• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1// Copyright 2020 Google LLC
2//
3// This source code is licensed under the BSD-style license found in the
4// LICENSE file in the root directory of this source tree.
5
6$assert REQUANTIZATION == "FP32"
7$assert DATATYPE in ["QC8", "QS8", "QU8"]
8$assert VARIANT in ["LD128", "EXTENDED"]
9$assert MR <= 4
10#include <assert.h>
11
12#include <immintrin.h>
13
14#include <xnnpack/gemm.h>
15#include <xnnpack/intrinsics-polyfill.h>
16#include <xnnpack/math.h>
17
18
19$PARAMS_STRUCT = "avx2" if DATATYPE == "QC8" else "fp32_avx2"
20$GEMM_SUFFIX = "_xw" if VARIANT == "EXTENDED" else ""
21$PARAMS_UNION = "xnn_qs8_minmax_params" if DATATYPE == "QC8" else "xnn_%s_conv_minmax_params" % DATATYPE.lower()
22$XINT8_T = "uint8_t" if DATATYPE == "QU8" else "int8_t"
23void xnn_${DATATYPE.lower()}_gemm${GEMM_SUFFIX}_minmax_fp32_ukernel_${MR}x8c8__avx2(
24    size_t mr,
25    size_t nc,
26    size_t kc,
27    const ${XINT8_T}* restrict a,
28    size_t a_stride,
29    const void* restrict w,
30    ${XINT8_T}* restrict c,
31    size_t cm_stride,
32    size_t cn_stride,
33    const union ${PARAMS_UNION} params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
34{
35  assert(mr != 0);
36  assert(mr <= ${MR});
37  assert(nc != 0);
38  assert(kc != 0);
39  assert(kc % sizeof(${XINT8_T}) == 0);
40  assert(a != NULL);
41  assert(w != NULL);
42  assert(c != NULL);
43
44  kc = round_up_po2(kc, 8);
45  const ${XINT8_T}* a0 = a;
46  ${XINT8_T}* c0 = c;
47  $for M in range(1, MR):
48    const ${XINT8_T}* a${M} = (const ${XINT8_T}*) ((uintptr_t) a${M-1} + a_stride);
49    ${XINT8_T}* c${M} = (${XINT8_T}*) ((uintptr_t) c${M-1} + cm_stride);
50    $if M % 2 == 0:
51      if XNN_UNPREDICTABLE(mr <= ${M}) {
52        a${M} = a${M-1};
53        c${M} = c${M-1};
54      }
55    $elif M + 1 == MR:
56      if XNN_UNPREDICTABLE(mr != ${M+1}) {
57        a${M} = a${M-1};
58        c${M} = c${M-1};
59      }
60    $else:
61      if XNN_UNPREDICTABLE(mr < ${M+1}) {
62        a${M} = a${M-1};
63        c${M} = c${M-1};
64      }
65
66  do {
67    const __m128i vbias0x0 = _mm_loadu_si32(w);
68    const __m128i vbias0x1 = _mm_loadu_si32((const int32_t*) w + 1);
69    __m256i vacc0x01 = _mm256_inserti128_si256(_mm256_castsi128_si256(vbias0x0), vbias0x1, 1);
70    $for N in range(2, 8, 2):
71      const __m128i vbias0x${N} = _mm_loadu_si32((const int32_t*) w + ${N});
72      const __m128i vbias0x${N+1} = _mm_loadu_si32((const int32_t*) w + ${N+1});
73      __m256i vacc0x${N}${N+1} = _mm256_inserti128_si256(_mm256_castsi128_si256(vbias0x${N}), vbias0x${N+1}, 1);
74    $for M in range(1, MR):
75      $for N in range(0, 8, 2):
76        __m256i vacc${M}x${N}${N+1} = vacc0x${N}${N+1};
77    w = (const void*) ((const int32_t*) w + 8);
78
79    size_t k = 0;
80    $if DATATYPE == "QU8":
81      const __m256i vb_zero_point = _mm256_load_si256((const __m256i*) params->${PARAMS_STRUCT}.kernel_zero_point);
82    while (k < kc) {
83      $for M in range(MR):
84        const __m128i va${M} = _mm_broadcastq_epi64(_mm_loadl_epi64((const __m128i*) a${M}));
85        $if DATATYPE == "QU8":
86          const __m256i vxa${M} = _mm256_cvtepu8_epi16(va${M});
87        $else:
88          const __m256i vxa${M} = _mm256_cvtepi8_epi16(va${M});
89        a${M} += 8;
90
91      $for N in range(0, 8, 2):
92        $if VARIANT == "EXTENDED":
93          $if N == 0:
94            const __m256i vxb${N}${N+1} = _mm256_load_si256((const __m256i*) w);
95          $else:
96            const __m256i vxb${N}${N+1} = _mm256_load_si256((const __m256i*) ((const int16_t*) w + ${N * 8}));
97        $else:
98          $if N == 0:
99            const __m128i vb${N}${N+1} = _mm_load_si128((const __m128i*) w);
100          $else:
101            const __m128i vb${N}${N+1} = _mm_load_si128((const __m128i*) ((const ${XINT8_T}*) w + ${N * 8}));
102          $if DATATYPE == "QU8":
103            const __m256i vxb${N}${N+1} = _mm256_sub_epi16(_mm256_cvtepu8_epi16(vb${N}${N+1}), vb_zero_point);
104          $else:
105            const __m256i vxb${N}${N+1} = _mm256_cvtepi8_epi16(vb${N}${N+1});
106
107        $for M in range(MR):
108          vacc${M}x${N}${N+1} = _mm256_add_epi32(vacc${M}x${N}${N+1}, _mm256_madd_epi16(vxa${M}, vxb${N}${N+1}));
109
110      $if VARIANT == "EXTENDED":
111        w = (const void*) ((const int16_t*) w + 64);
112      $else:
113        w = (const void*) ((const ${XINT8_T}*) w + 64);
114      k += 8 * sizeof(${XINT8_T});
115    }
116
117    $for M in range(MR):
118      const __m256i vacc${M}x0213 = _mm256_hadd_epi32(vacc${M}x01, vacc${M}x23);
119      const __m256i vacc${M}x4657 = _mm256_hadd_epi32(vacc${M}x45, vacc${M}x67);
120
121    $for M in range(MR):
122      const __m256i vacc${M}x02461357 = _mm256_hadd_epi32(vacc${M}x0213, vacc${M}x4657);
123
124    const __m256i vpermute_mask = _mm256_set_epi32(7, 3, 6, 2, 5, 1, 4, 0);
125    $for M in range(MR):
126      __m256i vacc${M}x01234567 = _mm256_permutevar8x32_epi32(vacc${M}x02461357, vpermute_mask);
127
128    $for M in range(MR):
129      __m256 vscaled${M}x01234567 = _mm256_cvtepi32_ps(vacc${M}x01234567);
130
131    $if DATATYPE == "QC8":
132      const __m256 vscale01234567 = _mm256_load_ps(w);
133      w = (const void*) ((const float*) w + 8);
134      $for M in range(MR):
135        vscaled${M}x01234567 = _mm256_mul_ps(vscaled${M}x01234567, vscale01234567);
136    $else:
137      const __m256 vscale = _mm256_load_ps(params->fp32_avx2.scale);
138      $for M in range(MR):
139        vscaled${M}x01234567 = _mm256_mul_ps(vscaled${M}x01234567, vscale);
140
141    const __m256 voutput_max_less_zero_point = _mm256_load_ps(params->${PARAMS_STRUCT}.output_max_less_zero_point);
142    $for M in range(MR):
143      vscaled${M}x01234567 = _mm256_min_ps(vscaled${M}x01234567, voutput_max_less_zero_point);
144
145    $for M in range(MR):
146      vacc${M}x01234567 = _mm256_cvtps_epi32(vscaled${M}x01234567);
147
148    const __m256i voutput_zero_point = _mm256_load_si256((const __m256i*) params->${PARAMS_STRUCT}.output_zero_point);
149    $for M in range(0, MR, 2):
150      __m256i vacc${M}${min(M+1, MR-1)}x01234567 = _mm256_adds_epi16(_mm256_packs_epi32(vacc${M}x01234567, vacc${min(M+1, MR-1)}x01234567), voutput_zero_point);
151
152    $for M in range(0, MR, 2):
153      vacc${M}${min(M+1, MR-1)}x01234567 = _mm256_permute4x64_epi64(vacc${M}${min(M+1, MR-1)}x01234567, _MM_SHUFFLE(3, 1, 2, 0));
154
155    $if DATATYPE == "QU8":
156      $if MR > 2:
157        __m256i vout = _mm256_packus_epi16(vacc0${min(1, MR-1)}x01234567, vacc${min(2, MR-1)}${min(3, MR-1)}x01234567);
158      $else:
159        __m256i vout = _mm256_packus_epi16(vacc0${min(1, MR-1)}x01234567, vacc0${min(1, MR-1)}x01234567);
160
161      vout = _mm256_max_epu8(vout, _mm256_load_si256((const __m256i*) params->${PARAMS_STRUCT}.output_min));
162    $else:
163      $if MR > 2:
164        __m256i vout = _mm256_packs_epi16(vacc0${min(1, MR-1)}x01234567, vacc${min(2, MR-1)}${min(3, MR-1)}x01234567);
165      $else:
166        __m256i vout = _mm256_packs_epi16(vacc0${min(1, MR-1)}x01234567, vacc0${min(1, MR-1)}x01234567);
167
168      vout = _mm256_max_epi8(vout, _mm256_load_si256((const __m256i*) params->${PARAMS_STRUCT}.output_min));
169
170    __m128i vout_lo = _mm256_castsi256_si128(vout);
171    __m128i vout_hi = _mm256_extracti128_si256(vout, 1);
172
173    if (nc >= 8) {
174      _mm_storel_epi64((__m128i*) c0, vout_lo);
175      $if MR > 1:
176        _mm_storel_epi64((__m128i*) c1, vout_hi);
177      $if MR > 2:
178        _mm_storeh_pi((__m64*) c2, _mm_castsi128_ps(vout_lo));
179      $if MR > 3:
180        _mm_storeh_pi((__m64*) c3, _mm_castsi128_ps(vout_hi));
181
182      $for M in range(MR):
183        c${M} = (${XINT8_T}*) ((uintptr_t) c${M} + cn_stride);
184
185      $for M in range(MR):
186        a${M} = (const ${XINT8_T}*) ((uintptr_t) a${M} - kc);
187
188      nc -= 8;
189    } else {
190      if (nc & 4) {
191        _mm_storeu_si32(c0, vout_lo);
192        $if MR > 1:
193          _mm_storeu_si32(c1, vout_hi);
194        $if MR > 2:
195          *((uint32_t*) c2) = (uint32_t) _mm_extract_epi32(vout_lo, 2);
196        $if MR > 3:
197          *((uint32_t*) c3) = (uint32_t) _mm_extract_epi32(vout_hi, 2);
198
199        $for M in range(MR):
200          c${M} += 4;
201
202        vout_lo = _mm_srli_epi64(vout_lo, 32);
203        vout_hi = _mm_srli_epi64(vout_hi, 32);
204      }
205      if (nc & 2) {
206        *((uint16_t*) c0) = (uint16_t) _mm_extract_epi16(vout_lo, 0);
207        $if MR > 1:
208          *((uint16_t*) c1) = (uint16_t) _mm_extract_epi16(vout_hi, 0);
209        $if MR > 2:
210          *((uint16_t*) c2) = (uint16_t) _mm_extract_epi16(vout_lo, 4);
211        $if MR > 3:
212          *((uint16_t*) c3) = (uint16_t) _mm_extract_epi16(vout_hi, 4);
213
214        $for M in range(MR):
215          c${M} += 2;
216
217        vout_lo = _mm_srli_epi32(vout_lo, 16);
218        vout_hi = _mm_srli_epi32(vout_hi, 16);
219      }
220      if (nc & 1) {
221        *c0 = (${XINT8_T}) _mm_extract_epi8(vout_lo, 0);
222        $if MR > 1:
223          *c1 = (${XINT8_T}) _mm_extract_epi8(vout_hi, 0);
224        $if MR > 2:
225          *c2 = (${XINT8_T}) _mm_extract_epi8(vout_lo, 8);
226        $if MR > 3:
227          *c3 = (${XINT8_T}) _mm_extract_epi8(vout_hi, 8);
228      }
229
230      nc = 0;
231    }
232  } while (nc != 0);
233}
234