1 // Copyright 2022 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5
6 #include <xnnpack/aarch64-assembler.h>
7 #include <xnnpack/common.h>
8 #include <xnnpack/math.h>
9
10 #include <cmath>
11
12 namespace xnnpack {
13 namespace aarch64 {
14 // Min and max values for the imm7 for ldp, will be shifted right by 3 when encoding.
15 constexpr int32_t kImm7Min = -512;
16 constexpr int32_t kImm7Max = 504;
17 constexpr uint32_t kImm7Mask = 0x7F;
18 // Max value for imm12, will be shifted right by 3 when encoding.
19 constexpr int32_t kImm12Max = 32760;
20 constexpr uint32_t kUint12Max = 4095;
21
22 constexpr int32_t kInt9Max = 255;
23 constexpr int32_t kInt9Min = -256;
24 constexpr uint32_t kImm9Mask = 0x1FF;
25
26 // Constants used for checking branch offset bounds.
27 // Conditional bounds are +/-1MB.
28 constexpr ptrdiff_t kConditionalBranchImmMax = 1048572;
29 constexpr ptrdiff_t kConditionalBranchImmMin = -1048576;
30 // TBZ and TBNZ bounds are +/-32KB.
31 constexpr ptrdiff_t kTbxzImmMax = 32764;
32 constexpr ptrdiff_t kTbxzImmMin = -32768;
33 // Unconditional bounds are +/-128MB.
34 constexpr ptrdiff_t kUnconditionalBranchImmMax = 134217727;
35 constexpr ptrdiff_t kUnconditionalBranchImmMin = -134217728;
36
37 constexpr uint32_t kConditionalImmMask = 0x0007FFFF;
38 constexpr uint32_t kTbxzImmMask = 0x3FFF;
39 constexpr uint32_t kUnconditionalImmMask = 0x03FFFFFF;
40
rd(Reg rn)41 template <typename Reg> inline uint32_t rd(Reg rn) { return rn.code; }
rt(Reg rn)42 template <typename Reg> inline uint32_t rt(Reg rn) { return rn.code; }
rt2(Reg rn)43 template <typename Reg> inline uint32_t rt2(Reg rn) { return rn.code << 10; }
rm(Reg rn)44 template <typename Reg> inline uint32_t rm(Reg rn) { return rn.code << 16; }
rn(Reg rn)45 template <typename Reg> inline uint32_t rn(Reg rn) { return rn.code << 5; }
q(VRegister vt)46 inline uint32_t q(VRegister vt) { return vt.q << 30; }
size(VRegister vt)47 inline uint32_t size(VRegister vt) { return vt.size << 10; }
fp_sz(VRegister vn)48 inline uint32_t fp_sz(VRegister vn) { return vn.is_s() ? 0 : 1 << 22; }
postindex(MemOperand op)49 inline uint32_t postindex(MemOperand op) { return (op.mode == AddressingMode::kPostIndex) ? 0 : 1 << 24; }
wb(MemOperand op)50 inline uint32_t wb(MemOperand op) { return op.mode == AddressingMode::kOffset ? 0 : 1 << 23; }
51
is_same_shape(VRegister vt1,VRegister vt2)52 inline bool is_same_shape(VRegister vt1, VRegister vt2) {
53 return vt1.size == vt2.size && vt1.q == vt2.q;
54 }
55
56 template <typename Reg, typename... Regs>
is_same_shape(Reg reg1,Reg reg2,Regs...regs)57 inline bool is_same_shape(Reg reg1, Reg reg2, Regs... regs) {
58 return is_same_shape(reg1, reg2) && is_same_shape(reg2, regs...);
59 }
60
is_same_shape(VRegisterList vs)61 inline bool is_same_shape(VRegisterList vs) {
62 switch (vs.length) {
63 case 1:
64 return true;
65 case 2:
66 return is_same_shape(vs.vt1, vs.vt2);
67 case 3:
68 return is_same_shape(vs.vt1, vs.vt2, vs.vt3);
69 case 4:
70 return is_same_shape(vs.vt1, vs.vt2, vs.vt3, vs.vt4);
71 default:
72 XNN_UNREACHABLE;
73 }
74 }
75
is_same_data_type(VRegister vt1,VRegisterLane vt2)76 inline bool is_same_data_type(VRegister vt1, VRegisterLane vt2) {
77 return vt1.size == vt2.size;
78 }
79
is_consecutive(VRegister vt1,VRegister vt2)80 inline bool is_consecutive(VRegister vt1, VRegister vt2) {
81 return (vt1.code + 1) % 32 == vt2.code;
82 }
83
84 template <typename Reg, typename... Regs>
is_consecutive(Reg reg1,Reg reg2,Regs...regs)85 inline bool is_consecutive(Reg reg1, Reg reg2, Regs... regs) {
86 return is_consecutive(reg1, reg2) && is_consecutive(reg2, regs...);
87 }
88
is_consecutive(VRegisterList vs)89 inline bool is_consecutive(VRegisterList vs) {
90 switch (vs.length) {
91 case 1:
92 return true;
93 case 2:
94 return is_consecutive(vs.vt1, vs.vt2);
95 case 3:
96 return is_consecutive(vs.vt1, vs.vt2, vs.vt3);
97 case 4:
98 return is_consecutive(vs.vt1, vs.vt2, vs.vt3, vs.vt4);
99 default:
100 XNN_UNREACHABLE;
101 }
102 }
103
104 // Check if a branch offset is valid, it must fit in 19 bits.
branch_offset_valid(ptrdiff_t offset,BranchType branch_type)105 inline bool branch_offset_valid(ptrdiff_t offset, BranchType branch_type) {
106 switch (branch_type) {
107 case BranchType::kConditional:
108 return offset < kConditionalBranchImmMax && offset > kConditionalBranchImmMin;
109 case BranchType::kTbxz:
110 return offset < kTbxzImmMax && offset > kTbxzImmMin;
111 case BranchType::kUnconditional:
112 return offset < kUnconditionalBranchImmMax && offset > kUnconditionalBranchImmMin;
113 default:
114 XNN_UNREACHABLE;
115 }
116 return false;
117 }
118
instruction_branch_type(uint32_t instr)119 inline BranchType instruction_branch_type(uint32_t instr) {
120 const uint32_t masked = instr & 0xFE000000;
121 switch (masked) {
122 case 0xB6000000:
123 case 0x36000000:
124 return BranchType::kTbxz;
125 case 0x54000000:
126 return BranchType::kConditional;
127 case 0x14000000:
128 case 0x16000000:
129 return BranchType::kUnconditional;
130 default:
131 XNN_UNREACHABLE;
132 }
133 }
134
mask(BranchType branch_type)135 inline uint32_t mask(BranchType branch_type) {
136 switch (branch_type) {
137 case BranchType::kConditional:
138 return kConditionalImmMask;
139 case BranchType::kTbxz:
140 return kTbxzImmMask;
141 case BranchType::kUnconditional:
142 return kUnconditionalImmMask;
143 default:
144 XNN_UNREACHABLE;
145 }
146 }
147
shift(BranchType branch_type)148 inline uint8_t shift(BranchType branch_type) {
149 switch (branch_type) {
150 case BranchType::kConditional:
151 return 5;
152 case BranchType::kTbxz:
153 return 5;
154 case BranchType::kUnconditional:
155 return 0;
156 default:
157 XNN_UNREACHABLE;
158 }
159 }
160
branch_imm(ptrdiff_t offset,BranchType bt)161 inline uint32_t branch_imm(ptrdiff_t offset, BranchType bt) {
162 return ((offset >> kInstructionSizeInBytesLog2) & mask(bt)) << shift(bt);
163 }
164
hl(VRegisterLane vl)165 inline uint32_t hl(VRegisterLane vl) {
166 if (vl.is_s()) {
167 return (vl.lane & 1) << 21 | ((vl.lane & 2) << 10);
168 } else {
169 return (vl.lane & 1) << 11;
170 }
171 }
172
lane_index_valid(uint8_t q,uint8_t size,uint8_t lane)173 inline bool lane_index_valid(uint8_t q, uint8_t size, uint8_t lane) {
174 // The logic here is something like:
175 // if (q && size == 0) {
176 // return lane < 16;
177 // } else if (q && size == 1) {
178 // return lane < 8;
179 // } else if (q && size == 2) {
180 // return lane < 4;
181 // } else if (q && size == 3) {
182 // return lane < 2;
183 // }
184 // then repeat for !q with maximum lane size halved.
185 // translated into this formula.
186 return lane < ((q + 1) << (3 - size));
187 }
188
load_store_opcode(uint8_t register_length)189 inline uint8_t load_store_opcode(uint8_t register_length) {
190 switch (register_length) {
191 case 1:
192 return 0x7;
193 case 2:
194 return 0xA;
195 case 3:
196 return 0x6;
197 case 4:
198 return 0x2;
199 default:
200 XNN_UNREACHABLE;
201 }
202 }
203
imm7_offset_valid(int32_t imm,XRegister)204 inline bool imm7_offset_valid(int32_t imm, XRegister) {
205 return imm >= kImm7Min && imm <= kImm7Max && (imm & 0x7) == 0;
206 }
207
imm7_offset_valid(int32_t imm,DRegister)208 inline bool imm7_offset_valid(int32_t imm, DRegister) {
209 return imm >= kImm7Min && imm <= kImm7Max && (imm & 0x7) == 0;
210 }
211
imm7_offset_valid(int32_t imm,QRegister)212 inline bool imm7_offset_valid(int32_t imm, QRegister) {
213 return imm >= (kImm7Min * 2) && imm <= (kImm7Max * 2) && (imm & 0xF) == 0;
214 }
215
216 // Base instructions.
217
add(XRegister xd,XRegister xn,uint16_t imm12)218 void Assembler::add(XRegister xd, XRegister xn, uint16_t imm12) {
219 // The instruction supports larger numbers using the shift by (left shift by 12), but that's unused in kernels.
220 if (imm12 > kUint12Max) {
221 error_ = Error::kInvalidOperand;
222 return;
223 }
224
225 emit32(0x91000000 | imm12 << 10 | rn(xn) | rd(xd));
226 }
227
add(XRegister xd,XRegister xn,XRegister xm)228 void Assembler::add(XRegister xd, XRegister xn, XRegister xm) {
229 emit32(0x8B000000 | rd(xd) | rn(xn) | rm(xm));
230 }
231
b(Label & l)232 void Assembler::b(Label& l) {
233 return branch_to_label(0x14000000, BranchType::kUnconditional, l);
234 }
235
cmp(XRegister xn,uint16_t imm12)236 void Assembler::cmp(XRegister xn, uint16_t imm12) {
237 if (imm12 > kUint12Max) {
238 error_ = Error::kInvalidOperand;
239 return;
240 }
241 emit32(0xF100001F | imm12 << 10 | rn(xn));
242 }
243
cmp(XRegister xn,XRegister xm)244 void Assembler::cmp(XRegister xn, XRegister xm) {
245 emit32(0xEB00001F | rm(xm) | rn(xn));
246 }
247
csel(XRegister xd,XRegister xn,XRegister xm,Condition c)248 void Assembler::csel(XRegister xd, XRegister xn, XRegister xm, Condition c) {
249 emit32(0x9A800000 | rm(xm) | c << 12 | rn(xn) | rd(xd));
250 }
251
ldp(XRegister xt1,XRegister xt2,MemOperand xn)252 void Assembler::ldp(XRegister xt1, XRegister xt2, MemOperand xn) {
253 if (!imm7_offset_valid(xn.offset, xt1)) {
254 error_ = Error::kInvalidOperand;
255 return;
256 }
257
258 const uint32_t offset = (xn.offset >> 3) & kImm7Mask;
259
260 emit32(0xA8400000 | postindex(xn) | wb(xn) | offset << 15 | rt2(xt2) | rn(xn.base) | xt1.code);
261 }
262
ldp(XRegister xt1,XRegister xt2,MemOperand xn,int32_t imm)263 void Assembler::ldp(XRegister xt1, XRegister xt2, MemOperand xn, int32_t imm) {
264 if (xn.offset != 0) {
265 error_ = Error::kInvalidOperand;
266 return;
267 }
268 return ldp(xt1, xt2, {xn.base, imm, AddressingMode::kPostIndex});
269 }
270
ldr(XRegister xt,MemOperand xn)271 void Assembler::ldr(XRegister xt, MemOperand xn) {
272 const int32_t imm = xn.offset;
273 if (xn.mode != AddressingMode::kOffset || imm < 0 || imm > (kUint12Max << 3) || (imm & 7) != 0) {
274 error_ = Error::kInvalidOperand;
275 return;
276 }
277
278 emit32(0xF9400000 | imm >> 3 << 10 | rn(xn.base) | xt.code);
279 }
280
ldr(XRegister xt,MemOperand xn,int32_t imm)281 void Assembler::ldr(XRegister xt, MemOperand xn, int32_t imm) {
282 if (imm < kInt9Min || imm > kInt9Max) {
283 error_ = Error::kInvalidOperand;
284 return;
285 }
286
287 emit32(0xF8400400 | (imm & kImm9Mask) << 12 | rn(xn.base) | rt(xt));
288 }
289
mov(XRegister xd,XRegister xn)290 void Assembler::mov(XRegister xd, XRegister xn) {
291 emit32(0xAA0003E0 | rm(xn) | rd(xd));
292 }
293
prfm(PrefetchOp prfop,MemOperand xn)294 void Assembler::prfm(PrefetchOp prfop, MemOperand xn) {
295 if (xn.offset < 0 || xn.offset > kImm12Max) {
296 error_ = Error::kInvalidOperand;
297 return;
298 }
299
300 emit32(0xF9800000 | xn.offset >> 3 << 10 | rn(xn.base) | prfop);
301 }
302
ret()303 void Assembler::ret() {
304 emit32(0xD65F0000 | rn(x30));
305 }
306
stp(XRegister xt1,XRegister xt2,MemOperand xn)307 void Assembler::stp(XRegister xt1, XRegister xt2, MemOperand xn) {
308 if (!imm7_offset_valid(xn.offset, xt1)) {
309 error_ = Error::kInvalidOperand;
310 return;
311 }
312
313 const uint32_t offset = (xn.offset >> 3) & kImm7Mask;
314 emit32(0xA9000000 | wb(xn) | offset << 15 | rt2(xt2) | rn(xn.base) | rt(xt1));
315 }
316
sub(XRegister xd,XRegister xn,XRegister xm)317 void Assembler::sub(XRegister xd, XRegister xn, XRegister xm) {
318 emit32(0xCB000000 | rm(xm) | rn(xn) | rd(xd));
319 }
320
subs(XRegister xd,XRegister xn,uint16_t imm12)321 void Assembler::subs(XRegister xd, XRegister xn, uint16_t imm12) {
322 if (imm12 > kUint12Max) {
323 error_ = Error::kInvalidOperand;
324 return;
325 }
326
327 emit32(0xF1000000 | imm12 << 10 | rn(xn) | rd(xd));
328 }
329
tbnz(XRegister xd,uint8_t bit,Label & l)330 void Assembler::tbnz(XRegister xd, uint8_t bit, Label& l) {
331 return tb_helper(0x37000000, xd, bit, l);
332 }
333
tbz(XRegister xd,uint8_t bit,Label & l)334 void Assembler::tbz(XRegister xd, uint8_t bit, Label& l) {
335 return tb_helper(0x36000000, xd, bit, l);
336 }
337
tst(XRegister xn,uint8_t imm)338 void Assembler::tst(XRegister xn, uint8_t imm) {
339 // Encoding of immediate is quite complicated, we only support po2-1, which is what assembly microkernel uses.
340 uint32_t imm_po2 = imm + 1;
341 if (!is_po2(imm_po2)) {
342 error_ = Error::kUnimplemented;
343 return;
344 }
345
346 const uint32_t imm_s = (ctz(imm_po2) - 1) << 10;
347 emit32(0xF240001F | imm_s | rn(xn));
348 }
349
350 // SIMD instructions.
351
dup(DRegister dd,VRegisterLane vn)352 void Assembler::dup(DRegister dd, VRegisterLane vn) {
353 if (vn.size != 3 || vn.lane > 1) {
354 error_ = Error::kInvalidOperand;
355 return;
356 }
357 const uint8_t imm5 = 0b1000 | (vn.lane & 1) << 4;
358 emit32(0x5E000400 | imm5 << 16 | rn(vn) | rd(dd));
359 }
360
fadd(VRegister vd,VRegister vn,VRegister vm)361 void Assembler::fadd(VRegister vd, VRegister vn, VRegister vm) {
362 if (!is_same_shape(vd, vn, vm)) {
363 error_ = Error::kInvalidOperand;
364 return;
365 }
366
367 emit32(0x0E20D400 | q(vd) | fp_sz(vn) | rm(vm) | rn(vn) | rd(vd));
368 }
369
fmax(VRegister vd,VRegister vn,VRegister vm)370 void Assembler::fmax(VRegister vd, VRegister vn, VRegister vm) {
371 if (!is_same_shape(vd, vn, vm)) {
372 error_ = Error::kInvalidOperand;
373 return;
374 }
375
376 emit32(0x0E20F400 | q(vd) | fp_sz(vn) | rm(vm) | rn(vn) | rd(vd));
377 }
378
fmin(VRegister vd,VRegister vn,VRegister vm)379 void Assembler::fmin(VRegister vd, VRegister vn, VRegister vm) {
380 if (!is_same_shape(vd, vn, vm)) {
381 error_ = Error::kInvalidOperand;
382 return;
383 }
384
385 emit32(0x0EA0F400 | q(vd) | fp_sz(vn) | rm(vm) | rn(vn) | rd(vd));
386 }
387
fmla(VRegister vd,VRegister vn,VRegisterLane vm)388 void Assembler::fmla(VRegister vd, VRegister vn, VRegisterLane vm) {
389 if (!is_same_shape(vd, vn) || !is_same_data_type(vd, vm)) {
390 error_ = Error::kInvalidOperand;
391 return;
392 }
393 if (!lane_index_valid(vd.q, vm.size, vm.lane)) {
394 error_ = Error::kInvalidLaneIndex;
395 return;
396 }
397
398 emit32(0x0F801000 | q(vd) | fp_sz(vd) | hl(vm) | rm(vm) | rn(vn) | rd(vd));
399 }
400
ld1(VRegisterList vs,MemOperand xn,int32_t imm)401 void Assembler::ld1(VRegisterList vs, MemOperand xn, int32_t imm) {
402 VRegister vt = vs.vt1;
403
404 if (!is_same_shape(vs) || !is_consecutive(vs)) {
405 error_ = Error::kInvalidOperand;
406 return;
407 }
408
409 // imm must match number of bytes loaded.
410 if ((vt.q + 1) * 8 * vs.length != imm) {
411 error_ = Error::kInvalidOperand;
412 return;
413 }
414
415 const uint8_t opcode = load_store_opcode(vs.length);
416
417 emit32(0x0CDF0000 | q(vt) | opcode << 12 | size(vt) | rn(xn.base) | rt(vt));
418 }
419
ld1r(VRegisterList xs,MemOperand xn)420 void Assembler::ld1r(VRegisterList xs, MemOperand xn) {
421 if (xs.length != 1 || xn.offset != 0) {
422 error_ = Error::kInvalidOperand;
423 return;
424 }
425
426 emit32(0x0D40C000 | q(xs.vt1) | size(xs.vt1) | rn(xn.base) | xs.vt1.code);
427 }
428
ld2r(VRegisterList xs,MemOperand xn)429 void Assembler::ld2r(VRegisterList xs, MemOperand xn) {
430 if (xs.length != 2 || !is_same_shape(xs.vt1, xs.vt2) || xn.offset != 0) {
431 error_ = Error::kInvalidOperand;
432 return;
433 }
434
435 emit32(0x0D60C000 | q(xs.vt1) | size(xs.vt1) | rn(xn.base) | xs.vt1.code);
436 }
437
ldp(DRegister dt1,DRegister dt2,MemOperand xn)438 void Assembler::ldp(DRegister dt1, DRegister dt2, MemOperand xn) {
439 if (!imm7_offset_valid(xn.offset, dt1)) {
440 error_ = Error::kInvalidOperand;
441 return;
442 }
443
444 const uint32_t offset = (xn.offset >> 3) & kImm7Mask;
445 emit32(0x6C400000 | postindex(xn) | wb(xn) | offset << 15 | rt2(dt2) | rn(xn.base) | rt(dt1));
446 }
447
ldp(DRegister dt1,DRegister dt2,MemOperand xn,int32_t imm)448 void Assembler::ldp(DRegister dt1, DRegister dt2, MemOperand xn, int32_t imm) {
449 return ldp(dt1, dt2, {xn.base, imm, AddressingMode::kPostIndex});
450 }
451
ldp(QRegister qt1,QRegister qt2,MemOperand xn,int32_t imm)452 void Assembler::ldp(QRegister qt1, QRegister qt2, MemOperand xn, int32_t imm) {
453 if (!imm7_offset_valid(imm, qt1)) {
454 error_ = Error::kInvalidOperand;
455 return;
456 }
457 const uint32_t offset = (imm >> 4) & kImm7Mask;
458
459 emit32(0xACC00000 | offset << 15 | rt2(qt2) | rn(xn.base) | qt1.code);
460 }
461
ldr(DRegister dt,MemOperand xn,int32_t imm)462 void Assembler::ldr(DRegister dt, MemOperand xn, int32_t imm) {
463 return ldr(/*size=*/3, /*opc=*/1, xn, imm, dt.code);
464 }
465
ldr(QRegister qt,MemOperand xn,int32_t imm)466 void Assembler::ldr(QRegister qt, MemOperand xn, int32_t imm) {
467 return ldr(/*size=*/0, /*opc=*/3, xn, imm, qt.code);
468 }
469
ldr(SRegister st,MemOperand xn,int32_t imm)470 void Assembler::ldr(SRegister st, MemOperand xn, int32_t imm) {
471 return ldr(/*size=*/2, /*opc=*/1, xn, imm, st.code);
472 }
473
mov(VRegister vd,VRegister vn)474 void Assembler::mov(VRegister vd, VRegister vn) {
475 if (!is_same_shape(vd, vn)) {
476 error_ = Error::kInvalidOperand;
477 return;
478 }
479 emit32(0x0EA01C00 | q(vd) | rm(vn) | rn(vn) | rd(vd));
480 }
481
movi(VRegister vd,uint8_t imm)482 void Assembler::movi(VRegister vd, uint8_t imm) {
483 if (imm != 0) {
484 error_ = Error::kUnimplemented;
485 return;
486 }
487
488 uint32_t cmode = 0;
489 switch (vd.size) {
490 case 0:
491 cmode = 0xE;
492 break;
493 case 1:
494 cmode = 0x8;
495 break;
496 case 2:
497 cmode = 0x0;
498 break;
499 default:
500 error_ = Error::kUnimplemented;
501 return;
502 }
503
504 emit32(0x0F000400 | q(vd) | cmode << 12 | vd.code);
505 }
506
st1(VRegisterList vs,MemOperand xn,XRegister xm)507 void Assembler::st1(VRegisterList vs, MemOperand xn, XRegister xm) {
508 if (!is_same_shape(vs) || !is_consecutive(vs)) {
509 error_ = Error::kInvalidOperand;
510 return;
511 }
512
513 VRegister vt = vs.vt1;
514
515 const uint8_t opcode = load_store_opcode(vs.length);
516 emit32(0x0C800000 | q(vt) | rm(xm) | opcode << 12 | size(vt) | rn(xn.base) | rt(vt));
517 }
518
stp(DRegister dt1,DRegister dt2,MemOperand xn)519 void Assembler::stp(DRegister dt1, DRegister dt2, MemOperand xn) {
520 if (!imm7_offset_valid(xn.offset, dt1)) {
521 error_ = Error::kInvalidOperand;
522 return;
523 }
524
525 const uint32_t offset = (xn.offset >> 3) & kImm7Mask;
526 emit32(0x6D000000 | wb(xn) | offset << 15 | rt2(dt2) | rn(xn.base) | rt(dt1));
527 }
528
stp(QRegister qt1,QRegister qt2,MemOperand xn)529 void Assembler::stp(QRegister qt1, QRegister qt2, MemOperand xn) {
530 if (!imm7_offset_valid(xn.offset, qt1)) {
531 error_ = Error::kInvalidOperand;
532 return;
533 }
534
535 const uint32_t offset = (xn.offset >> 4) & kImm7Mask;
536 emit32(0xAD000000 | wb(xn) | offset << 15 | rt2(qt2) | rn(xn.base) | rt(qt1));
537 }
538
stp(QRegister qt1,QRegister qt2,MemOperand xn,int32_t imm)539 void Assembler::stp(QRegister qt1, QRegister qt2, MemOperand xn, int32_t imm) {
540 if (!imm7_offset_valid(imm, qt1)) {
541 error_ = Error::kInvalidOperand;
542 return;
543 }
544
545 const uint32_t offset = (imm >> 4) & kImm7Mask;
546 emit32(0xAC800000 | offset << 15 | rt2(qt2) | rn(xn.base) | rt(qt1));
547 }
548
str(DRegister dt,MemOperand xn,int32_t imm)549 void Assembler::str(DRegister dt, MemOperand xn, int32_t imm) {
550 return str(/*size=*/3, /*opc=*/0, xn, imm, dt.code);
551 }
552
str(QRegister qt,MemOperand xn,int32_t imm)553 void Assembler::str(QRegister qt, MemOperand xn, int32_t imm) {
554 return str(/*size=*/0, /*opc=*/2, xn, imm, qt.code);
555 }
556
str(SRegister st,MemOperand xn)557 void Assembler::str(SRegister st, MemOperand xn) {
558 const int32_t imm = xn.offset;
559 if (imm < 0 || imm > (kUint12Max << 2) || (imm & 0x3) != 0) {
560 error_ = Error::kInvalidOperand;
561 return;
562 }
563
564 emit32(0xBD000000 | imm >> 2 << 10 | rn(xn.base) | rt(st));
565 }
566
str(SRegister st,MemOperand xn,int32_t imm)567 void Assembler::str(SRegister st, MemOperand xn, int32_t imm) {
568 return str(/*size=*/2, /*opc=*/0, xn, imm, st.code);
569 }
570
bind(Label & l)571 void Assembler::bind(Label& l) {
572 if (l.bound) {
573 error_ = Error::kLabelAlreadyBound;
574 return;
575 }
576
577 l.bound = true;
578 l.offset = cursor_;
579
580 // Patch all users.
581 for (size_t i = 0; i < l.num_users; i++) {
582 byte* user = l.users[i];
583 const ptrdiff_t offset = l.offset - user;
584 uint32_t* instr = reinterpret_cast<uint32_t*>(user);
585
586 const BranchType bt = instruction_branch_type(*instr);
587 if (!branch_offset_valid(offset, bt)) {
588 error_ = Error::kLabelOffsetOutOfBounds;
589 return;
590 }
591
592 *instr |= branch_imm(offset, bt);
593 }
594 }
595
b(Condition c,Label & l)596 void Assembler::b(Condition c, Label& l) {
597 return branch_to_label(0x54000000 | c, BranchType::kConditional, l);
598 }
599
branch_to_label(uint32_t opcode,BranchType bt,Label & l)600 void Assembler::branch_to_label(uint32_t opcode, BranchType bt, Label& l) {
601 if (l.bound) {
602 const ptrdiff_t offset = l.offset - cursor_;
603 if (!branch_offset_valid(offset, bt)) {
604 error_ = Error::kLabelOffsetOutOfBounds;
605 return;
606 }
607 emit32(opcode | branch_imm(offset, bt));
608 } else {
609 if (!l.add_use(cursor_)) {
610 error_ = Error::kLabelHasTooManyUsers;
611 return;
612 }
613 emit32(opcode);
614 }
615 }
616
ldr(uint32_t size,uint32_t opc,MemOperand xn,int32_t imm,uint8_t rt_code)617 void Assembler::ldr(uint32_t size, uint32_t opc, MemOperand xn, int32_t imm, uint8_t rt_code) {
618 if (xn.mode != AddressingMode::kOffset || xn.offset != 0 || imm < kInt9Min || imm > kInt9Max) {
619 error_ = Error::kInvalidOperand;
620 return;
621 }
622
623 emit32(0x3C400400 | size << 30 | opc << 22 | (imm & kImm9Mask) << 12| rn(xn.base) | rt_code);
624 }
625
str(uint32_t size,uint32_t opc,MemOperand xn,int32_t imm,uint8_t rt_code)626 void Assembler::str(uint32_t size, uint32_t opc, MemOperand xn, int32_t imm, uint8_t rt_code) {
627 if (imm < kInt9Min || imm > kInt9Max) {
628 error_ = Error::kInvalidOperand;
629 return;
630 }
631
632 emit32(0x3C000400 | size << 30 | opc << 22 | (imm & kImm9Mask) << 12 | rn(xn.base) | rt_code);
633 }
634
tb_helper(uint32_t op,XRegister xd,uint8_t bit,Label & l)635 void Assembler::tb_helper(uint32_t op, XRegister xd, uint8_t bit, Label& l) {
636 if (bit > 63) {
637 error_ = Error::kInvalidOperand;
638 return;
639 }
640
641 const uint32_t bit_pos = (bit & 0x20) >> 5 << 31 | (bit & 0x1F) << 19;
642 return branch_to_label(op | bit_pos | xd.code, BranchType::kTbxz, l);
643 }
644
645 } // namespace aarch64
646 } // namespace xnnpack
647