• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1// Copyright 2020 Google LLC
2//
3// This source code is licensed under the BSD-style license found in the
4// LICENSE file in the root directory of this source tree.
5
6$assert REQUANTIZATION == "FP32"
7$assert DATATYPE in ["QC8", "QS8", "QU8"]
8$assert MR <= 4
9#include <assert.h>
10
11#include <immintrin.h>
12
13#include <xnnpack/igemm.h>
14#include <xnnpack/intrinsics-polyfill.h>
15#include <xnnpack/math.h>
16
17
18$PARAMS_UNION = "xnn_qs8_minmax_params" if DATATYPE == "QC8" else "xnn_%s_conv_minmax_params" % DATATYPE.lower()
19$PARAMS_STRUCT = "avx2" if DATATYPE == "QC8" else "fp32_avx2"
20$XINT8_T = "uint8_t" if DATATYPE == "QU8" else "int8_t"
21void xnn_${DATATYPE.lower()}_igemm_minmax_fp32_ukernel_${MR}x8c8__avx2(
22    size_t mr,
23    size_t nc,
24    size_t kc,
25    size_t ks,
26    const ${XINT8_T}** restrict a,
27    const void* restrict w,
28    ${XINT8_T}* restrict c,
29    size_t cm_stride,
30    size_t cn_stride,
31    size_t a_offset,
32    const ${XINT8_T}* zero,
33    const union ${PARAMS_UNION} params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
34{
35  assert(mr != 0);
36  assert(mr <= ${MR});
37  assert(nc != 0);
38  assert(kc != 0);
39  assert(ks != 0);
40  assert(ks % (${MR} * sizeof(void*)) == 0);
41  assert(a_offset % sizeof(${XINT8_T}) == 0);
42  assert(a != NULL);
43  assert(w != NULL);
44  assert(c != NULL);
45
46  kc = round_up_po2(kc, 8);
47  ${XINT8_T}* c0 = c;
48  $for M in range(1, MR):
49    ${XINT8_T}* c${M} = (${XINT8_T}*) ((uintptr_t) c${M-1} + cm_stride);
50    $if M % 2 == 0:
51      if XNN_UNPREDICTABLE(mr <= ${M}) {
52        c${M} = c${M-1};
53      }
54    $elif M + 1 == MR:
55      if XNN_UNPREDICTABLE(mr != ${M+1}) {
56        c${M} = c${M-1};
57      }
58    $else:
59      if XNN_UNPREDICTABLE(mr < ${M+1}) {
60        c${M} = c${M-1};
61      }
62
63  do {
64    const __m128i vbias0x0 = _mm_loadu_si32(w);
65    const __m128i vbias0x1 = _mm_loadu_si32((const int32_t*) w + 1);
66    __m256i vacc0x01 = _mm256_inserti128_si256(_mm256_castsi128_si256(vbias0x0), vbias0x1, 1);
67    $for N in range(2, 8, 2):
68      const __m128i vbias0x${N} = _mm_loadu_si32((const int32_t*) w + ${N});
69      const __m128i vbias0x${N+1} = _mm_loadu_si32((const int32_t*) w + ${N+1});
70      __m256i vacc0x${N}${N+1} = _mm256_inserti128_si256(_mm256_castsi128_si256(vbias0x${N}), vbias0x${N+1}, 1);
71    $for M in range(1, MR):
72      $for N in range(0, 8, 2):
73        __m256i vacc${M}x${N}${N+1} = vacc0x${N}${N+1};
74    w = (const void*) ((const int32_t*) w + 8);
75
76    size_t p = ks;
77    $if DATATYPE == "QU8":
78      const __m256i vb_zero_point = _mm256_load_si256((const __m256i*) params->${PARAMS_STRUCT}.kernel_zero_point);
79    do {
80      $for M in range(MR):
81        const ${XINT8_T}* restrict a${M} = a[${M}];
82        if XNN_UNPREDICTABLE(a${M} != zero) {
83          a${M} = (const ${XINT8_T}*) ((uintptr_t) a${M} + a_offset);
84        }
85      a += ${MR};
86
87      size_t k = 0;
88      while (k < kc) {
89        $for M in range(MR):
90          const __m128i va${M} = _mm_broadcastq_epi64(_mm_loadl_epi64((const __m128i*) a${M}));
91          $if DATATYPE == "QU8":
92            const __m256i vxa${M} = _mm256_cvtepu8_epi16(va${M});
93          $else:
94            const __m256i vxa${M} = _mm256_cvtepi8_epi16(va${M});
95          a${M} += 8;
96
97        $for N in range(0, 8, 2):
98          $if N == 0:
99            const __m128i vb${N}${N+1} = _mm_load_si128((const __m128i*) w);
100          $else:
101            const __m128i vb${N}${N+1} = _mm_load_si128((const __m128i*) ((const ${XINT8_T}*) w + ${N * 8}));
102          $if DATATYPE == "QU8":
103            const __m256i vxb${N}${N+1} = _mm256_sub_epi16(_mm256_cvtepu8_epi16(vb${N}${N+1}), vb_zero_point);
104          $else:
105            const __m256i vxb${N}${N+1} = _mm256_cvtepi8_epi16(vb${N}${N+1});
106
107          $for M in range(MR):
108            vacc${M}x${N}${N+1} = _mm256_add_epi32(vacc${M}x${N}${N+1}, _mm256_madd_epi16(vxa${M}, vxb${N}${N+1}));
109
110        w = (const void*) ((const ${XINT8_T}*) w + 64);
111        k += 8 * sizeof(${XINT8_T});
112      }
113      p -= ${MR} * sizeof(void*);
114    } while (p != 0);
115
116    $for M in range(MR):
117      const __m256i vacc${M}x0213 = _mm256_hadd_epi32(vacc${M}x01, vacc${M}x23);
118      const __m256i vacc${M}x4657 = _mm256_hadd_epi32(vacc${M}x45, vacc${M}x67);
119
120    $for M in range(MR):
121      const __m256i vacc${M}x02461357 = _mm256_hadd_epi32(vacc${M}x0213, vacc${M}x4657);
122
123    const __m256i vpermute_mask = _mm256_set_epi32(7, 3, 6, 2, 5, 1, 4, 0);
124    $for M in range(MR):
125      __m256i vacc${M}x01234567 = _mm256_permutevar8x32_epi32(vacc${M}x02461357, vpermute_mask);
126
127    $for M in range(MR):
128      __m256 vscaled${M}x01234567 = _mm256_cvtepi32_ps(vacc${M}x01234567);
129
130    $if DATATYPE == "QC8":
131      const __m256 vscale01234567 = _mm256_load_ps(w);
132      w = (const void*) ((const float*) w + 8);
133      $for M in range(MR):
134        vscaled${M}x01234567 = _mm256_mul_ps(vscaled${M}x01234567, vscale01234567);
135    $else:
136      const __m256 vscale = _mm256_load_ps(params->fp32_avx2.scale);
137      $for M in range(MR):
138        vscaled${M}x01234567 = _mm256_mul_ps(vscaled${M}x01234567, vscale);
139
140    const __m256 voutput_max_less_zero_point = _mm256_load_ps(params->${PARAMS_STRUCT}.output_max_less_zero_point);
141    $for M in range(MR):
142      vscaled${M}x01234567 = _mm256_min_ps(vscaled${M}x01234567, voutput_max_less_zero_point);
143
144    $for M in range(MR):
145      vacc${M}x01234567 = _mm256_cvtps_epi32(vscaled${M}x01234567);
146
147    const __m256i voutput_zero_point = _mm256_load_si256((const __m256i*) params->${PARAMS_STRUCT}.output_zero_point);
148    $for M in range(0, MR, 2):
149      __m256i vacc${M}${min(M+1, MR-1)}x01234567 = _mm256_adds_epi16(_mm256_packs_epi32(vacc${M}x01234567, vacc${min(M+1, MR-1)}x01234567), voutput_zero_point);
150
151    $for M in range(0, MR, 2):
152      vacc${M}${min(M+1, MR-1)}x01234567 = _mm256_permute4x64_epi64(vacc${M}${min(M+1, MR-1)}x01234567, _MM_SHUFFLE(3, 1, 2, 0));
153
154    $if DATATYPE == "QU8":
155      $if MR > 2:
156        __m256i vout = _mm256_packus_epi16(vacc0${min(1, MR-1)}x01234567, vacc${min(2, MR-1)}${min(3, MR-1)}x01234567);
157      $else:
158        __m256i vout = _mm256_packus_epi16(vacc0${min(1, MR-1)}x01234567, vacc0${min(1, MR-1)}x01234567);
159
160      vout = _mm256_max_epu8(vout, _mm256_load_si256((const __m256i*) params->${PARAMS_STRUCT}.output_min));
161    $else:
162      $if MR > 2:
163        __m256i vout = _mm256_packs_epi16(vacc0${min(1, MR-1)}x01234567, vacc${min(2, MR-1)}${min(3, MR-1)}x01234567);
164      $else:
165        __m256i vout = _mm256_packs_epi16(vacc0${min(1, MR-1)}x01234567, vacc0${min(1, MR-1)}x01234567);
166
167      vout = _mm256_max_epi8(vout, _mm256_load_si256((const __m256i*) params->${PARAMS_STRUCT}.output_min));
168
169    __m128i vout_lo = _mm256_castsi256_si128(vout);
170    __m128i vout_hi = _mm256_extracti128_si256(vout, 1);
171
172    if (nc >= 8) {
173      $if MR > 3:
174        _mm_storeh_pi((__m64*) c3, _mm_castsi128_ps(vout_hi));
175      $if MR > 2:
176        _mm_storeh_pi((__m64*) c2, _mm_castsi128_ps(vout_lo));
177      $if MR > 1:
178        _mm_storel_epi64((__m128i*) c1, vout_hi);
179      _mm_storel_epi64((__m128i*) c0, vout_lo);
180
181      $for M in reversed(range(MR)):
182        c${M} = (${XINT8_T}*) ((uintptr_t) c${M} + cn_stride);
183
184      a = (const ${XINT8_T}**restrict) ((uintptr_t) a - ks);
185
186      nc -= 8;
187    } else {
188      if (nc & 4) {
189        $if MR > 3:
190          *((uint32_t*) c3) = (uint32_t) _mm_extract_epi32(vout_hi, 2);
191        $if MR > 2:
192          *((uint32_t*) c2) = (uint32_t) _mm_extract_epi32(vout_lo, 2);
193        $if MR > 1:
194          _mm_storeu_si32(c1, vout_hi);
195        _mm_storeu_si32(c0, vout_lo);
196
197        $for M in reversed(range(MR)):
198          c${M} += 4;
199
200        vout_lo = _mm_srli_epi64(vout_lo, 32);
201        vout_hi = _mm_srli_epi64(vout_hi, 32);
202      }
203      if (nc & 2) {
204        $if MR > 3:
205          *((uint16_t*) c3) = (uint16_t) _mm_extract_epi16(vout_hi, 4);
206        $if MR > 2:
207          *((uint16_t*) c2) = (uint16_t) _mm_extract_epi16(vout_lo, 4);
208        $if MR > 1:
209          *((uint16_t*) c1) = (uint16_t) _mm_extract_epi16(vout_hi, 0);
210        *((uint16_t*) c0) = (uint16_t) _mm_extract_epi16(vout_lo, 0);
211
212        $for M in reversed(range(MR)):
213          c${M} += 2;
214
215        vout_lo = _mm_srli_epi32(vout_lo, 16);
216        vout_hi = _mm_srli_epi32(vout_hi, 16);
217      }
218      if (nc & 1) {
219        $if MR > 3:
220          *c3 = (${XINT8_T}) _mm_extract_epi8(vout_hi, 8);
221        $if MR > 2:
222          *c2 = (${XINT8_T}) _mm_extract_epi8(vout_lo, 8);
223        $if MR > 1:
224          *c1 = (${XINT8_T}) _mm_extract_epi8(vout_hi, 0);
225        *c0 = (${XINT8_T}) _mm_extract_epi8(vout_lo, 0);
226      }
227
228      nc = 0;
229    }
230  } while (nc != 0);
231}
232