• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2018-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 
25 #include "arm_compute/runtime/CL/functions/CLArgMinMaxLayer.h"
26 
27 #include "arm_compute/core/Error.h"
28 #include "arm_compute/core/TensorInfo.h"
29 #include "arm_compute/core/Types.h"
30 #include "arm_compute/core/Validate.h"
31 #include "arm_compute/core/utils/misc/ShapeCalculator.h"
32 #include "src/core/CL/CLValidate.h"
33 #include "src/core/CL/kernels/CLArgMinMaxLayerKernel.h"
34 #include "src/core/helpers/AutoConfiguration.h"
35 #include "src/runtime/Utils.h"
36 #include "support/MemorySupport.h"
37 
38 namespace arm_compute
39 {
CLArgMinMaxLayer(std::shared_ptr<IMemoryManager> memory_manager)40 CLArgMinMaxLayer::CLArgMinMaxLayer(std::shared_ptr<IMemoryManager> memory_manager)
41     : _memory_group(std::move(memory_manager)), _results_vector(), _not_reshaped_output(), _reduction_kernels_vector(), _reshape(), _num_of_stages(), _reduction_axis()
42 {
43 }
44 
45 CLArgMinMaxLayer::~CLArgMinMaxLayer() = default;
46 
validate(const ITensorInfo * input,int axis,const ITensorInfo * output,const ReductionOperation & op)47 Status CLArgMinMaxLayer::validate(const ITensorInfo *input, int axis, const ITensorInfo *output, const ReductionOperation &op)
48 {
49     ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
50     ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(input);
51     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::S32, DataType::F16, DataType::F32);
52     ARM_COMPUTE_RETURN_ERROR_ON_MSG(op != ReductionOperation::ARG_IDX_MAX && op != ReductionOperation::ARG_IDX_MIN, "Invalid reduction operation");
53     ARM_COMPUTE_RETURN_ERROR_ON_MSG(axis >= static_cast<int>(TensorShape::num_max_dimensions), "Reduction axis greater than max number of dimensions");
54     ARM_COMPUTE_RETURN_ERROR_ON_MSG(axis > 3, "Unsupported reduction axis");
55     const unsigned int num_of_stages = utils::calculate_number_of_stages_only_x_axis(input->dimension(0), axis);
56 
57     DataType   output_data_type = DataType::S32;
58     TensorInfo not_reshaped_output;
59     const auto input_num_channles = input->num_channels();
60     const auto input_qinfo        = input->quantization_info();
61 
62     if(output->total_size() != 0)
63     {
64         output_data_type                       = output->data_type();
65         const TensorInfo expected_output_shape = output->clone()->set_tensor_shape(arm_compute::misc::shape_calculator::compute_reduced_shape(input->tensor_shape(), axis, false));
66         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(&expected_output_shape, output);
67     }
68 
69     auto shape_before_reshape = input->tensor_shape();
70     shape_before_reshape.set(axis, 1);
71     auto initialize_tensorinfo = [](TensorInfo & ti, TensorShape shape, DataType data_type, int num_channels, QuantizationInfo qinfo)
72     {
73         ti.set_data_type(data_type).set_tensor_shape(shape).set_num_channels(num_channels).set_quantization_info(qinfo);
74     };
75 
76     initialize_tensorinfo(not_reshaped_output, shape_before_reshape, output_data_type, input_num_channles, input_qinfo);
77 
78     if(num_of_stages == 1)
79     {
80         ARM_COMPUTE_RETURN_ON_ERROR(CLArgMinMaxLayerKernel::validate(input, nullptr, &not_reshaped_output, axis, op));
81     }
82     else
83     {
84         // Create temporary tensor infos
85         std::vector<TensorInfo> sums_vector(num_of_stages - 1);
86 
87         // Create intermediate tensor info
88         TensorShape shape{ input->tensor_shape() };
89 
90         for(unsigned int i = 0; i < num_of_stages - 1; i++)
91         {
92             shape.set(0, ceil(shape.x() / 128.f));
93             sums_vector[i].set_data_type(input->data_type());
94             sums_vector[i].set_tensor_shape(shape);
95             sums_vector[i].set_num_channels(input->num_channels());
96         }
97 
98         // Validate ReductionOperation only on first kernel
99         ARM_COMPUTE_RETURN_ON_ERROR(CLArgMinMaxLayerKernel::validate(input, nullptr, &sums_vector[0], axis, op));
100 
101         // Validate ReductionOperation on intermediate stages
102         for(unsigned int i = 1; i < num_of_stages - 1; ++i)
103         {
104             ARM_COMPUTE_RETURN_ON_ERROR(CLArgMinMaxLayerKernel::validate(input, &sums_vector[i - 1], &sums_vector[i], axis, op));
105         }
106 
107         // Validate ReductionOperation on the last stage
108         const unsigned int last_stage = num_of_stages - 1;
109         ARM_COMPUTE_RETURN_ON_ERROR(CLArgMinMaxLayerKernel::validate(input, &sums_vector[last_stage - 1], &not_reshaped_output, axis, op));
110     }
111     ARM_COMPUTE_RETURN_ON_ERROR(CLReshapeLayer::validate(&not_reshaped_output, output));
112     return Status{};
113 }
114 
configure(const ICLTensor * input,int axis,ICLTensor * output,const ReductionOperation & op)115 void CLArgMinMaxLayer::configure(const ICLTensor *input, int axis, ICLTensor *output, const ReductionOperation &op)
116 {
117     configure(CLKernelLibrary::get().get_compile_context(), input, axis, output, op);
118 }
119 
configure(const CLCompileContext & compile_context,const ICLTensor * input,int axis,ICLTensor * output,const ReductionOperation & op)120 void CLArgMinMaxLayer::configure(const CLCompileContext &compile_context, const ICLTensor *input, int axis, ICLTensor *output, const ReductionOperation &op)
121 {
122     ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
123     _num_of_stages  = utils::calculate_number_of_stages_only_x_axis(input->info()->dimension(0), axis);
124     _reduction_axis = axis;
125 
126     const TensorShape output_shape     = arm_compute::misc::shape_calculator::compute_reduced_shape(input->info()->tensor_shape(), axis, false);
127     DataType          output_data_type = (output->info()->data_type() == DataType::UNKNOWN) ? DataType::S32 : output->info()->data_type();
128     auto_init_if_empty(*output->info(), input->info()->clone()->set_tensor_shape(output_shape).set_data_type(output_data_type).reset_padding().set_is_resizable(true));
129 
130     // Configure reduction operation kernels
131     _reduction_kernels_vector.reserve(_num_of_stages);
132 
133     auto add_reduction_kernel = [this, &compile_context, axis, op](const ICLTensor * input, const ICLTensor * prev_output, ICLTensor * output)
134     {
135         _reduction_kernels_vector.emplace_back(support::cpp14::make_unique<CLArgMinMaxLayerKernel>());
136         _reduction_kernels_vector.back()->configure(compile_context, input, prev_output, output, axis, op);
137     };
138 
139     _memory_group.manage(&_not_reshaped_output);
140     // Create temporary tensors
141     if(_num_of_stages == 1)
142     {
143         add_reduction_kernel(input, nullptr, &_not_reshaped_output);
144     }
145     else
146     {
147         _results_vector.resize(_num_of_stages - 1);
148         TensorShape shape{ input->info()->tensor_shape() };
149         for(unsigned int i = 0; i < _num_of_stages - 1; i++)
150         {
151             shape.set(0, ceil(shape.x() / 128.f));
152             _results_vector[i].allocator()->init(input->info()->clone()->set_tensor_shape(shape).set_data_type(output_data_type));
153         }
154 
155         // Apply ReductionOperation only on first kernel
156         _memory_group.manage(&_results_vector[0]);
157         add_reduction_kernel(input, nullptr, &_results_vector[0]);
158 
159         // Apply ReductionOperation on intermediate stages
160         for(unsigned int i = 1; i < _num_of_stages - 1; ++i)
161         {
162             _memory_group.manage(&_results_vector[i]);
163             add_reduction_kernel(input, &_results_vector[i - 1], &_results_vector[i]);
164             _results_vector[i - 1].allocator()->allocate();
165         }
166 
167         // Apply ReductionOperation on the last stage
168         const unsigned int last_stage = _num_of_stages - 1;
169         add_reduction_kernel(input, &_results_vector[last_stage - 1], &_not_reshaped_output);
170         _results_vector[last_stage - 1].allocator()->allocate();
171     }
172     _reshape.configure(compile_context, &_not_reshaped_output, output);
173     _not_reshaped_output.allocator()->allocate();
174 }
175 
run()176 void CLArgMinMaxLayer::run()
177 {
178     MemoryGroupResourceScope scope_mg(_memory_group);
179 
180     for(unsigned int i = 0; i < _num_of_stages; ++i)
181     {
182         CLScheduler::get().enqueue(*_reduction_kernels_vector[i], false);
183     }
184     _reshape.run();
185 }
186 } // namespace arm_compute
187