const char * label)272 void dump(const char* label) const {
273 SkDebugf("%s tag: %s\n", label, fTag ? fTag : "None");
274 this->ResourceKey::dump();
275 }
276 #endif
277
278 class Builder : public ResourceKey::Builder {
279 public:
280 Builder(UniqueKey* key, Domain type, int data32Count, const char* tag = nullptr)
Builder(key,type,data32Count)281 : ResourceKey::Builder(key, type, data32Count) {
282 key->fTag = tag;
283 }
284
285 /** Used to build a key that wraps another key and adds additional data. */
286 Builder(UniqueKey* key, const UniqueKey& innerKey, Domain domain, int extraData32Cnt,
287 const char* tag = nullptr)
288 : ResourceKey::Builder(key,
289 domain,
290 Data32CntForInnerKey(innerKey) + extraData32Cnt) {
291 SkASSERT(&innerKey != key);
292 // add the inner key to the end of the key so that op[] can be indexed normally.
293 uint32_t* innerKeyData = &this->operator[](extraData32Cnt);
294 const uint32_t* srcData = innerKey.data();
295 (*innerKeyData++) = innerKey.domain();
296 memcpy(innerKeyData, srcData, innerKey.dataSize());
297 key->fTag = tag;
298 }
299
300 private:
Data32CntForInnerKey(const UniqueKey & innerKey)301 static int Data32CntForInnerKey(const UniqueKey& innerKey) {
302 // key data + domain
303 return SkToInt((innerKey.dataSize() >> 2) + 1);
304 }
305 };
306
307 private:
308 sk_sp<SkData> fData;
309 const char* fTag;
310 };
311
312 /**
313 * It is common to need a frequently reused UniqueKey where the only requirement is that the key
314 * is unique. These macros create such a key in a thread safe manner so the key can be truly global
315 * and only constructed once.
316 */
317
318 /** Place outside of function/class definitions. */
319 #define SKGPU_DECLARE_STATIC_UNIQUE_KEY(name) static SkOnce name##_once
320
321 /** Place inside function where the key is used. */
322 #define SKGPU_DEFINE_STATIC_UNIQUE_KEY(name) \
323 static SkAlignedSTStorage<1, skgpu::UniqueKey> name##_storage; \
324 name##_once(skgpu::skgpu_init_static_unique_key_once, &name##_storage); \
325 static const skgpu::UniqueKey& name = \
326 *reinterpret_cast<skgpu::UniqueKey*>(name##_storage.get())
327
skgpu_init_static_unique_key_once(SkAlignedSTStorage<1,UniqueKey> * keyStorage)328 static inline void skgpu_init_static_unique_key_once(SkAlignedSTStorage<1, UniqueKey>* keyStorage) {
329 UniqueKey* key = new (keyStorage->get()) UniqueKey;
330 UniqueKey::Builder builder(key, UniqueKey::GenerateDomain(), 0);
331 }
332
333 // The cache listens for these messages to purge junk resources proactively.
334 class UniqueKeyInvalidatedMessage {
335 public:
336 UniqueKeyInvalidatedMessage() = default;
337 UniqueKeyInvalidatedMessage(const UniqueKey& key,
338 uint32_t contextUniqueID,
339 bool inThreadSafeCache = false)
fKey(key)340 : fKey(key), fContextID(contextUniqueID), fInThreadSafeCache(inThreadSafeCache) {
341 SkASSERT(SK_InvalidUniqueID != contextUniqueID);
342 }
343
344 UniqueKeyInvalidatedMessage(const UniqueKeyInvalidatedMessage&) = default;
345
346 UniqueKeyInvalidatedMessage& operator=(const UniqueKeyInvalidatedMessage&) = default;
347
key()348 const UniqueKey& key() const { return fKey; }
contextID()349 uint32_t contextID() const { return fContextID; }
inThreadSafeCache()350 bool inThreadSafeCache() const { return fInThreadSafeCache; }
351
352 private:
353 UniqueKey fKey;
354 uint32_t fContextID = SK_InvalidUniqueID;
355 bool fInThreadSafeCache = false;
356 };
357
SkShouldPostMessageToBus(const UniqueKeyInvalidatedMessage & msg,uint32_t msgBusUniqueID)358 static inline bool SkShouldPostMessageToBus(const UniqueKeyInvalidatedMessage& msg,
359 uint32_t msgBusUniqueID) {
360 return msg.contextID() == msgBusUniqueID;
361 }
362
363 } // namespace skgpu
364
365 #endif // skgpu_ResourceKey_DEFINED
366